Study on Measurement of Green Productivity of Tourism in the Yangtze River Economic Zone, China
Abstract
:1. Introduction
2. Study Area, Study Methods and Data Sources
2.1. Study Area
2.2. Study Methods
2.2.1. “Bottom up” Method
2.2.2. Super-Efficiency DEA Model and ML Index
2.3. Data Sources
3. Research Process and Results Analysis
3.1. Analysis of the Energy Consumption and Carbon Emissions of Tourism in the YREZ
3.2. Analysis of Green Productivity of Tourism in the YREZ
4. Conclusions and Discussion
4.1. Conclusions
4.2. Countermeasures and Suggestions
4.3. Research Prospect
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Index Factor | Unit | Data Source | |
---|---|---|---|
1 | a passenger turnover of transportation (including railway, highway, water transport and aviation) | 100 million passenger-km | CSY, PSY |
2 | a number of room beds | Bed | CTSY |
3 | a room occupancy rate | % | CTSY |
4 | a number of tourism activities (including sightseeing, leisure vacation, visiting relatives and friends, business meetings and others) | 10,000 Person-times | TSSD |
5 | a original cost of fixed assets of tourism enterprises | 1000 RMB | CTSY |
6 | a employees of tourism enterprises | Person | CTSY |
7 | a operating income of tourism enterprises | 1000 RMB | CTSY |
8 | a tax and surcharge of tourism enterprises | 1000 RMB | CTSY |
9 | b energy consumption | MJ | CSY, PSY, CTSY, TSSD |
10 | b carbon emission | Ton | CSY, PSY, CTSY, TSSD |
References
- Gong, Y.; Zhang, Y.; Tang, C.C. A study on the measurement of tourism efficiency and its influencing factors in the Yangtze River Economic Zone. East China Econ. Manag. 2016, 30, 66–74. (In Chinese) [Google Scholar]
- Liu, J.; Lu, J.; Liu, N. Temporal and spatial evolution, influencing factors and forming mechanisms of tourism efficiency in Chinese coastal areas based on DEA-Malmquist model. Resour. Sci. 2015, 37, 2381–2393. (In Chinese) [Google Scholar]
- Liu, J.; Zhang, J.F. Analyzing variation and convergence of green total factor productivity of Tourism: An empirical study based on the Chinese coastal areas. Resour. Dev. Mark. 2017, 33, 867–872. (In Chinese) [Google Scholar]
- State Council. The Guiding Opinion on Relying on the Golden Waterway to Promote the Development of the Yangtze River Economic Zone. Available online: http://www.gov.cn/zhengce/content/2014-09/25/content_9092.htm (accessed on 15 June 2018). (In Chinese)
- Zuo, B.; Bao, J.G. Tourism total factor productivity and its regional variation in China from 1992 to 2005. Acta Geogr. Sin. 2008, 63, 417–427. [Google Scholar]
- Chen, S.Y. Green industrial revolution in China: A perspective from the change of environmental total factor productivity. Econ. Res. J. 2010, 11, 21–34. [Google Scholar]
- Chen, S.Y.; Jane, G. ‘Green’ productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P. Total factor productivity growth in agriculture: A malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef]
- Hu, A.G.; Zheng, J.H.; Gao, Y.N.; Zhang, N.; Xu, H.P. The ranking of provincial technical efficiency considering environmental factors (1999–2005). Economics 2008, 7, 933–960. (In Chinese) [Google Scholar]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Chen, C.F.; Lan, Q.X.; Gao, M.; Sun, Y.W. Green total factor productivity growth and its determinants in China’s industrial economy. Sustainability 2018, 10, 1052. [Google Scholar] [CrossRef]
- Zhao, L.G.; Lin, J.; Zhu, J.M. Green total factor productivity of hog breeding in China: Application of SE-SBM model and grey relation matrix. Pol. J. Environ. Stud. 2015, 24, 403–412. [Google Scholar]
- Li, H.J.; Zhang, J.H.; Osei, E.; Yu, M. Sustainable development of China’s industrial economy: An empirical study of the period 2001–2011. Sustainability 2018, 10, 764. [Google Scholar] [CrossRef]
