Sensitivity Analysis in Socio-Ecological Models as a Tool in Environmental Policy for Sustainability
Abstract
:1. Introduction
1.1. Uncertainty in the Assessment of Sustainability Policies in Socio-Ecological Systems
- (i)
- Are all the model parameters really required? Is the model as simple as possible?
- (ii)
- How robust are the conclusions derived from the model?
- (iii)
- Which parts of the system have the greatest influence on sustainability outcomes?
- (iv)
- How does uncertainty affect the assessment of environmental policies intended to achieve sustainability?
1.2. Case Study: The Fuerteventura Sustainability Dynamic Model (FSM)
1.2.1. Study Area
1.2.2. Model Description
- Regarding the Socio-tourism sector, tourism represents the main driving force of the employment and wealth generation in Fuerteventura. The migratory flows are strongly influenced by the employment provided by the activities of the tourists. The rising trends in the tourist and resident population have a strong impact on the dynamics of the urban land uptake. Besides, tourism and related activities have substituted traditional productive activities, such as ranching, artisanal fishing, and farming of non-irrigated land in ‘gavias’, a traditional agro-ecosystem [19].
- The different land uses and their changes over time are considered in the Land Use sector, which includes three categories: urban uses, agricultural uses and natural areas. Some land use changes result in the degradation of the high quality natural vegetation of the island; this represents one of the main threats to the sustainable development of Fuerteventura, according to the Action Plan of the Biosphere Reserve [17,18].
- The Biodiversity sector is focused on two endangered and endemic bird subspecies of the Canary Islands: the Canarian houbara bustard (Chlamydotis undulada fuertaventurae) and the Egyptian vulture (Neophron percnopterus majorensis). Their modelling shows how certain changes which have happened on the island have affected these species in recent decades [20,21,24].
- The scarcity of water resources has traditionally represented one of the limiting factors for the development of this arid island. Nevertheless, the advances in seawater desalination have overcome this limitation. The Water Resources sector also includes the groundwater and the surface resources, which are not enough to satisfy the demands of the population or the irrigation requirements. This highlights the importance of the role of desalination in covering the total water demand [14]. Therefore, the island is highly dependent on energy consumption, even to supply a basic need such as the water demand.
- The Environmental Quality sector allows the quantification of some indicators regarding the energy generation and consumption, such as the share of renewable energies, and the per capita CO2 emissions of the island.
1.2.3. Parameters of the Fuerteventura Sustainability Dynamic Model
1.2.4. Model Testing
2. Methodology
2.1. Sensitivity Analysis
2.1.1. Objective 1: To Improve Model Formulation, by Removing the Less Sensitive Parameters
2.1.2. Objective 2: To Assess the Robustness of the Model Outputs
2.1.3. Objective 3: To Identify the Places in the System which have the Greatest Influence, as a Basis to Define Policies for Improving Sustainability
2.1.4. Objective 4: To Explore how Uncertainty Affects the Assessment of Different Environmental Policies Intended to Achieve Sustainability
3. Sensitivity Analysis Results
3.1. Improvement of Model Formulation
3.2. Detailed Assessment of Model Robustness
3.3. Which Parts of the System Have the Greatest Influence on Sustainability Outcomes?
3.4. How Does Uncertainty Affect the Assessment of Environmental Policies Intended to Achieve Sustainability?
4. Discussion
4.1. Was the FSM Built as Parsimoniously as Possible?
4.2. How Robust are the Conclusions Derived from the FSM? May They be Taken into Account in the Decision-Making Process with a Sufficient Level of Confidence?
4.3. Which Parts of the System have the Greatest Influence on Sustainability Outcomes?
4.4. How does Uncertainty in Model Outcomes Affect the Assessment of Policies?
5. Conclusions
- The improvement of the model formulation by removal of the least sensitive parameters, by means of screening techniques such as one factor at a time (OAT). Eight insensitive parameters were removed, making the model more compact and parsimonious.
- A detailed assessment of robustness. The Monte Carlo simulations showed a low (variation lower than 50% with respect to the mean value) to moderate (variation between 50% and 100%) response for 16 of the 18 target model variables to changes in the values of their most responsive parameters, which means that the model outcomes can be accepted with confidence.
- Regarding model application and, more specifically, the definition of policy measures, the sensitivity analysis (SA) has also allowed the identification of the leverage points of the model; that is, the parameters to whose changes the model is more responsive. The results point to the potential of using these leverage points to develop more effective measures, as compared with other measures with the same objective proposed by different agents. The greater effectiveness of leverage-based measures has been shown regarding the objectives of reducing grazing on the high quality natural vegetation and controlling the tourist accommodations growth. The SA has also allowed the explicit consideration and quantification of uncertainty in the assessment of policies. Conclusions regarding whether some objectives are achieved or not or, or whether certain sustainability thresholds might be exceeded or not, may change when uncertainty is taken into account. Monte Carlo simulations applied to the leverage-based policy measures showed that for several indicators their sustainability thresholds would not be exceeded when mean values are considered, but such thresholds might be surpassed when the uncertainty range with the 95% confidence bound is taken into account. Under the Business as Usual scenario, the number of indicators analyzed which would exceed their thresholds would increase from two to four out of seven. Under Policy I (limitation of new tourist accommodation) the number of indicators exceeding their thresholds would shift from one to three out of seven, whereas under Policy II (reduction of grazing to protect the soil and the high quality natural vegetation) the increase would be from three to four out of seven. Therefore, the potential risks related to the surpassing of sustainability thresholds may go unnoticed when the uncertainty is not considered.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Parameters | Model Value (Units) | Definition | Range of Variation | References Regarding Range of Variation |
