Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. The Experimental Area
2.2. Sample Collection
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Grădinaru, A.C.; Petrescu-Mag, I.V.; Oroian, C.F.; Balint, C.; Oltean, I. Milk Protein Polymorphism Characterization: A Modern Tool for Sustainable Conservation of Endangered Romanian Cattle Breeds in the Context of Traditional Breeding. Sustainability 2018, 10, 534. [Google Scholar] [CrossRef]
- Idamokoro, E.M.; Muchenje, V.; Masika, P.J. Yield and Milk Composition at Different Stages of Lactation from a Small Herd of Nguni, Boer, and Non-Descript Goats Raised in an Extensive Production System. Sustainability 2017, 9, 1000. [Google Scholar] [CrossRef]
- Salimei, E. Animals that Produce Dairy Food|Donkey. In Encyclopedia of Diary Sciences, 2nd ed.; Fukuay, W.J., Ed.; Academic Press: New York, USA, 2007; pp. 365–373. ISBN 978-0-12-374407-4. [Google Scholar]
- Wszolek, M.; Filipczak-Fiutak, M.; Domagała, J. Composition and properties of donkey’s milk. Zywnosc Nauka Technologia Jakosc 2014, 1, 29–40. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and Nutraceutical Quality of Donkey Milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Cosentino, C.; Paolino, R.; Musto, M.; Freschi, P. Innovative Use of Jenny Milk from Sustainable Rearing. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Vastola, A., Ed.; Springer: Berlin, Germany, 2015; pp. 113–132. [Google Scholar] [Green Version]
- Bender, D.A. Dictionary of Food and Nutrition, 3rd ed.; Oxford University Press: Oxford, UK, 2014; pp. 184–186. ISBN 9780191726682. [Google Scholar]
- Godhia, M.L.; Patel, N. Colostrum—Its Composition, Benefits as a Nutraceutical: A Review. Curr. Res. Nutr. Food Sci. 2013, 1, 37–47. [Google Scholar] [CrossRef]
- Kaducu, A.F.O.; Okia, S.A.; Upenytho, G.; Elfstrand, L.; Florén, C.H. Effect of bovine colostrum-based food supplement in the treatment of HIV-associated diarrhea in Northern Uganda: A randomized controlled trial. Indian J. Gastroenterol. 2011, 30, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000, 72, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, P. Differences in the composition of colostrum and milk in eutherians reflect differences in Immunoglobulin transfer. J. Mammal. 2009, 90, 332–339. [Google Scholar] [CrossRef]
- Baintner, K. Transmission of antibodies from mother to young: Evolutionary strategies in a proteolytic environment. Vet. Immunol. Immunop. 2007, 117, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Høstmark, A.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martemucci, G.; D’Alessandro, A.G. Fat content, energy value and fatty acid profile of donkey milk during lactation and implications for human nutrition. Lipids Health Dis. 2007, 11, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Aspri, M.; Economou, N.; Papademas, P. An overview on functionality, technology, and future prospects. Food Rev. Int. 2017, 33, 316–333. [Google Scholar] [CrossRef]
- Bidasolo, I.B.; Ramos, M.; Gomez-Ruiz, J.A. In vitro simulated gastrointestinal digestion of donkeys’ milk. Peptide characterization by high performance liquid chromatography—Tandem mass spectrometry. Int. Dairy J. 2012, 24, 146–152. [Google Scholar] [CrossRef]
- Fantuz, F.; Ferraro, S.; Todini, L.; Piloni, R.; Mariani, P.; Salimei, E. Donkey milk concentration of calcium, phosphorus, potassium, sodium and magnesium. Int. Dairy J. 2012, 24, 143–145. [Google Scholar] [CrossRef]
- Guo, H.Y.; Pang, K.; Zhang, X.Y.; Zhao, L.; Chen, S.W.; Dong, M.L.; Ren, F.Z. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J. Dairy Sci. 2007, 90, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Samperi, R.; Chiozzi, R.Z.; Laganà, A. Peptidome characterization and bioactivity analysis of donkey milk. J. Proteomics 2015, 119, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Ragona, G.; Benedetti, M.; Salari, F.; Martini, M. Amiata donkey milk chain: Animal health evaluation and milk quality. Ital. J. Food Safety 2016, 5, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Trinchesea, G.; Cavalierea, G.; Cananib, R.B.; Matamorosc, S.; Bergamod, P.; De Filippoa, C.; Acetoa, S.; Gaitaa, M.; Cerinoa, P.; Negrib, R.; et al. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J. Nutr. Biochem. 2015, 26, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- FAOSTAT Data. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 15 December 2017).
