Variability of Satellite Derived Phenological Parameters across Maize Producing Areas of South Africa
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Materials
2.3. Methods
3. Results
3.1. Summary Statistics and Trends in MODIS Derived NDVI
3.2. Statistical Moments of Phenological Parameters
3.3. Trends in the Phenological Parameters from 2000 to 2015
3.4. Association of Changes in Maize Yield and Changes in Phenological Parameter
3.5. Impact of Varying Phenological Parameter on Maize Yield
3.6. Drivers of Phenological Changes and Maize Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maignan, F.; Bieon, F.M.; Baccour, C.; Demarty, J.; Poirson, A. Interannual vegetation phenology estimates from global AVHRR measurements: Comparison with in situ data and application. Remote Sens. Environ. 2008, 112, 496–505. [Google Scholar] [CrossRef]
- Jolly, W.M.; Running, S.W. Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob. Chang. Biol. 2004, 10, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Tracy, E.T.; Xi, Y. Evaluating remotely sensed phenological metrics in a dynamic ecosystem model. Remote Sens. 2014, 6, 4660–4686. [Google Scholar] [CrossRef]
- IPCC Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
- Kang, X.; Hao, Y.; Cui, X.; Chen, H.; Huang, S.; Du, Y.; Li, W.; Kardol, P.; Xiao, X.; Cui, X. Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem. Remote Sens. 2016, 8, 391. [Google Scholar] [CrossRef]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variation in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Zhu, W.; Tian, H.; Xu, X.; Pan, Y.; Chen, G.; Lin, W. Extension of the growing season due to delayed autumn over mid and high latitudes in north America during 1982–2006. Glob. Ecol. Biogeogr. 2012, 21, 260–271. [Google Scholar] [CrossRef]
- Tesfaye, K.; Aggarwal, P.K.; Mequanint, F.; Shirsath, P.B.; Stirling, C.M.; Khatri-Chhetri, A.; Rahut, D.B. Climate Variability and Change in Bihar, India: Challenges and Opportunities for Sustainable Crop Production. Sustainability 2017, 9, 1998. [Google Scholar] [CrossRef]
- Gourav, M.; Allan, B.; Annette, M. Effects of Different Methods on the Comparison between Land Surface and Ground Phenology—A methodological case study from south-western Germany. Remote Sens. 2016, 8, 753. [Google Scholar] [CrossRef]
- Badeck, F.W.; Bondeau, A.; Böttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol. 2004, 162, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Galina, C.; David, S.; Braswell, B.H.; Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 2005, 11, 1777–1787. [Google Scholar]
- Kimball, J.; Zhao, M.; McDonald, K.; Running, S. Satellite remote sensing of terrestrial net primary production for the pan-arctic basin and Alaska. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 783–804. [Google Scholar] [CrossRef]
- Duchemin, B.; Hadria, R.; Rodriguez, J.C.; Lahrouni, A.; Khabba, S.; Boulet, G.; Mougenot, B.; Maisongrande, P.; Watts, C. Spatialisation of a crop model using phenology derived from remote sensing data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’03), Toulouse, France, 21–25 July 2003; pp. 2200–2202. [Google Scholar]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop production in the Vaqui valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2003, 94, 205–220. [Google Scholar] [CrossRef]
- Wang, L.; Ning, Z.; Wang, H.; Ge, Q. Impact of Climate Variability on Flowering Phenology and Its Implications for the Schedule of Blossom Festivals. Sustainability 2017, 9, 1127. [Google Scholar] [CrossRef]
- Lee, S.-D. Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea. Sustainability 2017, 9, 2203. [Google Scholar] [CrossRef]
- Tateishi, R.; Ebata, M. Analysis of phenological change patterns using 1982–2000 advanced very high resolution radiometer (avhrr) data. Int. J. Remote Sens. 2004, 25, 2287–2300. [Google Scholar] [CrossRef]