---|---|---|---|---|
ABROAD | 0.74 (Dmnl) | Proportion of tourists arrived from abroad | 0.66–0.83 | [60] |
AIR | 0.1899 (Dmnl) | Accommodation increase ratio (Automatic Calibration, AC) | 0.1424–0.2374 | Standard range when no references (25%) |
ARC | 0.367 (Dmnl) | Adjustable runoff | 0.2753–0.4588 | Standard range when no references (25%) |
AVERGOODS | 1.2203 × 109 (kg/year) | Average value of the Sea transportation of goods | 0.763 × 109–1.698 × 109 | [60] |
AVERSTAY | 9.06 (days) | Average length of the stay | 7.53–11.11 | [60] |
B | 33.2455 (Dmnl) | Intercept between births and GPDca | 24.934–41.557 | Standard range when no references (25%) |
BIR BASE | −0.0188 (1/year) | Factor between births and GPDca | (−0.024)–(−0.014) | Standard range when no references (25%) |
CFBUEU | 3.37 (Dmnl) | Factor of urban built up which affects the houbara habitat | 2.528–4.213 | Standard range when no references (25%) |
CO2FACTORgav | −300,000 (g CO2/(year·ha)) | CO2 factor for gavias | (−300,000)–(−176,800) | [61,62] |
CO2FACTORgc | −6.46 × 106 (g CO2/(year·ha)) | CO2 factor for golf courses | (−8.78 × 106)–(−4.85 × 106) | Standard range when no references (25%) |
CO2FACTORirrig | −5 × 106 (g CO2/(year·ha)) | CO2 factor for irrigation area | (−6.25 × 106)–(−3.75 × 106) | Standard range when no references (25%) |
CPRE | 0.00082 (LU/(ha·mm)) | Rainfall coefficient | 0.00080–0.00084 | Regression |
desal CORRALEJO | 1.46 × 106 (m3/year) | Capacity of the desalination facilities in Corralejo | 1.095 × 106–1.825 × 106 | [63] |
DIST1 | 316.14 (km/inhab) | Distance from Gran Canaria by passenger’s flights (round trip) | 237.105–395.175 | Standard range when no references (25%) |
DIST2 | 3234.26 (km/inhab) | Distance from Madrid by passenger’s flights (round trip) | 2425.695–4042.825 | Standard range when no references (25%) |
DIST3G | 6973.66 (km/inhab) | Distance from Berlin by passenger’s flights (round trip) | 5230.245–8717.075 | Standard range when no references (25%) |
DIST3UK | 5604.92 (km/inhab) | Distance from London by passenger’s flights (round trip) | 2101.845–3503.075 | Standard range when no references (25%) |
DIST4 | 2291.12 km/journey | Distance from Puerto de Cádiz to Puerto del Rosario (round trip) | 1718.34–2863.9 | Standard range when no references (25%) |
DVEF | 189.6 (g CO2/kwh) | Diesel vehicles CO2 emission factor | 142.2–237 | Standard range when no references (25%) |
ECO2E | 360 (g CO2/kwh) | Electricity CO2 emission factor | 351–410 | [64,65,66] |
EECBR | 829.495 (kwh/(inhab·year)) | Population electric energy consumption base ratio, before considering the GPDca effect | 622.1213–1036.8688 | Standard range when no references (25%) |
EICF | 2 (MJ/km) | Energy intensity conversion factor | 1.75–2.75 | [67,68] |
eLGCC | 0.0215 Ev/LU | Effect of the livestock over the carrying capacity of the Egyptian vulture (AC) | 0.016–0.027 | Standard range when no references (25%) |
EVAPORATION | 67,000 (m3/year) | Annual evaporation rate from water reservoirs | 30,150–67,000 | [69] |
EVTp | 0.9 (Dmnl) | Evapotranspiration (after the improvement of model formulation by means of the SA, the model value is 0.315) | 0.675–1.125 | Standard range when no references (25%) |
FCO2E | 69 (g CO2/MJ) | Flights CO2 emissions | 69–71.6 | [67] |
FLOWSEAR | 8.692 × 10−4 (1/year) | Volume flowing into sea ratio [69] | 6.519 × 10−4–10.865 × 10−4 | Insensitive parameters. Removed from the model structure after OAT. |
FLOWSPRINGR | 4.8751 × 10−6 (1/year) | Flow spring ratio [69] | 3.656 × 10−6–6.094 × 10−6 | Insensitive parameters. Removed from the model structure after OAT. |
FODDER YIELD | 37,705.5 (kg/(ha·year)) | Annual fodder yield | 17,178.2–37,705.5 | [70,71] |
FUEL CONSs | 804.812 (kg fuel/km) | Fuel consumption of ships by each kilometer | 740.43–869.2 | [72] |
GCR | 0.0516 (1/year) | Gavias change ratio (AC) | 0.0387–0.0644 | Standard range when no references (25%) |
GDPcaFACTOR | 4240 (ships) | Effect of the GDPca on sea transportation of goods | 2971–5509 | Regression |
GOLFCONR | 10,950 (m3/(ha·year)) | Golf courses water consumption | 10,950–11,000 | [73] |
GOLFLOSR | 0.2 (Dmnl) | Water loss in golf courses water supply | 0.2–0.3 | [74] |
GVEF | 95.312 (g CO2/kwh) | Gasoline emission factor (vehicles) | 71.48–119.14 | Standard range when no references (25%) |
HCRac | 0.96 (Dmnl) | Houbara habitat change ratio due to active crops | 0.73–1.21 | Standard range when no references (25%) |
HCRpermabandon | 0.178 (Dmnl) | Houbara habitat change ratio due to permanent abandonment of gavias | 0.134–0.223 | Standard range when no references (25%) |
HCRroads | 15.509 (ha/km) | Houbara habitat change ratio due to roads | 11.632–19.386 | Standard range when no references (25%) |
HCRtracks | 8.42 (ha/km) | Houbara habitat change ratio due to tracks | 6.315–10.525 | Standard range when no references (25%) |
HCRub | 0.119 (Dmnl) | Houbara habitat change ratio per hectare of new urban built up | 0.089–0.149 | Standard range when no references (25%) |
HOTEL ACCOMMODAT LAND DEM | 0.0059 (ha/bed) | Demand of land by each nonhotel accommodation bed | 0.0047–0.006 | [75] |
ICR | 0.001103 (1/year) | Irrigation change rate (AC) | 0.00083–0.00138 | Standard range when no references (25%) |
IR | 0.062 (Dmnl) | Infiltration ratio from rainfall | 0.052–0.062 | [69,74,76] |
IR gavias | 0.2 (m/year) | Infiltration ratio in gavias | 0.2–0.4 | [69,74] |
IRCONR | 7000 (m3/(ha·year)) | Irrigation consumption ratio | 4631–7000 | [69,74] |
IRLOSR | 0.43 (Dmnl) | Irrigation loss ratio | 0.19–0.43 | [74] |
ISLAND | 0.18 (Dmnl) | Proportion of tourist arrived from other island of the Archipelago | 0.13–0.223 | [60] |
Kc | 0.35 (Dmnl) | Cereal coefficient | 0.3–0.4 | Insensitive parameters, removed from the model structure after OAT |
Kn | 23.533 (Ev) | Egyptian vulture population carrying capacity natural, without considering the livestock effect | 17.65–29.417 | Standard range when no references (25%) |
LOSS | 0.31 (Dmnl) | Loss ratio for urban water supply | 0.25–0.35 | [69,74] |
MAX ACCOMMODATION | 133,000 (beds) | Maximum number of beds | 133,000–283,935 | [77] [78] |
MF GDPca INMIG | 1.24816 (Dmnl) | Effect of the GDPca on immigration (AC) | 0.9361–1.5602 | Standard range when no references (25%) |
MFACTOR GDP | 3.14604 (Dmnl) | Effect of the GDPreal on foreign tourists arrivals (AC) | 2.3595–3.93255 | Standard range when no references (25%) |