- Li, L.; Tsunekawa, A.; Tsubo, M.; Koike, A.; Wang, J.J. Assessing total factor productivity and efficiency change for farms participating in grain for green program in China: A case study from Ansai, loess plateau. J. Food Agric. Environ. 2010, 8, 1185–1192. [Google Scholar]
- Kim, C.G.; Kim, T.H. Analysis of carbon productivity in Korea agriculture. Korean J. Agric. Econ. 2014, 55, 1–27. [Google Scholar]
- Cao, J. Measuring green productivity growth for China’s manufacturing sectors: 1991–2000. Asian Econ. J. 2007, 21, 425–451. [Google Scholar] [CrossRef]
- Wang, K.; Huang, Z.F.; Cao, F.D. Spatial pattern of carbon emission efficiency and its influencing factors of Chinese tourism. J. Ecol. 2015, 35, 7150–7160. (In Chinese) [Google Scholar]
- Zhao, L. An empirical study on difference and convergence of total factor productivity of Chinese tourism. Tour. Trib. 2013, 28, 12–23. [Google Scholar]
- Halkos, G.E.; Tzeremes, N.G. A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions. Eur. J. Oper. Res. 2013, 227, 182–189. [Google Scholar] [CrossRef] [Green Version]
- National Tourism Bureau. Classification and Evaluation of Quality Level of Scenic Spots; China Tourism Press: Beijing, China, 2004. (In Chinese)
- China Tourism Research Institute (CTRI). China Tourism Development Report 2017; China Tourism Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Kumar, S. A decomposition of total productivity growth: A regional analysis of Indian industrial manufacturing growth. Int. J. Prod. Perform. Manag. 2006, 55, 311–331. [Google Scholar] [CrossRef]
- Huang, K.T.; Wang, J.C. Greenhouse gas emissions of tourism-based leisure farms in Taiwan. Sustainability 2015, 7, 11032–11049. [Google Scholar] [CrossRef]
- Perch-Nielsen, S.; Sesartic, A.; Stucki, M. The greenhouse gas intensity of the tourism sector: The case of Switzerland. Environ. Sci. Policy 2010, 13, 131–140. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V.; Rui, C. Change in energy-related CO2 (carbon dioxide) emissions in Portuguese tourism: A decomposition analysis from 2000 to 2008. J. Clean. Prod. 2016, 111, 520–528. [Google Scholar] [CrossRef]
- Sun, Y.Y. A framework to account for the tourism carbon footprint at island destinations. Tour. Manag. 2014, 45, 16–27. [Google Scholar] [CrossRef]
- Sun, Y.Y. Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions. Tour. Manag. 2016, 55, 326–336. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Ceron, J.P.; Dubois, G.; Patterson, T.; Richardson, R. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Dwyer, L.; Forsyth, P.; Spurr, R.; Hoque, S. Estimating the carbon footprint of Australian tourism. J. Sustain. Tour. 2010, 18, 355–376. [Google Scholar] [CrossRef]
- World Tourism Organization (UNWTO). Recommendations on Tourism Statistics. In Proceedings of the International Conference on Travel and Tourism Statistics, Ottawa, ON, Canada, 24–28 June 1991. [Google Scholar]
- Becken, S.; Patterson, M.; Viner, D. Measuring national carbon dioxide emissions from tourism as a key step towards achieving sustainable tourism. J. Sustain. Tour. 2006, 14, 323–338. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.; Xi, J.C. Study on the Coupling relationship between tourism economic growth and carbon emission in China. J. Tour. 2014, 29, 24–33. (In Chinese) [Google Scholar]
- Shi, P.H.; Wu, P. Preliminary estimation of energy consumption and carbon dioxide emission of tourism in China. J. Geogr. 2011, 66, 235–243. (In Chinese) [Google Scholar]
- Domazlicky, B.R.; Weber, W.L. The measurement of capital and the measurement of productivity growth and efficiency in state manufacturing. Int. Reg. Sci. Rev. 2014, 29, 115–134. [Google Scholar] [CrossRef]
- Suh, S.H. A green productivity based process planning system for a machining process. Int. J. Prod. Res. 2015, 53, 5085–5105. [Google Scholar]