- Bernabucci, U.; Basiricò, R.; Morera, P. Impact of hot environment on colostrum and milk composition. J. Cell. Mol. Biol. 2013, 59, 67–83. [Google Scholar]
- Lagat, P.; Nyangena, J. The effects of climate variability on livestock production in Kenya. J. Agric. Policy 2016, 1, 58–79. [Google Scholar]
- Smith, D.G.; Pearson, R.A. A review of factors affecting the survival of donkeys in semiarid regions of sub-Saharan Africa. Trop. Anim. Health Prod. 2005, 37, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Dwivedi, S.K.; Malik, P.; Panisup, A.S.; Tandon, S.N.; Singh, B.K. Mortality associated with heat stress in donkeys in India. Vet. Rec. 2010, 166, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Zakari, F.O.; Ayo, J.O.; Rekwot, P.I.; Kawu, M.U. Influence of season on daytime behavioral activities of donkeys in the Northern Guinea Savanna zone of Nigeria. J. Equine Sci. 2015, 26, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakari, F.O.; Ayo, J.O.; Kawu, M.U.; Rekwot, P.I. The effect of season and meteorological stress factors on behavioral responses and activities of donkeys (Equus asinus)—A review. Ann. Anim. Sci. 2015, 15, 307–321. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar Ajeet, B.V.; Meena, K. Effects of heat stress in tropical livestock and different strategies for its amelioration. J. Stress Physiol. Biochem. 2011, 7, 45–54. [Google Scholar]
- Pandey, N.; Kataria, N.; Kataria, A.K.; Joshi, A. Ambient stress associated variations in metabolic responses of Marwari Goat of arid tracts in India. J. Stress Physiol. Biochem. 2012, 8, 120–127. [Google Scholar]
- Algers, B.; Jensen, P. Teat stimulation and milk production during early lactation in sows: effects of continuous noise. Can. J. Anim. Sci. 1991, 71, 51–60. [Google Scholar] [CrossRef]
- Farmer, C.; Quesnel, H. Nutritional, hormonal, and environmental effects on colostrum in sows. J. Anim. Sci. 2008, 87, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Bate, L.A.; Hacker, R.R. The influence of the sow’s adrenal activity on the ability of the piglet to absorb IgG from colostrum. Can. J. Anim. Sci. 1985, 65, 77–85. [Google Scholar] [CrossRef]
- Inoue, T. Possible factors influencing immunoglobulin A concentration in swine colostrum. Am. J. Vet. Res. 1981, 42, 533–536. [Google Scholar] [PubMed]
- Coroian, A.; Miresan, V.; Odagiu, A.; Andronie, L.; Raducu, C.; Marchis, Z.; Coroian, C.O. Influence of Season on Physico-Chemical Composition of Donkey Milk from Primiparous and Multiparous. ProEnvironment 2016, 9, 400–403. [Google Scholar]
- Marchis, Z.; Negrea, O.; Stan, A.; Coroian, A.; Coroian, C.O. The influence of lactation on SCC and TNG of the donkey milk. ABAH Bioflux 2015, 72, 208–212. [Google Scholar]
- Marchis, Z.; Muresan, G.; Stan, A.; Coroian, A.; Coroian, C.O. Donkey milk chemical composition and the influence of lactation. ABAH Bioflux 2015, 7, 196–201. [Google Scholar]
- McLean, A.K. Gonzalez, F.J.N. Can Scientists Influence Donkey Welfare? Historical Perspective and a Contemporary View. J. Equine Vet. Sci. 2018, 65, 25–32. [Google Scholar] [CrossRef]
- De Paolo, P.; Maggiolino, A.; Albenzio, M.; Casalino, E.; Neglia, G.; Centoducati, G.; Tateo, A. Survey of biochemical and oxidative profile in donkey foals suckled with one natural and one semi-natural technique. PLoS ONE 2018, 13, e0198774. [Google Scholar] [CrossRef] [PubMed]
- Gastaldi, D.; Bertino, E.; Monti, G.; Baro, C.; Fabris, C.; Lezo, A.; Medana, C.; Baiocchi, C.; Mussap, M.; Galvano, F.; et al. Donkey’s milk detailed lipid composition. Front. Biosci. 2010, 2, 537–546. [Google Scholar]
- Paksoy, N.; Dinç, H.; Altun, K. Evaluation of levels of essential elements and heavy metals in milks of dairy donkeys, goats, and sheep in Turkey, Pakistan. J. Zool. 2018, 50. [Google Scholar] [CrossRef]
- Potortì, A.G.; Di Bella, G.; Turco, V.L.; Rando, R.; Dugo, G. Non-toxic and potentially toxic elements in Italian donkey milk by ICP-MS and multivariate analysis. J. Food Compost. Anal. 2013, 31, 161–172. [Google Scholar] [CrossRef]
- Brumini, D.; Furlund, C.B.; Comi, I.; Devold, T.G.; Marletta, D.; Vegarud, G.E.; Jonassen, C.M. Antiviral activity of donkey milk protein fractions on echovirus type 5. Int. Dairy J. 2013, 28, 109–111. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, L.; Jiang, L.; Dong, M.L.; Ren, F.Z. The antimicrobial activity of donkey milk and microflora changes during storage. Food Control 2008, 19, 1191–1195. [Google Scholar] [CrossRef]