- Xu, D.; Fu, M. Detection and Modeling of Vegetation Phenology Spatiotemporal Characteristics in the Middle Part of the Huai River Region in China. Sustainability 2015, 7, 2841–2857. [Google Scholar] [CrossRef] [Green Version]
- Forkel, M.; Migliavacca, M.; Thonicke, K.; Reichstein, M.; Schaphoff, S.; Weber, U.; Carvalhais, N. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob. Chang. Biol. 2015, 9, 3414–3435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Goldberg, M.D. Monitoring fall foliage coloration dynamics using time-series satellite data. Remote Sens. Environ. 2011, 115, 382–391. [Google Scholar] [CrossRef]
- Ma, X.; Huete, A.; Yu, Q.; Coupe, N.R.; Davies, K.; Broich, M.; Ratana, P.; Beringer, J.; Hutley, L.B.; Cleverly, J.; et al. Spatial patterns and temporal dynamics in savanna vegetation phenology across the north Australian tropical transect. Remote Sens. Environ. 2013, 139, 97–115. [Google Scholar] [CrossRef]
- Guyon, D.; Guillot, M.; Vitasse, Y.; Cardot, H.; Hagolle, O.; Delzon, S.; Wigneron, J.P. Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from spot/vegetation time-series. Remote Sens. Environ. 2011, 115, 615–627. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Yan, Y.; Guo, H.; He, M.; Gu, Y.; Li, B. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: An application in the Yangtze river delta area. Ecol. Indic. 2009, 9, 346–356. [Google Scholar] [CrossRef]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, E.; Joel, G.; Peñuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of Modis LAI, FAPAR and the relation between FAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Toshihiro, S.; Brian, D.W.; Anatoly, A.G.; Shashi, B.V.; Andrew, E.S.; Timothy, J.A. A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2010, 114, 2146–2159. [Google Scholar]
- Viña, A.; Gitelson, A.A.; Rundquist, D.C.; Keydan, G.P.; Leavitt, B.; Schepers, J. Monitoring Maize (Zea Mays L.) Phenology with Remote Sensing. Papers Nat. Res. 2004, 264. Available online: http://digitalcommons.unl.edu/natrespapers/264 (accessed on 18 May 2018).
- Liu, Y.; Xie, R.; Hou, P.; Li, S.; Zhang, H.; Ming, B.; Long, H.; Liang, S. Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res. 2013, 144, 192–199. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Dlamini, L.C.; Zwane, N.S.; Phaduli, E. Characteristics of Droughts in South Africa: A Case Study of Free State and North West Provinces. Water 2016, 8, 439. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; de Wit, J.C.; Ncongwane, K.P.; Adeola, A.M. Drought Characteristics over the Western Cape Province, South Africa. Water 2017, 9, 876. [Google Scholar] [CrossRef]
- Adisa, O.M.; Botai, C.M.; Botai, J.O.; Hassen, A.; Darkey, D.; Tesfamariam, E.; Adisa, A.F.; Adeola, A.M.; Ncongwane, K.P. Analysis of agro-climatic parameters and their influence on maize production in South Africa. Theor. Appl. Climatol. 2017. [Google Scholar] [CrossRef]
- Tadross, M.A.; Hewitson, B.C.; Usman, M.T. The interannual variability of the onset of the maize growing season over South Africa and Zimbabwe. J. Clim. 2005, 18, 3356–3372. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated highresolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Lorenzo, B.; Luigi, R. MODIStsp: A Tool for Automatic Preprocessing of MODIS Time Series. Comput. Geosci. 2017, 97, 40–48. [Google Scholar]
- Forkel, M.; Wutzler, T. Greenbrown—Land Surface Phenology and Trend Analysis. A Package for the R Software. Version 2.2, 15 April 2015. Available online: http://greenbrown.r-forge.r-project.org/ (accessed on 18 May 2018).
- Forkel, M.; Carvalhais, N.; Jan, V.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Sanchez, G. PLS Path Modeling with R. Trowchez Editions. Berkeley 2013. Available online: http://www.gastonsanchez.com/PLS Path Modeling with R.pdf (accessed on 18 May 2018).