- Wong, Y.H.B.; Beasley, J.E. Restricting weight flexibility in data envelopment analysis. J. Oper. Res. Soc. 1990, 41, 829–835. [Google Scholar] [CrossRef]
- Aldamak, A.M.; Zolfaghari, S. Review of efficiency ranking methods in data envelopment analysis. Measurement 2017, 106, 161–172. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renew. Sustain. Energy Rev. 2014, 33, 50–59. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2006–2015. (In Chinese)
- China National Tourism Administration. China Tourism Statistics Yearbook; China Tourism Press: Beijing, China, 2006–2015. (In Chinese)
- China National Tourism Administration. Tourism Sample Survey Data; China Tourism Press: Beijing, China, 2006–2015. (In Chinese)
- Castellani, V.; Sala, S. Sustainable performance index for tourism policy development. Tour. Manag. 2010, 31, 871–880. [Google Scholar] [CrossRef]
- The UN World Tourism Organization (UNWTO). Towards a Low Carbon Travel and Tourism Sector. In Proceedings of the The World Economic Forum, Davos, Switzerland, 28 January–1 February 2009. [Google Scholar]
- Chen, C.F. Simulation and prediction of energy saving and emission reduction, and green growth of Chinese industry. Chin. Popul.·Resour. Environ. 2018, 16. (In Chinese) [Google Scholar]
- Wang, C. Decomposing energy productivity change: A distance function approach. Energy 2007, 32, 1326–1333. [Google Scholar] [CrossRef]
- Kulshreshtha, M.; Parikh, J.K. Study of efficiency and productivity growth in opencast and underground coal mining in India: A DEA analysis. Energy Econ. 2002, 24, 439–453. [Google Scholar] [CrossRef]
- Wu, C.Q.; Huang, L.; Wen, C.H. Study on technological innovation and its influencing factors in the Yangtze River Economic Zone. China Soft Sci. 2017, 5, 160–170. (In Chinese) [Google Scholar]
- Arabi, B.; Munisamy, S.; Emrouznejad, A.; Shadman, F. Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger index measurement. Energy Policy 2014, 68, 132–145. [Google Scholar] [CrossRef]
- Ren, S.G.; Yuan, B.L. Driving force for the green development of industry in the Yangtze River Economic Belt. Reform 2016, 32, 55–64. [Google Scholar]
- Hao, G.C.; Xu, Y.L.; Zhang, X.M.; Chen, M.H. Spillover effect and decomposition of green economic performance of the city in the Yangtze River Economic Belt. Chin. Popul.·Resour. Environ. 2018, 28, 75–83. (In Chinese) [Google Scholar]
- Cao, F.D.; Huang, Z.F.; Wu, J.; Xu, M. The space-time pattern evolution and its driving mechanism of urban tourism development efficiency: A case study of Pan-Yangtze River Delta. Geogr. Res. 2012, 31, 1431–1445. [Google Scholar]
- Wang, L.M.; Deng, L. An emprical research on the Industrial Structure of the Yangtze River Economic Belt. Econ. Prob. 2015, 52, 39–43. [Google Scholar]
Province and Cities | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 86.60 | 103.81 | 101.49 | 118.30 | 145.67 | 158.35 | 146.76 | 162.31 | 170.63 | 200.53 |
Jiangsu | 50.83 | 58.42 | 60.09 | 53.20 | 58.26 | 65.35 | 72.43 | 62.03 | 66.39 | 68.31 |
Zhejiang | 49.39 | 58.82 | 63.84 | 68.15 | 73.76 | 77.95 | 84.37 | 80.33 | 88.54 | 95.29 |
Anhui | 29.89 | 33.03 | 39.96 | 43.82 | 47.90 | 52.69 | 59.46 | 67.00 | 51.55 | 48.02 |
Jiangxi | 23.64 | 25.95 | 28.85 | 29.33 | 32.61 | 35.33 | 36.24 | 37.14 | 39.56 | 41.23 |
Hubei | 34.36 | 39.32 | 43.04 | 42.62 | 51.13 | 56.94 | 61.48 | 68.04 | 63.55 | 65.61 |
Hunan | 248.14 | 273.65 | 280.99 | 309.67 | 324.01 | 364.84 | 386.40 | 372.09 | 400.75 | 413.22 |
Chongqing | 13.64 | 17.67 | 21.13 | 24.25 | 27.81 | 32.41 | 43.08 | 47.81 | 49.11 | 55.83 |
Guizhou | 15.28 | 16.53 | 17.98 | 20.06 | 23.45 | 28.27 | 32.24 | 33.52 | 36.62 | 39.54 |
Sichuan | 50.55 | 57.31 | 60.59 | 70.38 | 60.32 | 89.86 | 98.86 | 116.27 | 115.78 | 128.35 |
