A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area
2.2. Research Methods
2.2.1. Research Framework
2.2.2. Review of Landfill Upgrading Plan and Leachate Estimation
2.2.3. Accounting Methods of CO2 Emissions Reduction
2.3. Data Collection and Processing
3. Results
3.1. Feasibility Analysis of Landfill and Open Dump Upgrade
3.2. Influence of Upgrading Open Dumps through Restructuring on Leachate
3.2.1. Effects of Upgrading on the Leachate Output
3.2.2. Mitigation of Leachate Concentration by Restructuring
3.3. Effect of Landfill Restructuring on CO2 Emission Reduction
- (1)
- Upper covering vacant land resources are effectively used.
- (2)
- It helps to alleviate the lack of space for construction land available in major cities in China.
- (3)
- A practical approach of low-carbon and sustainable management for post-landfilling operations is provided to achieve CO2 emissions reductions and alleviate financial pressure on the government. Regardless of carbon rights trading, the photovoltaic electric tariff charged up to 20–40 million CNY, which can fully meet the funding requirements of the daily landfill operation and management after landfill closure.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, M. Urban waste management as if people matter. Habitat Int. 2006, 4, 729–730. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Environment: Waste production must peak this century. Nature 2013, 502, 615–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Bureau of Statistics of China (NSBC). China Urban Statistical Yearbook. Available online: http://www.stats.gov.cn/tjsj/ndsj/2016/indexch.htm (accessed on 6 June 2017).
- Chen, F.; Luo, Z.; Yang, Y.; Liu, G.-J.; Ma, J. Enhancing municipal solid waste recycling through reorganizing waste pickers: A case study in Nanjing, China. Waste Manag. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.U.; Lehmann, S. Urban growth and waste management optimization towards ‘zero waste city’. City Cult. Soc. 2011, 2, 177–187. [Google Scholar] [CrossRef]
- Hird, M.J. Waste, landfills, and an environmental ethic of vulnerability. Ethics Environ. 2013, 18, 105–124. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Z.; Xia, S. The crowding-out effects of garbage fees and voluntary source separation programs on waste reduction: Evidence from China. Sustainability 2016, 8, 678. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Z. The impact of the policy of municipal solid waste source-separated collection on waste reduction: A case study of China. J. Mater. Cycles Waste Manag. 2017, 19, 382–393. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, K.; Wu, W.; Tian, H.; Yi, P.; Zhi, G.; Fan, J.; Liu, S. Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmos. Environ. 2017, 152, 6–15. [Google Scholar] [CrossRef]
- Chan, J.K.H. The ethics of working with wicked urban waste problems: The case of Singapore’s Semakau Landfill. Landsc. Urban Plan. 2016, 154, 123–131. [Google Scholar] [CrossRef]
- Zaman, A.U. Comparative study of municipal solid waste treatment technologies using life cycle assessment method. Int. J. Environ. Sci. Technol. 2010, 7, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Adamcová, D.; Vaverková, M.D.; Bartoň, S.; Havlíček, Z.; Břoušková, E. Soil contamination in landfills: A case study of a landfill in Czech Republic. Solid Earth 2016, 7, 239–247. [Google Scholar] [CrossRef]
- Panepinto, D.; Senor, A.; Genon, G. Energy recovery from waste incineration: Economic aspects. Clean Technol. Environ. Policy 2016, 18, 517–527. [Google Scholar] [CrossRef]
- Idris, A.; Inanc, B.; Hassan, M.N. Overview of waste disposal and landfills/dumps in Asian countries. J. Mater. Cycles Waste Manag. 2004, 6, 104–110. [Google Scholar] [CrossRef]