- USDA/NASS. National Crop Progress—Terms and Definitions. Available online: http://www.nass.usda.gov/Publications/National_Crop_Progress/Terms_and_Definitions/index.asp (accessed on 24 May 2018).
- Potopová, V.; Boronean¸t, C.; Boincean, B.; Soukup, J. Impact of agricultural drought on main crop yields in the Republic of Moldova. Int. J. Climatol. 2016, 36, 2063–2082. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Climate and management contributions to recent trends in US agricultural yields. Science 2003, 299, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosynthetic trends across boreal north america associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Hubbard, K.G.; Wilhite, D.A. An agricultural drought risk-assessment model for corn and soybeans. Int. J. Climatol. 2004, 24, 723–741. [Google Scholar] [CrossRef] [Green Version]
- Van Wart, J.; Kersebaum, K.C.; Peng, S.; Milner, M.; Cassman, K.G. Estimating crop yield potential at regional to national scales. Field Crops Res. 2013, 143, 34–43. [Google Scholar] [CrossRef]
- Vrieling, A.; de Beurs, K.M.; Brown, M.E. Variability of African farming systems from phenological analysis of NDVI time series. Clim. Chang. 2011, 109, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Jayawardhana, W.G.N.N.; Chathurange, V.M.I. Extraction of Agricultural Phenological Parameters of Sri Lanka Using MODIS, NDVI Time Series Data; Published by Elsevier Ltd.: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Zika, M.; Erb, K.-H. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ. 2009, 69, 310–318. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in Sub-saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Dalhaus, T.; Musshoff, O.; Finger, R. Phenology information contributes to reduce temporal basis risk in agricultural weather index insurance. Sci. Rep. 2018, 8, 46. [Google Scholar] [CrossRef] [PubMed]
Phenological Metrics | Acronym | Phenological Interpretation | Description |
---|---|---|---|
Start of Season | SOS | Beginning of measurable photosynthesis in the vegetation canopy | Day of year identified as having a consistent upward trend in time series NDVI |
End of Season | EOS | End of measurable photosynthesis in the vegetation canopy | Day of year identified at the end of a consistent downward trend in time series NDVI |
Length of Season | LOS | Length of photosynthetic activity (the growing season) | Number of days from the SOS and EOS |
Position of the Peak (maximum) | POP | Time of maximum photosynthesis in the canopy | Day of year corresponding to the maximum NDVI in an annual time series |
Position of trough (minimum) | POT | Time of minimum photosynthesis in the canopy | Day of year corresponding to the minimum NDVI in an annual time series |
Province | Variable | Minimum | Maximum | Median | Coefficient of Variation (CV) | p-Value | Trend |
---|---|---|---|---|---|---|---|
Free State (FS) | NDVI | 0.212 | 0.56 | 0.32 | 26.33 | 0.01 | −0.00 |
Maize Yield | 2.80 | 5.20 | 3.95 | 19.01 | 0.38 | 0.04 | |
Mpumalanga (MP) | NDVI | 0.29 | 0.67 | 0.47 | 25.55 | 0.01 | −0.00 |
Maize Yield | 3.20 | 6.40 | 5.10 | 19.06 | 0.15 | 0.11 | |