Yunnan | 22.42 | 24.66 | 23.91 | 26.19 | 27.94 | 31.00 | 33.61 | 34.12 | 39.57 | 39.63 |
Province and Cities | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 616.48 | 733.50 | 714.10 | 826.39 | 1019.04 | 1098.15 | 1019.43 | 1126.21 | 1180.93 | 1386.42 |
Jiangsu | 397.69 | 448.25 | 432.43 | 383.59 | 408.92 | 451.01 | 492.42 | 404.28 | 418.48 | 425.51 |
Zhejiang | 375.51 | 447.38 | 481.58 | 508.01 | 518.93 | 546.70 | 611.55 | 544.61 | 588.96 | 631.12 |
Anhui | 187.22 | 211.45 | 258.44 | 283.70 | 301.63 | 333.19 | 377.71 | 422.33 | 296.81 | 263.79 |
Jiangxi | 127.24 | 136.95 | 152.59 | 160.74 | 170.43 | 185.89 | 193.09 | 194.29 | 203.21 | 210.12 |
Hubei | 212.51 | 244.05 | 266.43 | 266.06 | 310.01 | 332.23 | 359.13 | 391.66 | 345.86 | 355.56 |
Hunan | 248.14 | 273.65 | 280.99 | 309.67 | 324.01 | 364.84 | 386.40 | 372.09 | 400.75 | 413.22 |
Chongqing | 101.40 | 126.72 | 148.04 | 171.44 | 194.54 | 222.35 | 301.85 | 326.77 | 330.32 | 373.88 |
Guizhou | 97.26 | 106.75 | 116.98 | 131.84 | 151.41 | 182.86 | 211.44 | 216.37 | 235.24 | 253.84 |
Sichuan | 361.61 | 409.09 | 420.98 | 489.11 | 417.78 | 617.18 | 670.18 | 791.43 | 779.79 | 867.73 |
Yunnan | 195.04 | 213.67 | 196.62 | 212.37 | 210.25 | 231.69 | 245.68 | 255.63 | 305.21 | 288.76 |
Province and Cities | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 9684 | 10,210 | 11,006 | 12,361 | 22,432 | 23,079 | 25,094 | 25,991 | 26,818 | 27,569 |
Jiangsu | 19,935.79 | 23,198.6 | 26,121.62 | 29,726.6 | 35,518.6 | 41,150.01 | 46,437.41 | 51,539.2 | 57,113.32 | 61,933.65 |
Zhejiang | 16,149 | 19,100 | 20,900 | 24,410 | 29,500 | 34,295 | 39,124 | 43,439 | 47,875 | 52,532 |
Anhui | 6159 | 7848.954 | 9938 | 12,268 | 15,349 | 22,534.75 | 29,229.09 | 33,601.09 | 37,898.8 | 44,404 |
Jiangxi | 6000 | 6944 | 8023 | 9303.3 | 10,705 | 15,854 | 20,347 | 24,846 | 31,134.47 | 38,392.18 |
Hubei | 8459.78 | 10,135 | 11,678 | 15,065.18 | 20,946 | 27,154.87 | 34,230 | 40,621.04 | 46,900 | 50,668.24 |
Hunan | 9098 | 10,777 | 12,719 | 15,934 | 20,208.2 | 25,100 | 30,281.78 | 35,827.46 | 40,982.98 | 47,104.68 |
Chongqing | 6787 | 8009 | 10,001.2 | 12,191 | 16,036.6 | 22,019.9 | 28,806.06 | 30,583.34 | 34,650.92 | 38,885.1 |
Guizhou | 4716 | 6220 | 8151 | 10,400 | 12,863 | 16,961 | 21,331 | 26,684 | 32,049 | 37,535.92 |
Sichuan | 16,581 | 18,570 | 17,456 | 21,922.1 | 27,141.3 | 34,977.8 | 43,451.77 | 48,696.5 | 53,549.69 | 58,500.63 |
Yunnan | 7721 | 8986 | 10,250.1 | 12,022.9 | 13,837 | 16,331.8 | 19,630.28 | 23,972.35 | 28,116.49 | 32,343.95 |
Region | ML | MLEFFCH | MLTECH |
---|---|---|---|
Shanghai | 1.02 | 1.00 | 1.02 |
Jiangsu | 1.00 | 1.00 | 1.00 |
Zhejiang | 1.00 | 1.00 | 1.00 |
Anhui | 1.04 | 1.01 | 1.06 |
Jiangxi | 1.10 | 1.01 | 1.09 |
Hubei | 1.02 | 1.00 | 1.02 |
Hunan | 1.08 | 1.02 | 1.06 |
Chongqing | 1.03 | 1.01 | 1.03 |
Guizhou | 0.96 | 1.00 | 0.96 |
Sichuan | 1.07 | 0.99 | 1.07 |
Yunnan | 1.04 | 1.02 | 1.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Shi, P.; Hai, F.; Zhang, Y.; Li, X. Study on Measurement of Green Productivity of Tourism in the Yangtze River Economic Zone, China. Sustainability 2018, 10, 2786. https://doi.org/10.3390/su10082786
Liu G, Shi P, Hai F, Zhang Y, Li X. Study on Measurement of Green Productivity of Tourism in the Yangtze River Economic Zone, China. Sustainability. 2018; 10(8):2786. https://doi.org/10.3390/su10082786
Chicago/Turabian StyleLiu, Gang, Pengfei Shi, Feng Hai, Yi Zhang, and Xingming Li. 2018. "Study on Measurement of Green Productivity of Tourism in the Yangtze River Economic Zone, China" Sustainability 10, no. 8: 2786. https://doi.org/10.3390/su10082786
APA StyleLiu, G., Shi, P., Hai, F., Zhang, Y., & Li, X. (2018). Study on Measurement of Green Productivity of Tourism in the Yangtze River Economic Zone, China. Sustainability, 10(8), 2786. https://doi.org/10.3390/su10082786