- Xevgenos, D.; Papadaskalopoulou, C.; Panaretou, V.; Moustakas, K.; Malamis, D. Success stories for recycling of MSW at municipal level: A review. Waste Biomass Valoriz. 2015, 6, 657–684. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M. Municipal solid waste management in China: Status, problems and challenges. J. Environ. Manag. 2010, 91, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Reichert, A.; Small, M.; Mohanty, S. The impact of landfills on residential property values. J. Real Estate Res. 1992, 7, 297–314. [Google Scholar]
- Reyes-López, J.A.; Ramírez-Hernández, J.; Lázaro-Mancilla, O.; Carreón-Diazconti, C.; Garrido, M.M.-L. Assessment of groundwater contamination by landfill leachate: A case in México. Waste Manag. 2008, 28, S33–S39. [Google Scholar] [CrossRef] [PubMed]
- Bortone, I.; Chianese, S.; Erto, A.; Di Nardo, A.; Di Natale, M.; Santonastaso, G.F.; Musmarra, D. Risk Analysis for a Contaminated Site in North of Naples (Italy). Chem. Eng. Trans. 2015, 43, 1927–1932. [Google Scholar]
- Inglezakis, V.J.; Moustakas, K. Household hazardous waste management: A review. J. Environ. Manag. 2015, 150, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, A.; Bortone, I.; Chianese, S.; Di Natale, M.; Erto, A.; Santonastaso, G.F.; Musmarra, D. Odorous emission reduction from a waste landfill with an optimal protection system based on fuzzy logic. Environ. Sci. Pollut. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Danthurebandara, M.; Van Passel, S.; Vanderreydt, I.; Van Acker, K. Assessment of environmental and economic feasibility of Enhanced Landfill Mining. Waste Manag. 2015, 45, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Tintner, J.; Smidt, E.; Boehm, K.; Matiasch, L. Risk assessment of an old landfill regarding the potential of gaseous emissions—A case study based on bioindication, FT-IR spectroscopy and thermal analysis. Waste Manag. 2012, 32, 2418–2425. [Google Scholar] [CrossRef] [PubMed]
- Swati; Ghosh, P.; Thakur, I.S. An integrated approach to study the risk from landfill soil of Delhi: Chemical analyses, in vitro assays and human risk assessment. Ecotoxicol. Environ. Saf. 2017, 143, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, X.; Ma, J.; Yang, Y.; Liu, G.-J. An Exploration of the Impacts of Compulsory Source-Separated Policy in Improving Household Solid Waste-Sorting in Pilot Megacities, China: A Case Study of Nanjing. Sustainability 2018, 10, 1327. [Google Scholar] [CrossRef]
- EPA Outline of the Overall Environmental Planning of Nanjing (2016–2030). Available online: http://www.nj.gov.cn/xxgk/szf/201703/t20170331_4421292.html (accessed on 6 June 2017).
- Sener, S.; Sener, E.; Nas, B.; Karaguzel, R. Combining AHP with GIS for landfill site selection: A case study in the Lake Beysehir catchment area (Konya, Turkey). Waste Manag. 2010, 30, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Simsek, C.; Elci, A.; Gunduz, O.; Taskin, N. An improved landfill site screening procedure under NIMBY syndrome constraints. Landsc. Urban Plan. 2014, 132, 1–15. [Google Scholar] [CrossRef]
- Vrijheid, M. Health effects of residence near hazardous waste landfill sites: A review of epidemiologic literature. Environ. Health Perspect. 2000, 108, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhu, X.-J.; Wang, Z.-Z. Separate System of Rainwater and Sewage in Sanitary Landfill. Environ. Sci. Technol. 2009, 32, 203–205. [Google Scholar]
- Ministry of Housing and Urban-Rural Development. Technical Code for Leachate Treatment of Municipal Solid Waste (CJJ150-2010); Chinese Industrial Standard; China Architecture and Building Press: Beijing, China, 2010.