MFACTOR IET | 0.704086 (Dmnl) | Factor on the tourist choice index (AC) | 0.5281–0.8801 | Standard range when no references (25%) |
MIR | 0.6094 (1/year) | Maximum or intrinsic growth ratio for the Egyptian vulture (AC) | 0.457–0.762 | Standard range when no references (25%) |
MOR | 0.0036523 (1/year) | Mortality rate | 0.0035–0.0037 | [79] |
NBEACH THRESHOLD | 30 (m2/inhab) | Normalized beach factor threshold | 10–30 | [46,77] |
NEEfactor | 1.13987 × 107(g CO2/(year·ha)) | Net ecosystem exchange factor | 0.878 × 107–1.402 × 107 | Regression |
NGP | 0.5 (Dmnl) | Net grazing proportion | 0.29–0.5 | [80] |
NONHOT ACCOM LAND DEM | 0.0042 (ha/bed) | Demand of land by each nonhotel accommodation bed | 0.0035–0.007 | [75] |
NONHOT ACCOM RATIO | 0.53 (1/year) | Nonhotel accommodations ratio regarding the total tourist accommodation. | 0.25–0.68 | [81] |
NOTOURIST EMPLOY | 0.249 (Dmnl) | Proportion of employment not linked to tourist | 0.187–0.3111 | Insensitive parameters. Removed from the model structure after OAT |
PEGcpl | 2.425 × 10−5(1/(km·year)) | Probability of electrocution with corrective measures in power lines | 1.819 × 10−5–3.031 × 10−5 | Standard range when no references (25%) |
PEGspl | 9.7 × 10−5 (1/(km·year)) | Probability of electrocution without corrective measures in power lines | 7.275 × 10−5–12.125 × 10−5 | Standard range when no references (25%) |
PENINSULA | 0.078 (Dmnl) | Proportion of tourist arrived from the Iberian Peninsula | 0.021–0.136 | [60] |
PLRpc | 0.00335 (km/inhab) | Power lines Ratio per capita | 0.0024–0.0035 | [82] |
preFACTOR | −2.25604 × 106 ((g CO2)/(year·ha·mm) | Rainfall factor on the NEE | (−2.775 × 106) –(−1.737 × 106) | Regression |
ptotFACTOR | 0.000326 (ships/inhab) | Effect of the total population on the sea transportation of goods factor | 0.000245–0.000408 | Standard range when no references (25%) |
ratioG | 0.61 (Dmnl) | Proportion of German tourists from the foreign total tourists | 0.52–0.63 | [60] |
ratioUK | 0.38 (Dmnl) | Proportion of United Kingdom tourist from the total foreign tourists arrived to Fuerteventura | 0.32–0.39 | [60] |
REUSR | 0.35 (Dmnl) | Ratio of reusing urban reclaimed water | 0–0.9 | [74] |
ROADSn | 0.000358 (km/inhab/year) | New roads demand ratio | 0.00027–0.00045 | Standard range when no references (25%) |
RPOPAQUIFR | 0.01 (Dmnl) | Population Water demand from aquifer ratio | 0.01–0.12 | [69,74] |
RPOPCONRbase | 65.7 (m3/(year·inhab) | Residential population consumption ratio | 55.72–65.7 | [69,74] |
RPSEWAGEPROP | 0.6 (Dmnl) | Sewage proportion | 0.45–0.75 | Standard range when no references (25%) |
RPTREATMENTP | 0.91 (Dmnl) | Treatment water proportion from resident population. | 0.73–0.9 | [73,74] |
RT | 136.75 (years) | Average time of plant composition recovery (AC) | 40–200 | [83,84] |
RUNOFFcte | 0.026 (Dmnl) | Runoff constant | 0.025–0.026 | [85] |
SCG | 44 (ha/golf course) | Area occupied by golf course | 40–45 | [82] |
SCO2E | 3200 (g CO2/kg fuel) | Ships CO2 Emission Factor | 3170–3200 | [86] |
SEADES CONVR | 0.45 (Dmnl) | Seawater desalination conversion ratio | 0.45–0.55 | [87,88,89] |
SEADESCAP | 2.757 × 107 (m3/year) | Seawater desalination capacity | 2.068 × 107–3.446 × 107 | Insensitive parameters. Removed from the model structure after OAT |
SEWAGE PROP TUR | 0.57 (Dmnl) | Proportion of sewage water from tourist consumption | 0.57–0.6 | [90] |
SFACTOR | 691.1 (ships) | Ships factor. Intercept ships | 476.9–905.3 | Regression |
shipCAPACITY | 2.566 × 109 (kg/ships) | Ship carrying capacity for goods | 1.925 × 109–3.208 × 109 | Standard range when no references (25%) |
ST | 79 (year) | Period of succession after the abandonment of agricultural areas | 52–79 | [91] |
TCEO | 0.254 (Dmnl) | Electric energy consumption ratio by other sectors | 0.254–0.3 | [92] |
TCEOne | 0.27 (Dmnl) | Non electric energy consumption ratio by other sectors | 0.2025–0.3375 | Standard range when no references (25%) |
TCNE | 333.302 (kwh/(inhab·year)) | Non electric energy consumption ratio by population | 249.977–416.628 | Standard range when no references (25%) |
TCONBOV | 17.3 (m3/head of livestock) | Water consumption by each head of livestock (cows) | 3.65–17.3 | Insensitive parameters. Removed from the model structure after OAT. |
TCONCAPROV | 1.825 (m3/head of livestock) | Water consumption by each head of livestock (goats and sheep) | 1.825–2 | [69] |
TCONPORC | 2.87 (m3/head of livestock) | Water consumption by each head of livestock (pigs) | 2.87–3.65 | [69] |
TCV | 13,816.1 ((kwh/(car·year)) | Annual energy consumption ratio by each car | 13,816.1–17,124.519 | [58] |
TEMIG BASE | 0.084 (1/year) | Base emigration ratio | 0.071–0.092 | [79] |
TES | 6.405 (year) | Time to detect the overgrazing effects (AC) | 4.804–8.006 | Standard range when no references (25%) |
TGEREURBpc | 589.28 (kg/(inhab·year)) | Urban waste generation per capita | 569.4–589.28 | [77] |
THRESHOLD OR | 0.5305 (inhab/bed) | Profitability threshold for the occupancy rate. | 0.5305–0.75 | [46] |
TINGBOV | 16,607.5 (kg/(head·year)) | Fodder consumption by each head of livestock (cows) | 15,695–17,520 | Insensitive parameters. Removed from the model structure after OAT. |
TINGCAPROV | 657 (kg/(head·year)) | Fodder consumption by each head of livestock (goats and sheep) | 657–730 | [93] |
TINGPORC | 1124.2 (kg/(head·year)) | Fodder consumption by each head of livestock (pigs) | 886.95–1343.2 | Insensitive parameters. Removed from the model structure after OAT. |
TINMIGDPca | 2 (year) | Time of the effect of the GDPca on the immigration (AC) | 1.5–2.5 | Standard range when no references (25%) |
TKWM3 | 4.5 (kwh/m3) | Energy consumption for desalination | 3.123–5.877 | [87,88] |
TMOTN | 0.421658 (car/inhab) | Motorization index base (AC) | 0.316–0.527 | Standard range when no references (25%) |
TPP | 1 (Dmnl) | Non electric energy loss ratio (from primary energy to final energy) | 0.75–1.25 | Standard range when no references (25%) |
TRACKSn | 0.001719 (km/inhab/year) | New tracks demand ratio | 0.0013–0.0022 | [82] |
TRECRES | 0.07 (Dmnl) | Recycled waste ratio from the mixture of waste. | 0.048–0.111 | [82] |
TRECSELEC | 49.57 (kg/(inhab·year)) | Selective urban solid wastes collection ratio. | 31.65–54.4 | [82] |
TSUCVOpc | 0.074 (ha/(inhab·year)) | Built Urban and other uses per house ratio (AC) | 0.064–0.074 | Standard range when no references (25%) |
TURCONR | 126.02 (m3 /(inhab·year)) | Tourist water consumption ratio | 101–126.02 | [74,77] |
WCO2E | 2200 (g CO2/kg) | Waste CO2 Emission factor | 1650–2750 | Standard range when no references (25%) |