North West (NW) | NDVI | 0.21 | 0.52 | 0.31 | 25.93 | 0.01 | −0.00 |
Maize Yield | 1.80 | 4.40 | 3.10 | 25.52 | 0.47 | 0.05 | |
KwaZulu-Natal (KZN) | NDVI | 0.35 | 0.71 | 0.56 | 19.13 | 0.01 | −0.00 |
Maize Yield | 4.50 | 6.40 | 5.70 | 10.91 | 0.01 | 0.10 |
Provinces | Variables | p-Value | Significance | Trend |
---|---|---|---|---|
NW | SOS | 0.003 | Yes | −1.41 |
EOS | 0.68 | No | 0.17 | |
LOS | 0.04 | Yes | 2.23 | |
POP | 0.74 | No | 0.42 | |
POT | 0.68 | No | 0.48 | |
MP | SOS | 1 | No | −0.042 |
EOS | 0.87 | No | −0.15 | |
LOS | 1 | No | 0.083 | |
POP | 0.15 | No | 1.08 | |
POT | 0.34 | No | −0.44 | |
KZN | SOS | 0.71 | No | 0.3 |
EOS | 0.09 | No | −0.75 | |
LOS | 0.71 | No | −0.58 | |
POP | 0.48 | No | −0.15 | |
POT | 0.93 | No | 0.18 | |
FS | SOS | 0.48 | No | −1.68 |
EOS | 0.32 | No | −0.83 | |
LOS | 0.17 | No | 2.26 | |
POP | 0.74 | No | −0.47 | |
POT | 0.97 | No | 0.068 |
Province | Crop | Constant | PET | PRE | TMN | TMX | SOS | EOS | LOS | POP | POT | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
North West | Maize | −0.01 | 0.47 | 0.02 | 0.30 | −0.05 | −1.44 | 3.55 | −3.49 | −1.39 | −0.89 | 0.76 |
Mpumalanga | Maize | −0.003 | 0.46 | −0.39 | 0.85 | −0.35 | −1.56 | 0.28 | −1.74 | 0.05 | 0.01 | 0.70 |
KZN | Maize | 0.00 | 0.36 | 2.92 | −0.26 | −1.00 | 1.57 | −1.24 | 1.19 | −0.71 | 0.82 | 0.72 |
Free State | Maize | 0.001 | −0.08 | 0.35 | −0.68 | 0.75 | 0.39 | −0.50 | 0.56 | 0.26 | 0.71 | 0.79 |
Mode | MVs | C. alpha | DG. rho | eig. 1st | eig. 2nd | |
---|---|---|---|---|---|---|
Climate | A | 4 | 0.841 | 0.907 | 2.928 | 1.058 |
Phenology | A | 5 | 0.674 | 0.798 | 2.469 | 1.677 |
Yield | A | 2 | 0.796 | 0.908 | 1.661 | 0.339 |
Type | R2 | Block Communality | Mean Redundancy | AVE | |
---|---|---|---|---|---|
Climate | Exogenous | 0.000 | 0.721 | 0.000 | 0.521 |
Phenology | Endogenous | 0.941 | 0.494 | 0.465 | 0.494 |
Yield | Endogenous | 0.999 | 0.729 | 0.628 | 0.629 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adisa, O.M.; Botai, J.O.; Hassen, A.; Darkey, D.; Adeola, A.M.; Tesfamariam, E.; Botai, C.M.; Adisa, A.T. Variability of Satellite Derived Phenological Parameters across Maize Producing Areas of South Africa. Sustainability 2018, 10, 3033. https://doi.org/10.3390/su10093033
Adisa OM, Botai JO, Hassen A, Darkey D, Adeola AM, Tesfamariam E, Botai CM, Adisa AT. Variability of Satellite Derived Phenological Parameters across Maize Producing Areas of South Africa. Sustainability. 2018; 10(9):3033. https://doi.org/10.3390/su10093033
Chicago/Turabian StyleAdisa, Omolola M., Joel O. Botai, Abubeker Hassen, Daniel Darkey, Abiodun M. Adeola, Eyob Tesfamariam, Christina M. Botai, and Abidemi T. Adisa. 2018. "Variability of Satellite Derived Phenological Parameters across Maize Producing Areas of South Africa" Sustainability 10, no. 9: 3033. https://doi.org/10.3390/su10093033
APA StyleAdisa, O. M., Botai, J. O., Hassen, A., Darkey, D., Adeola, A. M., Tesfamariam, E., Botai, C. M., & Adisa, A. T. (2018). Variability of Satellite Derived Phenological Parameters across Maize Producing Areas of South Africa. Sustainability, 10(9), 3033. https://doi.org/10.3390/su10093033