- Albright, W.H.; Benson, C.H.; Gee, G.W.; Roesler, A.C.; Abichou, T.; Apiwantragoon, P.; Lyles, B.F.; Rock, S.A. Field water balance of landfill final covers. J. Environ. Qual. 2004, 33, 2317–2332. [Google Scholar] [CrossRef] [PubMed]
- Xu, D. Energy-saving application of ground-floor rain-sewage diversion method in landfill site. Technol. Enterp. 2013, 185. [Google Scholar] [CrossRef]
- El-Fadel, M.; Findikakis, A.N.; Leckie, J.O. Modeling Leachate Generation and Transport in Solid Waste Landfills. Environ. Technol. 1997, 18, 669–686. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, H.; Shao, L.M.; Lu, F.; He, P.J. Greenhouse gas emissions during MSW landfilling in China: Influence of waste characteristics and LFG treatment measures. J. Environ. Manag. 2013, 129, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Housing and Urban-Rural Development. Technical Code for Domestic Waste Sanitary Landfill Pollution Control (GB16889-2008); Chinese National Standard; China Planning Press: Beijing, China, 2008.
- Hehai Water Environmental Company (HWEC). Technology Design of Leachate Treatment Plant in Wanshan Landfill Site; Hehai Water Environmental Company: Nanjing, China, 2005. [Google Scholar]
- Manfredi, S.; Tonini, D.; Christensen, T.H.; Scharff, H. Landfilling of waste: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 825–836. [Google Scholar] [CrossRef] [PubMed]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change. Available online: https://www.ipcc-nggip.iges.or.jp/meeting/pdfiles/Washington_Report.pdf (accessed on 6 June 2017).
- Yang, N.; Zhang, H.; Chen, M.; Shao, L.-M.; He, P.-J. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery. Waste Manag. 2012, 32, 2552–2560. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.T.; Hashim, H.; Lim, J.S.; Ho, W.S.; Lee, C.T.; Yan, J. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Appl. Energy 2014, 136, 797–804. [Google Scholar] [CrossRef]
- Wanichpongpan, W.; Gheewala, S.H. Life cycle assessment as a decision support tool for landfill gas-to energy projects. J. Clean Prod. 2007, 15, 1819–1826. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development. Technical Code for Photovoltaic Power Station Design (GB50797-2012); Chinese Industrial Standard; China Architecture and Building Press: Beijing, China, 2012.
- Network Service Provider Reliability Council. Water Quality Determination of the Chemical Oxygen Demand-Dichromate Method GB 11914-89; China Standard Press: Beijing, China, 1989.
- Du, Y.J.; Hayashi, S.; Liu, S.Y. Experimental study of migration of potassium ion through a two-layer soil system. Environ. Geol. 2005, 48, 1096–1106. [Google Scholar] [CrossRef]
- Zhan, T.L.T.; Guan, C.; Xie, H.J.; Chen, Y.M. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: A field and theoretical investigation. Sci. Total Environ. 2014, 470–471, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Lohila, A.; Laurila, T.; Tuovinen, J.-P.; Aurela, M.; Hatakka, J.; Thum, T.; Pihlatie, M.; Rinne, J.; Vesala, T. Micrometeorological measurements of methane and carbon dioxide fluxes at a municipal landfill. Environ. Sci. Technol. 2007, 41, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Johari, A.; Ahmed, S.I.; Hashim, H.; Alkali, H.; Ramli, M. Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 2907–2912. [Google Scholar] [CrossRef]