Variables | n | Results for Calibration Period before Removing Insensitive Parameters | Results after Removing Insensitive Parameters | ||
---|---|---|---|---|---|
MAPE (%) | RMSE (%) | MAPE (%) | RMSE (%) | ||
Resident population | 16 | 4.30 | 5.45 | 4.30 | 5.45 |
Births | 12 | 6.22 | 5.62 | 6.22 | 5.62 |
Immigration | 16 | 26.18 | 23.38 | 26.18 | 23.38 |
Emigration | 15 | 32.70 | 31.65 | 32.70 | 31.65 |
Tourist equivalent population | 16 | 9.52 | 12.03 | 9.52 | 12.03 |
Tourist accommodation capacity | 16 | 7.29 | 9.4 | 7.29 | 9.4 |
Occupancy rate | 16 | 8.71 | 10.84 | 8.71 | 10.84 |
Tourist employment | 13 | 5.39 | 6.63 | 5.39 | 6.63 |
Houbara habitat | 3 | 0.98 | 1.53 | 0.98 | 1.53 |
Egyptian vulture population | 13 | 4.54 | 5.08 | 4.54 | 5.08 |
Urban built-up | 16 | 2.34 | 2.84 | 2.34 | 2.84 |
Tracks | 3 | 1.06 | 1.73 | 1.06 | 1.73 |
Roads | 3 | 0.71 | 1.05 | 0.71 | 1.05 |
Active crops area | 15 | 10.14 | 11.40 | 10.14 | 11.40 |
Irrigated crops area | 15 | 11.76 | 13.70 | 11.76 | 13.70 |
Active gavias area | 15 | 10.49 | 11.55 | 10.49 | 11.55 |
Natural vegetation area | 3 | 0.28 | 0.45 | 0.28 | 0.45 |
Golf courses area | 15 | 10.01 | 24.45 | 10.01 | 24.45 |
Vehicles fleet | 12 | 4.57 | 4.15 | 4.57 | 4.15 |
Electric energy consumption | 14 | 4.98 | 7.14 | 4.98 | 7.14 |
Indicators | Equations | Variables Involved |
---|---|---|
Ratio of tourists to residents (tures) | etp: equivalent tourist population. res: resident population. | |
Ratio between tourist accommodations and resident population (ear) | tac: tourist accommodation capacity. res: resident population. | |
Artificial land percentage (alp) | rea: area occupied by residential uses. hot: area occupied by hotels and their facilities. nho: area occupied by non-hotels and their facilities. gof: area occupied by golf courses. rod: area occupied by roads. tra: area occupied by tracks or unpaved roads. irr: area occupied by irrigation lands. Fva: Fuerteventura island area. | |
High quality vegetation proportion (hqp) | hqv: high quality natural vegetation area. totv: total natural vegetation. | |
Overgrazing indicator (oi) | ls: livestock of the island. ngp: net grazing proportion. rf: rainfall. src: sustainable stocking rate capacity. | |
Houbara habitat proportion (hhp) | chag: annual changes in abandoned gavias area (from and to active gavias). HPag is the proportion of abandoned gavias which is part of the habitat. par: the abandoned gavias to natural vegetation succession rate. HPpa: the proportion of natural vegetation which is part of the habitat. bu: the annual change of urban areas. HPbu: the proportion of these urban areas which negatively affect the habitat. nr and nt: the new paved roads and unpaved tracks which annually appear on the island, respectively. HPnr and HPnt: the proportion of the new roads and tracks which negatively affect the habitat, respectively. hhref: reference value. | |
Egyptian vulture population proportion (Evp) | ev: population of the Egyptian vulture. mir: is the maximum or intrinsic growth ratio for the Egyptian vultures. k: Egyptian vulture carrying capacity without considering the livestock effect. kls: the additional carrying capacity generated by the existence of livestock. ep: the probability of electrocution. pli: the length of power lines on the island. fstk: the stochastic factor included in the electrocution probability. pos: refers to poisonings. evref: reference data of the population of the Egyptian vulture. |
References
- Hodbod, J.; Adger, W.N. Integrating social-ecological dynamics and resilience into energy systems research. Energy Res. Soc. Sci. 2014, 1, 226–231. [Google Scholar] [CrossRef]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuke, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.S.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E.; et al. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Martínez-Moyano, I.J.; Richardson, G.P. Best practices in system dynamics modeling. Syst. Dyn. Rev. 2013, 29, 102–123. [Google Scholar] [CrossRef]
- Bodde, M.; van der Wel, K.; Driessen, P.; Wardekker, A.; Runhaar, H. Strategies for Dealing with Uncertainties in Strategic Environmental Assessment: An Analytical Framework Illustrated with Case Studies from The Netherlands. Sustainability 2018, 10, 2463. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127, S117–S131. [Google Scholar] [CrossRef] [PubMed]
- Ascough, J.C.; Maier, H.R.; Ravalico, J.K.; Strudley, M.W. Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol. Model. 2008, 219, 383–399. [Google Scholar] [CrossRef]
- Warmink, J.J.; Janssen, J.A.E.B.; Booij, M.J.; Krol, M.S. Identification and classification of uncertainties in the application of environmental models. Environ. Model. Softw. 2010, 25, 1518–1527. [Google Scholar] [CrossRef]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef] [Green Version]
- Holzkämper, A.; Klein, T.; Seppelt, R.; Fuhrer, J. Assessing the propagation of uncertainties in multi-objective optimization for agro-ecosystem adaptation to climate change. Environ. Model. Softw. 2015, 66, 27–35. [Google Scholar] [CrossRef]
- Gong, W.; Duan, Q.Y.; Li, J.D.; Wang, C.; Di, Z.H.; Ye, A.Z.; Miao, C.Y.; Dai, Y.J. An intercomparison of sampling methods for uncertainty quantification of environmental dynamic models. J. Environ. Inf. 2016, 28, 11–24. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Letcher, R.A. Integrated assessment and modelling: Features, principles and examples for catchment management. Environ. Model. Softw. 2003, 18, 491–501. [Google Scholar] [CrossRef]
- Brown, S. Foreign aid and democracy promotion: Lessons from Africa. Eur. J. Dev. Res. 2005, 17, 179–198. [Google Scholar] [CrossRef]
- Schouten, M.; Verwaart, T.; Heijman, W. Comparing two sensitivity analysis approaches for two scenarios with a spatially explicit rural agent-based model. Environ. Model. Softw. 2014, 54, 196–210. [Google Scholar] [CrossRef]
- Banos-González, I.; Martínez-Fernández, J.; Esteve, M.A. Dynamic integration of sustainability indicators in insular socio-ecological systems. Ecol. Model. 2015, 306, 130–144. [Google Scholar] [CrossRef]
- Banos-González, I.; Martínez-Fernández, J.; Esteve, M.A. Using dynamic sustainability indicators to assess environmental policy measures in Biosphere Reserves. Ecol. Indic. 2016, 67, 565–576. [Google Scholar] [CrossRef]
- Santana-Jiménez, Y.; Hernández, J.M. Estimating the effect of overcrowding on tourist attraction: The case of Canary Islands. Tourism Manag. 2011, 32, 415–425. [Google Scholar] [CrossRef]
- Action Plan of the Fuerteventura Biosphere Reserve. Available online: http://gestion.cabildofuer.es/fuerteventurabiosfera/ (accessed on 4 November 2013).