- Jirillo, F.; Magrone, T. Anti-inflammatory, and anti-allergic properties of donkey’s and goats’ milk. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Daprà, V.; Zecconi, A.; Piccinini, R. Hygienic and health characteristics of donkey milk during a follow-up study. J. Dairy Res. 2010, 77, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Yvon, S.; Olier, M.; Leveque, M.; Jard, G.; Tomo, H.; Haimoud-Lekhal, D.A.; Peter, M.; Eutamène, H. Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice. Eur. J. Nutr. 2018, 57, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Gu, J.; Sun, Y.; Xu, S.; Zhang, X.; Yang, H.; Ren, F. Antiproliferative and anti-tumor effect of active components in donkey milk on A549 human lung cancer cells. Int. Dairy J. 2009, 19, 703–708. [Google Scholar] [CrossRef]
- Ozturkoglu-Budak, S. Effect of different treatments on the stability of lysozyme, lactoferrin, and β-lactoglobulinin donkey’s milk. Int. J. Dairy Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Coscia, A.; Bertino, E.; Tonetto, P.; Peila, C.; Cresi, F.; Arslanoglu, S.; Moro, G.E.; Spada, E.; Milani, S.; Giribaldi, M.; et al. Nutritional adequacy of a novel human milk fortifier from donkey milk in feeding preterm infants: Study protocol of a randomized controlled clinical trial. Nutr. J. 2018, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Souroullas, K.; Aspri, M.; Papademas, P. Donkey milk as a supplement in infant formula: Benefits and technological challenges. Food Res. Int. 2018, 109, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Monti, G.; Bertini, E.; Muratore, M.C.; Coscia, A.; Cresi, F.; Silvestrol, L.; Fabris, C.; Fortunato, D.; Giuffrida, G.M.; Conti, A. Efficacy of donkey’s milk in treating highly problematic cow’s milk allergic children: An in vivo and in vitro study. Pediatr. Allergy Immunol. 2007, 18, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Tafaro, A.; Magrone, T.; Jirillo, F.; Martemucci, G.; D’Alessandro, A.G.; Amati, L.; Jirillo, E. Immunological properties of donkey’s milk: Its potential use in the prevention of the atherosclerosis. Curr. Pharm. Des. 2007, 13, 3711–3717. [Google Scholar] [CrossRef] [PubMed]
- Criscione, A.; Cunsolo, V.; Tumino, S.; Di Francesco, A.; Bordonaro, F.; Muccilli, V.; Saletti, R.; Marletta, D. Polymorphism at donkey β-lactoglobulin II locus: Identification and characterization of a new genetic variant with a very low expression. J. Amino Acids 2018, 50, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, C.; Paolino, R.; Freschi, P.; Calluso, A. Short communication: Jenny milk production and qualitative characteristics. J. Dairy Sci. 2012, 95, 2910–2915. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faye, B.; Konuspayeva, G. The sustainability challenge to the dairy sector—The growing importance of non-cattle milk production worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Meteoblue. Huedin. Available online: https://www.meteoblue.com/ro/vreme/prognoza/modelclimate/huedin_rom%C3%A2nia_675937 (accessed on 2 August 2018).
- Meteoblue. Zalău. Available online: https://www.meteoblue.com/ro/vreme/prognoza/modelclimate/zalau_romania_675937 (accessed on 2 August 2018).
- Exploratory Factor Analysis 2004. Available online: https://www.let.rug.nl/nerbonne/teach/rema-stats-meth-seminar/Factor-Analysis-Kootstra-04.PDF (accessed on 2 August 2018).
- Treiblmaier, H.; Filzmoser, P. Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research. Inf. Manag. 2010, 47, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.; Kamphues, J. Grundlagen der Ernahrung von Neugeborenen, In Neugeborenen- und Sauglingskunde der Tiere, 2nd ed.; Walser, K., Bostedt, H., Eds.; Ferdinand Enke Verlag: Stuttgart, Germany, 1990; pp. 55–71. [Google Scholar]
- Guthrie, A.H. Introductory Nutrition, 6th ed.; Times Mirror/Mosby College Publishing: St. Louis, MI, USA, 1989; pp. 87–95. [Google Scholar]
- Park, Y.W. Minor species milk. In Handbook of Milk of Non-Bovine Mammals, 1st ed.; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 393–406. [Google Scholar]
- Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Changes in physical properties of bovine milk from the colostrum period to early lactation. J. Dairy Sci. 2007, 90, 5012–5017. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Data. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 5 August 2018).