- Zuberi, M.J.S.; Ali, S.F. Greenhouse effect reduction by recovering energy from waste landfills in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 117–131. [Google Scholar] [CrossRef]
- Liu, Y.; Ni, Z.; Kong, X.; Liu, J. Greenhouse gas emissions from municipal solid waste with a high organic fraction under different management scenarios. J. Clean Prod. 2017, 147, 451–457. [Google Scholar] [CrossRef]
- Arafat, H.A.; Jijakli, K.; Ahsan, A. Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. J. Clean Prod. 2015, 105, 233–240. [Google Scholar] [CrossRef]
- Al-Jarrah, O.; Abu-Qdais, H. Municipal solid waste landfill siting using intelligent system. Waste Manag. 2006, 26, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.-B.; Parvathinathan, G.; Breeden, J.B. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J. Environ. Manag. 2008, 87, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Nas, B.; Cay, T.; Iscan, F.; Berktay, A. Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environ. Monit. Assess. 2010, 160, 491. [Google Scholar] [CrossRef] [PubMed]
- Schreck, P. Environmental impact of uncontrolled waste disposal in mining and industrial areas in Central Germany. Environ. Geol. 1998, 35, 66–72. [Google Scholar] [CrossRef]
- Sumathi, V.; Natesan, U.; Sarkar, C. GIS-based approach for optimized siting of municipal solid waste landfill. Waste Manag. 2008, 28, 2146–2160. [Google Scholar] [CrossRef] [PubMed]
- Mutluturk, M.; Karaguzel, R. The landfill area quality (LAQ) classification approach and its application in Isparta, Turkey. Environ. Eng. Geosci. 2007, 13, 229–240. [Google Scholar] [CrossRef]
- Ekmekçioğlu, M.; Kaya, T.; Kahraman, C. Fuzzy multicriteria disposal method and site selection for municipal solid waste. Waste Manag. 2010, 30, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Kissida, J.; Beaton, N.K. Landfill park: From eyesore to asset. Civil Eng. 1991, 61, 49. [Google Scholar]
- Misgav, A.; Perl, N.; Avnimelech, Y. Selecting a compatible open space use for a closed landfill site. Landsc. Urban Plan. 2001, 55, 95–111. [Google Scholar] [CrossRef]
- Chen, X.; Geng, Y.; Fujita, T. An overview of municipal solid waste management in China. Waste Manag. 2010, 30, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Kofoworola, O.F. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria. Waste Manag. 2007, 27, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
Site | Type | Area (hm2) | Treatment Capacity (t·d−1) | Remaining Service Life (Years) |
---|---|---|---|---|
Jiaozishan (JZS) | Open dump to landfill | 45.0 | 2600.0 | 13 |
Tongjing (TJ) | Sanitary landfill | 34.4 | 2400.0 | 15 |
Tianjingwa (TJW) | Sanitary landfill | 2.2 | 800.0 | 2 |
Shuige (SG) | Open dump | 0.4 | 0 | Prohibited use |
Maanshan (MAS) | Sanitary landfill | 17.2 | 1200.0 | 9 |
Lanshan (LS) | Controlled | 7.8 | 800.0 | 11 |
Haizikou (HZK) | Open dump | 0.3 | 100.0 | Limited use |
Guanjiabian (GJB) | Open dump | 0.5 | 100.0 | Limited use |
Sanyuanke (SYK) | Controlled | 4.1 | 400.0 | Over service life |
Parameters | Definition | Values | Units | References |
---|---|---|---|---|
AGravel | Amount of gravel used for leachate collection | 80–120 | kg·t−1 waste | [38] |
AElectricity | Amount of electricity used for official landfill systems, operation of leachate, and landfill gas collection system | 22–26 | kWh·m−3 | [37,38] |
AWater | Amount of water used for the leachate treatment | 83 | kg·m−3 | [37] |
AHCl | Amount of HCl used for the leachate treatment | 3 | kg·m−3 | [37] |