- Rodríguez-Rodríguez, A.; Mora, J.L.; Arbelo, C.; Bordon, J. Plant succession and soil degradation in desertified areas (Fuerteventura, Canary Islands, Spain). Catena 2005, 59, 117–131. [Google Scholar] [CrossRef]
- Dorta-Santos, M.; Tejedor, M.; Jiménez, C.; Hernández-Moreno, J.M.; Palacios, M.P.; Díaz, F.J. Recycled urban wastewater for irrigation of Jatropha curcas L. in abandoned agricultural arid land. Sustainability 2014, 6, 6902–6924. [Google Scholar] [CrossRef]
- Donázar, J.A.; Palacios, C.J.; Gangoso, L.; Ceballos, O.; González, M.J.; Hiraldo, F. Conservation status and limiting factors in the endangered population of Egyptian vulture (Neophron percnopterus) in the Canary Islands. Biol. Conserv. 2002, 107, 89–97. [Google Scholar] [CrossRef]
- Carrascal, L.M.; Palomino, D.; Seoane, J.; Alonso, C.L. Habitat use and population density of the houbara bustard Chlamydotis undulata in Fuerteventura (Canary Islands). Afr. J. Ecol. 2008, 46, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Forrester, J.W. Industrial Dynamics; The MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Wang, X.; Yao, M.; Li, J.; Zhang, K.; Zhu, H.; Zheng, M. China’s rare earths production forecasting and sustainable development policy implications. Sustainability 2017, 9, 1003. [Google Scholar] [CrossRef]
- Banos-González, I.; Terrer, C.; Martínez-Fernández, J.; Esteve-Selma, M.A.; Carrascal, L.M. Dynamic modelling of the potential habitat loss of endangered species: The case of the Canarian houbara bustard (Chlamydotis undulata fuertaventurae). Eur. J. Wildl. Res. 2016, 62, 263–275. [Google Scholar] [CrossRef]
- Oliva, R. Model calibration as a testing strategy for system dynamics models. Eur. J. Oper. Res. 2003, 151, 552–568. [Google Scholar] [CrossRef]
- Makler-Pick, V.; Gal, G.; Gorfine, M.; Hipsey, M.R.; Carmel, Y. Sensitivity analysis for complex ecological models–a new approach. Environ. Model. Softw. 2011, 26, 124–134. [Google Scholar] [CrossRef]
- Barlas, Y. Formal aspects of model validity and validation in system dynamics. Sys. Dyn. Rev. J. Syst. Dyn. Soc. 1996, 12, 183–210. [Google Scholar] [CrossRef]
- Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ. Model. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef]
- Holmes, G.; Johnstone, R.W. Modelling coral reef ecosystems with limited observational data. Ecol. Model. 2010, 221, 1173–1183. [Google Scholar] [CrossRef]
- Sun, X.Y.; Newham, L.T.H.; Croke, B.F.W.; Norton, J.P. Three complementary methods for sensitivity analysis of a water quality model. Environ. Model. Softw. 2012, 37, 19–29. [Google Scholar] [CrossRef]
- Moreau, P.; Viaud, V.; Parnaudeau, V.; Salmon-Monviola, J.; Durand, P. An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: A case study of an agro-hydrological model. Environ. Model. Softw. 2013, 47, 74–87. [Google Scholar] [CrossRef]
- Gao, L.; Bryan, B.A.; Nolan, M.; Connor, J.D.; Song, X.; Zhao, G. Robust global sensitivity analysis under deep uncertainty via scenario analysis. Environ. Model. Softw. 2016, 76, 154–166. [Google Scholar] [CrossRef]
- Ventana System (Vensim ®, Ventana System, Inc.). Available online: http://www.vensim.com (accessed on 10 August 2018).
- Ford, A. Estimating the impact of efficiency standards on the uncertainty of the Northwest electric system. Oper. Res. 1990, 38, 580–597. [Google Scholar] [CrossRef]
- Ford, A.; Flynn, H. Statistical screening of system dynamic models. Syst. Dyn. Rev. J. Syst. Dyn. Soc. 2005, 21, 273–303. [Google Scholar] [CrossRef]
- Jørgensen, S.E.; Fath, B. Fundamentals of Ecological Modelling, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2011; p. 400. [Google Scholar]
- Graham, A.K.; Moore, J.; Choi, C.Y. How robust are conclusions from a complex calibrated model, really? A project management model benchmark using fit-constrained Monte Carlo analysis. In Proceedings of the 20th System Dynamics Conference of the System Dynamics Society, Palermo, Italy, 28 July–1 August 2002. [Google Scholar]
- Hekimoğlu, M.; Barlas, Y. Sensitivity analysis of system dynamics models by behavior pattern measures. In Proceedings of the 28th International Conference of the System Dynamics Society, System Dynamics Society, Albany, NY, USA, 25–29 July 2010. [Google Scholar]
- Lesnoff, M.; Corniaux, C.; Hiernaux, P. Sensitivity analysis of the recovery dynamics of a cattle population following drought in the Sahel region. Ecol. Model. 2012, 232, 28–39. [Google Scholar] [CrossRef]
- Grant, W.E.; Swannack, T.M. Ecological Modelling. A Common-Sense Approach to Theory and Practice; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Meadows, D. Leverage Points Places to Intervene in a System; Sustainability Institute: Hartland, VT, USA, 1999. [Google Scholar]
- Voinov, A.; Bousquet, F. Modelling with stakeholders. Environ. Model. Softw. 2010, 25, 1268–1281. [Google Scholar] [CrossRef]
- Moeller, C.; Sauerborn, J.; de Voil, P.; Manschadi, A.M.; Pala, M.; Meinke, H. Assessing the sustainability of wheat-based cropping systems using simulation modelling: Sustainability= 42? Sustain. Sci. 2013, 1–16. [Google Scholar] [CrossRef]
- UNESCO (Man and Biosphere Program). Available online: http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/europe-north-america/spain/fuerteventura/ (accessed on 27 December 2009).