Parameter | N | Temperature (°C) | Humidity (%) | Wind Velocity (m/s) |
---|---|---|---|---|
Mean | 7 | 12.30 | 64.43 | 8.43 |
Standard deviation | 7 | 1.19 | 8.22 | 1.70 |
Minimum | 7 | 10.00 | 56.00 | 5.00 |
Maximum | 7 | 14.00 | 74.00 | 11.00 |
Coefficient of variation | 7 | 9.67 | 12.75 | 20.16 |
Parameter | N | Fat (g/100 mL) | Protein (g/100 mL) | Lactose (g/100 mL) | Water (%) | pH |
---|---|---|---|---|---|---|
Mean | 175 | 3.77 | 2.36 | 2.35 | 86.37 | 6.96 |
Standard deviation | 175 | 0.76 | 0.28 | 0.26 | 2.12 | 0.15 |
Minimum | 175 | 1.89 | 1.47 | 1.43 | 82.50 | 6.70 |
Maximum | 175 | 4.88 | 2.75 | 2.71 | 89.10 | 7.20 |
Coefficient of variation | 175 | 20.21 | 11.95 | 11.86 | 2.46 | 2.19 |
Issue | Fat | Protein | Lactose | Unit | References |
---|---|---|---|---|---|
Human | 2.9–2.95 | 2.29–3.7 | 5.3–5.7 | g/100 mL | [39,40] |
Cow | 3.6 | 13 | 3.1 | % | [38] |
Pig | 5.8 | 10.6 | 3.4 | % | [41] |
Sheep | 12.4 | 13 | 3.4 | % | [38] |
Goat | 9 | 8 | 2.5 | % | [38] |
Issue | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1 | 1.000 | 0.653 | 0.799 | −0.274 | 0.202 | −0.219 | 0.644 | −0.235 |
2 | 1.000 | 0.638 | −0.209 | 0.017 | −0.510 | 0.655 | −0.207 | |
3 | 1.000 | −0.331 | 0.142 | −0.140 | 0.518 | −0.149 | ||
4 | 1.000 | 0.043 | −0.090 | 0.009 | 0.033 | |||
5 | 1.000 | 0.126 | −0.163 | 0.140 | ||||
6 | 1.000 | −0.619 | 0.095 | |||||
7 | 1.000 | −0.506 | ||||||
8 | 1.000 |
Eigenvalue | Variance % | Factor | Item | Factor Loading | Communalities | Mean | SD |
---|---|---|---|---|---|---|---|
3.12 | 39.12 | Colostrum nutritional traits α = 0.74 Mean = 2.82 SD = 0.321 | Fat | 0.916 | 0.840 | 3.77 | 0.762 |
Protein | 0.818 | 0.662 | 2.36 | 0.281 | |||
Lactose | 0.801 | 0.659 | 2.35 | 0.280 | |||
1.43 | 17.99 | Environmental air traits and some colostrum nutritional traits α = 0.69 Mean = 20.89 SD = 0.915 | Air temperature | 0.751 | 0.730 | 12.85 | 1.556 |
Air relative humidity | 0.722 | 0.561 | 64.62 | 6.231 | |||
Fat | 0.689 | 0.496 | 3.77 | 0.281 | |||
Lactose | 0.614 | 0.452 | 2.35 | 0.280 | |||
1.07 | 13.45 | Climatic traits and some colostrum nutritional traits α = 0.62 Mean = 4.71 SD = 0.432 | Wind velocity | 0.722 | 0.618 | 8.02 | 2.064 |
Fat | 0.602 | 0.551 | 3.77 | 0.762 | |||
Protein | 0.582 | 0.433 | 2.36 | 0.281 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchis, Z.; Odagiu, A.; Coroian, A.; Oroian, I.; Mirza, M.; Burduhos, P. Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability 2018, 10, 2958. https://doi.org/10.3390/su10092958
Marchis Z, Odagiu A, Coroian A, Oroian I, Mirza M, Burduhos P. Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability. 2018; 10(9):2958. https://doi.org/10.3390/su10092958
Chicago/Turabian StyleMarchis, Zamfir, Antonia Odagiu, Aurelia Coroian, Ioan Oroian, Manuela Mirza, and Petru Burduhos. 2018. "Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality" Sustainability 10, no. 9: 2958. https://doi.org/10.3390/su10092958
APA StyleMarchis, Z., Odagiu, A., Coroian, A., Oroian, I., Mirza, M., & Burduhos, P. (2018). Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability, 10(9), 2958. https://doi.org/10.3390/su10092958