ANaOH | Amount of NaOH used for the leachate treatment | 5 | kg·m−3 | [37] |
Limiting Factor | Limiting Sub-Factor | JZS | TJ | TJW | SG | MAS | LS | HZK | GJB | SYK |
---|---|---|---|---|---|---|---|---|---|---|
Environmental geological factor | Topography conditions | 5 | 3 | 5 | 3 | 5 | 5 | 3 | 5 | 5 |
Site stability | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | ||
Distance from water source | 5 | 3 | 5 | 3 | 5 | 5 | 3 | 3 | 3 | |
Bottom cohesive soil thickness | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | |
Sidewall cohesive soil thickness | 3 | 5 | 3 | 5 | 5 | 3 | 5 | 3 | 5 | |
Permeability of cohesive soil | 3 | 5 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | |
Groundwater depth | 5 | 3 | 3 | 3 | 3 | 5 | 3 | 3 | 3 | |
Environmental protection factor | Distance from surface water | 5 | 3 | 5 | 1 | 3 | 5 | 1 | 3 | 1 |
Distance from settlements | 3 | 3 | ✗ | ✗ | 5 | 5 | ✗ | ✗ | ✗ | |
Distance from town | 5 | 5 | ✗ | ✗ | 5 | 5 | ✗ | ✗ | ✗ | |
Distance from industrial area | 3 | 3 | ✗ | 3 | 3 | 3 | ✗ | ✗ | ✗ | |
Traffic and transportation factor | Distance from existing highway | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Garbage transport distance | 5 | 3 | 5 | 5 | 3 | 3 | 5 | 5 | 5 | |
Social environmental factor | Distance from scenic area | 5 | 5 | 5 | 3 | 5 | 1 | 3 | 3 | 3 |
Distance from railway | 3 | 5 | 3 | 3 | 5 | 5 | 1 | ✗ | 3 | |
Distance from airport | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
Population number within 1000 m | 5 | 3 | ✗ | 1 | 5 | 5 | ✗ | ✗ | ✗ | |
Population number within 1500 m | 5 | 3 | ✗ | 1 | 3 | 5 | ✗ | ✗ | ✗ | |
Population number within 2000 m | 3 | 3 | ✗ | 3 | 3 | 5 | ✗ | ✗ | ✗ | |
Anti-evaluation results | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ |
Year | Annual Rainfall (mm) | Area (104 m2) | Coverage Status of Landfill Site | The Maximum Possible Leachate Output Without The Zoning Plan (m3) | With the Zoning Plan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Theoretical Leachate Output (m3) | Actual Leachate Output (m3) | ||||
2011 | 1077.0 | 28.0 | 19.6 | 8.4 | 183,951.6 | 183,951.6 | 174,436.2 | ||||
2012 | 917.2 | 28.0 | 16.0 | 3.6 | 8.4 | 150,053.9 | 150,053.9 | 161,245.4 | |||
2013 | 898.4 | 45.0 | 33.0 | 3.6 | 8.4 | 231,248.2 | 231,248.2 | 237,389.5 | |||
2014 | 1091.1 | 45.0 | 4.8 | 21.4 | 6.8 | 3.6 | 8.4 | 254,226.3 | 217,565.3 | 223,246.8 | |
2015 | 1765.6 | 45.0 | 17.3 | 8.9 | 6.8 | 12.0 | 369,010.4 | 155,196.2 | 164,247.3 | ||
2020 | 1106.5 | 45.0 | 12.5 | 8.5 | 5.2 | 18.8 | 194,965.3 | 98,146.6 | |||
2030 | 1106.5 | 45.0 | 45.0 | 49,792.5 | 49,792.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Luo, Z.; Chen, F.; Zhu, Q.; Zhang, S.; Liu, G.-J. A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China. Sustainability 2018, 10, 2804. https://doi.org/10.3390/su10082804
Ma J, Luo Z, Chen F, Zhu Q, Zhang S, Liu G-J. A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China. Sustainability. 2018; 10(8):2804. https://doi.org/10.3390/su10082804
Chicago/Turabian StyleMa, Jing, Zhanbin Luo, Fu Chen, Qianlin Zhu, Shaoliang Zhang, and Gang-Jun Liu. 2018. "A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China" Sustainability 10, no. 8: 2804. https://doi.org/10.3390/su10082804
APA StyleMa, J., Luo, Z., Chen, F., Zhu, Q., Zhang, S., & Liu, G. -J. (2018). A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China. Sustainability, 10(8), 2804. https://doi.org/10.3390/su10082804