- Stankey, G.H.; Cole, D.N.; Lucas, R.C.; Petersen, M.E.; Frissell, S.S. The Limits of Acceptable Change (LAC) System for Wilderness Planning; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1985. [Google Scholar]
- Government of Canary Islands. Metodología para la Aplicación Práctica de la Apreciación y Evaluación de los Factores Determinantes de la Capacidad de Carga. Especialmente en Zonas Turísticas. Consejería de Medio Ambiente y Ordenación Territorial; Government of the Canary Islands. Available online: http://www.fecam.es/documentos/areas/turismo_transportes/CCTGuia.pdf (accessed on 17 December 2014).
- Graymore, M.L.; Sipe, N.G.; Rickson, R.E. Sustaining human carrying capacity: A tool for regional sustainability assessment. Ecol. Econ. 2010, 69, 459–468. [Google Scholar] [CrossRef]
- Government of Canary Islands. Law 19/2003, on 14th. April 2003, on Arrangement of Territory and Tourism of the Canary Islands; Government of the Canary Islands: The Canary Islands, Spain, 2003.
- Fuerteventura Cabildo. Available online: http://www.cabildofuer.es/documentos/Medio_ambiente/subvenciones/gavias/plan_estrategico_subvencion_gavias.pdf (accessed on 6 September 2014).
- Mata, J.; Flores, M.P.; Camacho, A.; Delgado-Bermejo, J.V.; Bermejo, L.A. Uso Ganadero del Parque Rural de Anaga. Resultados Preliminares; Arch. Zootec.; Universidad de Córdoba, Servicio de Publicaciones: Madrid, Spain, 2000; Volume 49, pp. 269–274. [Google Scholar]
- Muleta, M.K.; Nicklow, J.W. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J. Hydrol. 2005, 306, 127–145. [Google Scholar] [CrossRef]
- Perz, S.G.; Muñoz-Carpena, R.; Kiker, G.; Holt, R.D. Evaluating ecological resilience with global sensitivity and uncertainty analysis. Ecol. Model. 2013, 263, 174–186. [Google Scholar] [CrossRef]
- Xing, Y.; Dangerfield, B. Modelling the sustainability of mass tourism in island tourist economies. J. Oper. Res. Soc. 2011, 62, 1742–1752. [Google Scholar] [CrossRef]
- Von Bergner, N.M.; Lohmann, M. Future Challenges for Global Tourism: A Delphi Survey. J. Travel Res. 2014, 5, 420–432. [Google Scholar] [CrossRef]
- Sterk, B.; Carberry, P.; Leeuwis, C.; van Ittersum, M.K.; Howden, M.; Meinke, H.; van Keulen, H.; Rossing, W.A.H. The interface between land use systems research and policy: Multiple arrangements and leverages. Land Use Policy 2009, 26, 434–442. [Google Scholar] [CrossRef]
- Baroni, G.; Tarantola, S. A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study. Environ. Model. Softw. 2014, 51, 26–34. [Google Scholar] [CrossRef]
- Oreja-Rodríguez, J.R.; Parra-López, E.; Yanes-Estévez, V. The sustainability of island destinations: Tourism area life cycle and teleological perspectives. The case of Tenerife. Tourism Manag. 2008, 29, 53–65. [Google Scholar] [CrossRef]
- Martín-Cejas, R.; Ramírez Sánchez, P. Ecological footprint analysis of road transport related to tourism activity: The case for Lanzarote Island. Tourism Manag. 2010, 31, 98–103. [Google Scholar] [CrossRef]
- Mori, K.; Christodoulou, A. Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environ. Impact Assess. Rev. 2012, 32, 94–106. [Google Scholar] [CrossRef]
- Instituto Canario de Estadística (ISTAC). Tourism Demand: Tourists and Passengers (1993–2015); ISTAC: Las Palmas, Spain. Available online: http://www.gobiernodecanarias.org/istac/temas_estadisticos/sectorservicios/hosteleriayturismo/demand/C00017A.html (accessed on 20 January 2016).
- Díaz, F.; Jiménez, C.C.; Tejedor, M. Nutrient balance in water harvesting soils. Soc. Nat. 2005, 1, 522–537. [Google Scholar]
- Padilla, F.M.; Vidal-Legaz, B.; Sánchez, J.; Pugnaire, F.I. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: Implications for land management. J. Environ. Manag. 2010, 91, 2688–2695. [Google Scholar] [CrossRef] [PubMed]
- Renforus Renewable Energy Futures for Unesco Sites. Available online: http://195.76.147.227/renforus/site/pdf/GOOD%20PRACTICES/FUERTEVENTURA-REF.pdf (accessed on 6 September 2014).
- Castellani, V.; Sala, S. Sustainability indicators integrating consumption patterns in strategic environmental assessment for urban planning. Sustainability 2013, 5, 3426–3446. [Google Scholar] [CrossRef]
- Alacid, M.; Castellar, M.R.; Obón de Castro, J.M. La electricidad, ¿una energía limpia? Cálculos estequiométricos y termoquímicos a partir de la información de la factura de la luz. In Proceedings of the II Jornadas Sobre la Enseñanza de Las Ciencias y Las Ingenierías, Murcia, Spain, 1 November 2010. [Google Scholar]
- Trappey, A.J.; Trappey, C.V.; Lin, G.Y.; Chang, Y.S. The analysis of renewable energy policies for the Taiwan Penghu island administrative region. Renew. Sustain. Energy Rev. 2012, 16, 958–965. [Google Scholar] [CrossRef]
- Becken, S. Analysing international tourist flows to estimate energy use associated with air travel. J. Sustain. Tourism 2002, 10, 114–131. [Google Scholar] [CrossRef]
- Hunter, C.; Shaw, J. The ecological footprint as a key indicator of sustainable tourism. Tourism Manag. 2007, 28, 46–57. [Google Scholar] [CrossRef]
- Fuerteventura Island Water Plan (HPF). BOC nº 105, Viernes 6 de Agosto de 1999: 1408. DECRETO 81/1999 de 6 de Mayo, por el que se Aprueba el Plan Hidrológico Insular de Fuerteventura: Consejería de Obras Públicas, Vivienda y Aguas; Gobierno de Canarias: The Canary Islands, Spain, 1999. [Google Scholar]
- Palacios, M.P.; Mendoza-Grimon, V.; Fernández, F.; Fernández-Vera, J.R.; Hernández-Moreno, J.M. Sustainable reclaimed water management by subsurface drip irrigation system: A study case for forage production. Water Pract. Technol. 2008, 3. [Google Scholar] [CrossRef]
- Instituto Canario de Estadística (ISTAC). Agriculture. ISTAC: Las Palmas, Spain. Available online: http://www.gobiernodecanarias.org/istac/temas_estadisticos/sectorprimario/agricultura/agricultura (accessed on 20 January 2016).
- Grupo de Investigación del Transporte Marítimo de la Fundación Universidad de Oviedo. Energy Consumption and Emission Associated with Transportation by Ship. Available online: http://www.investigacion-ffe.es/documentos/enertrans/EnerTrans_Consumos_barco.pdf (accessed on 14 September 2014).
- Fuerteventura Cabildo. Estudio Capacidad de Carga de la Revisión del Plan Insular de Ordenación de Fuerteventura; Cabildo de Fuerteventura: Gran Canaria, Spain, 2013; p. 87. [Google Scholar]
- Fuerteventura island Water Plan (HPF). Informative Report. Consejo Insular de Aguas de Fuerteventura. Available online: http://www.aguasfuerteventura.com/documentos/plan_hidrologico/Memoria_Informativa.pdf (accessed on 6 January 2016).
- Government of Canary Islands. Estudios previos y selección de área turísticas degradadas de actuación, de carácter general y urbanístico; Área del casco tradicional de Corralejo en Fuerteventura: Gran Canaria, Spain, 2004.
- Cabrera, M.C.; Custodio, E. The canary island. In Water, Agriculture and the Environment in Spain: Can We Square the Circle? De Stefano, L., Llamas, M.R., Eds.; CRC Press: Leiden, The Netherlands, 2012; pp. 281–291. [Google Scholar]
- PTEOIEFTV [Special Territorial Plan for Energy Facilities Management of Fuerteventura]. Available online: http://www.gobiernodecanarias.org/energia/doc/pteoie/FUERTEVENTURA/03_MEN_ORD/1516_Mem_ord_PTEOIE_FTV_2008_04_09.pdf (accessed on 17 January 2014).
- Gallardo, A.; Cáceres, Y. Reserva de Biosfera de Fuerteventura: Una Alterantiva al Modelo Turístico Tradicional. In Proceedings of the Conama 10: Congreso Nacional del Medio Ambiente (Technical Report), Madrid, 22–26 November 2010; Available online: http://www.conama10.conama.org/conama10/download/files/CT%202010/1000000175.pdf (accessed on 14 September 2014).
- Instituto Canario de Estadística (ISTAC). Demographics Figures (1991–2010); ISTAC: Las Palmas, Spain. Available online: http://www.gobiernodecanarias.org/istac/temas_estadisticos/demografia/poblacion/cifraspadronales/ (accessed on 17 January 2014).
- Mata, J.; Bermejo, L.A.; Delgado, J.V.; Camacho, A.; Flores, M.P. Estudio del uso ganadero en espacios protegidos de canarias. Metodología. Arch. Zootec. 2000, 49, 275–284. [Google Scholar]
- Government of Canary Islands. Viceconsejería de Turismo. Observatorio Turístico: Estadísticas y Estudios. Alojativos: Establecimientos y Plazas Autorizadas. Available online: http://www.gobiernodecanarias.org/presidencia/turismo/estadisticas_y_estudios/Pasajeros_procedentes_del_extranjero_segxn_Pais_de_origen_/index-bis.html (accessed on 16 September 2015).
- GRAFCAN (Homepage on the Internet). Available online: http://www.idecan.grafcan.es (accessed on 10 November 2015).
- Otto, R.; Krüsi, B.O.; Burga, C.A.; Fernández-Palacios, J.M. Old-field succession along a precipitation gradient in the semi-arid coastal region of Tenerife. J. Arid Environ. 2006, 65, 156–178. [Google Scholar] [CrossRef]
- Tzanopoulos, J.; Mitchley, J.; Pantis, J.D. Vegetation dynamics in abandoned crop fields on a Mediterranean island: Development of succession model and estimation of disturbance thresholds. Agric. Ecosyst. Environ. 2007, 120, 370–376. [Google Scholar] [CrossRef]
- Instituto Tecnológico Geominero de España (ITGE). Estudio Hidrogeológico de la Isla de Fuerteventura. Memoria. Estudio Correspondiente al “Proyecto de Actualización Infraestructura Hidrogeológica, Vigilancia y Catálogo de Acuíferos. Años 1988/89/90”; Ministerio de Industria, Comercio y Turismo: Madrid, Spain, 1990; p. 194.
- Deniz, C.; Kilic, A. Estimation and assessment of shipping emissions in the region of Ambarlı Port, Turkey. Environ. Prog. Sustain. Energy 2010, 29, 107–115. [Google Scholar] [CrossRef]
- Von Medeazza, G.M.; Moreau, V. Modelling of water–energy systems. The case of desalination. Energy 2007, 32, 1024–1031. [Google Scholar] [CrossRef]
- Meneses, M.; Pasqualino, J.C.; Céspedes-Sánchez, R.; Castells, F. Alternatives for reducing the environmental impact of the main residue from a desalination plant. J. Ind. Ecol. 2010, 14, 512–527. [Google Scholar] [CrossRef]
- Pérez-González, A.; Urtiaga, A.M.; Ibáñez, R.; Ortiz, I. State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res. 2012, 46, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Consejo Insular de Aguas de Gran Canaria (CIAGC). Estudio Hidrogeológico Para la Definición de Áreas Sobreexplotadas o en Riesgo de Sobreexplotación en la Zona Baja del Este de Gran Canaria. Convenio Específico 1998–2003. Capitulo V. Recursos Hídricos no Convencionales. Consejo Insular de Aguas de Gran Canaria. Available online: http://www.aguasgrancanaria.com/ciagcweb/articulos.nsf/ed7d80e62e5c0d4680257398002fd43b/a784546aa23093be8025774400491d7c/$FILE/CAPITULO%20V.%20Recursos%20h%C3%ADdricos%20no%20convencionales.pdf (accessed on 23 September 2011).
- Abella, R.S. Disturbance and Plant Succession in the Mojave and Sonoran Deserts of the American Southwest. Int. J. Environ. Res. Public Health 2010, 7, 1248–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Government of Canary Islands. Sectorización del Consumo de Energía Final en Canarias en el año 2006. Available online: http://www.gobcan.es/energia/doc/eficienciaenergetica/pure/sectorizacion.pdf (accessed on 20 September 2015).
- Monzón-Gil, E. Productividad de Cabras de Raza Majorera en Régimen Intensivo con Suministro de dos Tipos de Raciones, Tradicionales y Mezclada. Ph.D. Thesis, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain, 2007. [Google Scholar]
Indicators | Units | Direction of Change | Threshold | Meaning of the Threshold | Sources of the Thresholds |
---|---|---|---|---|---|
Ratio of tourists to residents (tures) | Dimensionless | Less is better | <0.3152 | The ratio of tourists to local inhabitants should be lower than the threshold. | [46] |
Ratio of tourists accommodation to resident population (ear) | Touristic beds/inhabitant | Less is better | <0.97 | Ratio of tourist accommodations to resident population. | [46] |
Artificial land percentage (alp) | % | Less is better | <20 | Percentage of modified land (agriculture, urban, infrastructures). | [47] |
High quality vegetation proportion (hqp) | Dimensionless | More is better | LCA > 0.1394 | 0.139 is the Limit of Acceptable Change (75% of the 2009 value). | Model value in 2009. |
Overgrazing indicator (oi) | Dimensionless | Less is better | <1 | Values above 1 mean overgrazing. | [14] |
Houbara habitat proportion (hhp) | Dimensionless | More is better | LCA > 0.75 | 0.75 is the Limit of Acceptable Change (75% of the 2009 value). | Model value in 2009. |
Egyptian vulture population proportion (Evp) | Dimensionless | More is better | LCA > 0.75 | 0.75 is the Limit of Acceptable Change (75% of the 2009 value). | Model value in 2009. |
Target Model Variable | Responsive Parameters | Sensitivity Results 95% Confidence Interval (in 2025) |
---|---|---|
Built-up urban (bu) | AIR, B, BIR BASE, MF GDPca INMIG, MFACTOR IET, THRESHOLD OR, TSUCVpc | 10,335 ± 8042 (Hectares) |
High quality vegetation prop (hqp) | CPRE, BIR BASE, MFACTOR IET, NGP, RT | 0.141 ± 0.12 (Dimensionless) |
Gavias proportion (gap) | GCR, REUSR | 0.058 ± 0.0015 (Dimensionless) |
Overgrazing indicator (oi) | CPRE, NGP | 0.518 ± 0.125 (Dimensionless) |
Fodder importation needs (fin) | NGP, TINGCAPROV, THRESHOLD OR | 0.575 ± 0.088 (Dimensionless) |
Resident population (respop) | AIR, B, BIR BASE, MF GDPca INMIG, MFACTOR IET, THRESHOLD OR | 140,862 ± 118,391 (Inhabitants) |
Equivalent tourist population (etp) | B, BIR BASE, MFACTOR IET, THRESHOLD OR | 37,042 ± 17,705 (Inhabitants) |
Houbara habitat proportion (hhp) | BIR BASE, MFACTOR IET, THRESHOLD OR | 0.738 ± 0.213 (Dimensionless) |
Egyptian vulture proportion (Evp) | NGP, eLGCC | 1.113 ± 0.263 (Dimensionless) |
Electric energy consumption (enc) | B, BIR BASE, MFACTOR IETTHRESHOLD OR, EECBR, TCEO | 1030 ± 0.721 (Mwh/year) |
Share of renewable energy (SER) | B, BIR BASE, MFACTOR IET, TCV, THRESHOLD OR, TMONT, TPP | 0.011 ± 0.006 (%) |
Per capita CO2 emissions (CO2 pc) | NEEfactor, preFACTOR, MFACTOR IET, THRESHOLD OR, AVERGOODS, FUEL CONSs | 32.2 ± 37.3 ((Metric tonnes CO2/(pc·year)) |
Groundwater recharge (gwr) | IR | 17.26 ± 2.75 (Hm3/year) |
Groundwater pumping (gwp) | IRCONR, SCG, GOLFCONR | 6.589 ± 0.74 (Hm3/year) |
Desalinated water (desw) | B, BIR BASE, MFACTOR IET, RPOPCONRbase, THRESHOLD OR | 18.27 ± 12.25 (Hm3/year) |
Brine production (brine) | B, BIR BASE, MFACTOR IET, RPOPCONRbase, SEADES CONVR, THRESHOLD OR | 20.26 ± 12.36 (Hm3/year) |
Treated sewage proportion (sewage prop) | RPTREATMENTP | 0.845 ± 0.06 (Dimensionless) |
Recycled waste (recwas) | B, BIR BASE, MFACTOR IET, TGEREURBpc, THRESHOLD OR, TRECRES | 7769 ± 7951 (Tonnes/year) |
Sustainability Indicators | Thresholds | MC Simulation Results in 2025 | ||
---|---|---|---|---|
BAU | Policy I | Policy II | ||
Ratio of tourists to residents (tures) | <0.3152 | 0.329 ± 0.277 (0.053–0.606) | 0.426 ± 0.189 (0.236–0.616) | 0.329 ± 0.277 (0.053–0.606) |
Ratio of tourist accommodation to resident population (ear) | <0.97 | 0.618 ± 0.643 (0–1.261) | 0.741 ± 0.532 (0.209–1.273) | 0.618 ± 0.643 (0–1.261) |
Artificial land percentage (alp) | <20 | 6.83 ± 4.74 (2.09–11.57) | 3.658 ± 1.845 (1.813–5.503) | 6.83 ± 4.74 (2.09–11.57) |
High quality vegetation proportion (hqp) | LCA > 0.1394 | 0.141 ± 0.119 (0.021–0.261) | 0.146 ± 0.109 (0.038–0.255) | 0.287 ± 0.1306 (0.144–0.405) |
Overgrazing indicator (oi) | <1 | 0.518 ± 0.125 (0.399–0.644) | 0.518 ± 0.125 (0.399–0.644) | 0.380 ± 0.009 (0.371–0.989) |
Houbara habitat proportion (hhp) | LCA > 0.75 | 0.738 ± 0.213 (0.525 – 0.952) | 0.9349 ± 0.034 (0.901–0.959) | 0.738 ± 0.213 (0.525–0.952) |
Egyptian vulture population proportion (Evp) | LCA > 0.75 | 1.113 ± 0.263 (0.85–1.376) | 1.138 ± 0.267 (0.871–1.405) | 0.745 ± 0.1001 (0.645–0.845) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banos-Gonzalez, I.; Martínez-Fernández, J.; Esteve-Selma, M.-Á.; Esteve-Guirao, P. Sensitivity Analysis in Socio-Ecological Models as a Tool in Environmental Policy for Sustainability. Sustainability 2018, 10, 2928. https://doi.org/10.3390/su10082928
Banos-Gonzalez I, Martínez-Fernández J, Esteve-Selma M-Á, Esteve-Guirao P. Sensitivity Analysis in Socio-Ecological Models as a Tool in Environmental Policy for Sustainability. Sustainability. 2018; 10(8):2928. https://doi.org/10.3390/su10082928
Chicago/Turabian StyleBanos-Gonzalez, Isabel, Julia Martínez-Fernández, Miguel-Ángel Esteve-Selma, and Patricia Esteve-Guirao. 2018. "Sensitivity Analysis in Socio-Ecological Models as a Tool in Environmental Policy for Sustainability" Sustainability 10, no. 8: 2928. https://doi.org/10.3390/su10082928
APA StyleBanos-Gonzalez, I., Martínez-Fernández, J., Esteve-Selma, M. -Á., & Esteve-Guirao, P. (2018). Sensitivity Analysis in Socio-Ecological Models as a Tool in Environmental Policy for Sustainability. Sustainability, 10(8), 2928. https://doi.org/10.3390/su10082928