Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Image Processing and Extraction of LULC
2.4. Accuracy Assessment
2.5. Assessment of the Ecosystem Service Values (ESV)
3. Results
3.1. LULC Classification Accuracy
3.2. Status and Spatial Distribution of LULC
3.2.1. Spatio-Temporal Changing Pattern of LULC from 1990 to 2015
3.2.2. Key Changes in Different LULC between 1990 and 2015
3.3. Assessing the Ecosystem Service Values
4. Discussion
4.1. Spatio-Temporal Dynamics of LULC
4.1.1. LUCC in the Up-Stream Reaches
4.1.2. LUCC in the Mid-Stream Reaches
4.1.3. LUCC in the Down-Stream Reaches
4.2. Valuation of Ecosystem Services in the GRB
4.3. LULC Dynamics and Its Impact on Ecosystem Service Values
4.4. Future Perspective of LULC in the Trans-Boundary Level
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, B.; Meyer, W.B.; Skole, D.L. Global land-use/land-cover change: Towards an integrated study. Ambio 1994, 23, 91–95. [Google Scholar]
- Bajracharya, B.; Uddin, K.; Shrestha, B.R. Land Cover Mapping in the HKKH Region: Cases from Three Mountain Protected Areas; International Centre for Integrated Mountain Development: Patan, Nepal, 2009. [Google Scholar]
- Wu, J. Land use changes: Economic, social, and environmental impacts. Choices 2008, 23, 6–10. [Google Scholar]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.; Pontius, R., Jr. Land-use and land-cover change—Encyclopedia of earth. Environ. Protect. 2006, 2, 142–153. [Google Scholar]
- Ganasri, B.; Raju, A.; Dwarakish, G. Different approaches for land use land cover change detection: A review. J. Eng. Technol. 2013, 2, 44–48. [Google Scholar]
- Li, X.; Wang, Y.; Li, J.; Lei, B. Physical and socioeconomic driving forces of land-use and land-cover changes: A case study of wuhan city, China. Discret. Dyn. Nat. Soc. 2016, 2016, 8061069. [Google Scholar] [CrossRef]
- Reyers, B.; O’Farrell, P.J.; Cowling, R.M.; Egoh, B.N.; Le Maitre, D.C.; Vlok, J.H. Ecosystem services, land-cover change, and stakeholders: Finding a sustainable foothold for a semiarid biodiversity hotspot. Ecol. Soc. 2009, 14, 1–23. [Google Scholar] [CrossRef]
- Meyer, W.B.; Turner, B.I. Changes in Land Use and Land Cover: A Global Perspective; Cambridge University Press: Cambridge, UK, 1994; Volume 4. [Google Scholar]
- Wang, X.C.; Dong, X.B.; Liu, H.M.; Wei, H.J.; Fan, W.G.; Lu, N.C.; Xu, Z.H.; Ren, J.H.; Xing, K.X. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Sharma, E.; Bhuchar, S.; Xing, M.; Kotayari, B. Land use change and its impact on hydro-ecological linkages in himalayan watersheds. Trop. Ecol. 2007, 48, 151–161. [Google Scholar]
- Zang, S.; Wu, C.; Liu, H.; Na, X. Impact of urbanization on natural ecosystem service values: A comparative study. Environ. Monit. Assess. 2011, 179, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agricultural Development (MoAD). Statistical Information on Nepalese Agriculture; Ministry of Agricultural Development, Government of Nepal: Kathmandu, Nepal, 2013.
- Rimal, B.; Baral, H.; Stork, N.E.; Paudyal, K.; Rijal, S. Growing city and rapid land use transition: Assessing multiple hazards and risks in the pokhara valley, Nepal. Land 2015, 4, 957–978. [Google Scholar] [CrossRef]
- Rimal, B. Urbanization and the decline of agricultural land in pokhara sub-metropolitan city, Nepal. J. Agric. Sci. 2013, 5, 54–65. [Google Scholar] [CrossRef]
- Khanal, S.; Gurung, S.; Pant, K.; Chaudhary, P.; Dangol, D. Ecosystem services and stakeholder analysis in bishajari lake and associated wetland areas, chitwan, Nepal. Int. J. Appl. Sci. Biotechnol. 2014, 2, 563–569. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependance on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Khadka, R.; Shrivastav, A. Poverty reduction program through adaptive management of ecosystem services: The concept notes for Nepal. J. Ecosyst. Ecogr. 2015, 5, 1–3. [Google Scholar]
- Birch, J.; Gurung, H.; Stattersfield, A.; Thapa, I.; Thomas, D. Conserving Biodiversity & Delivering Ecosystem Services at Important Bird Areas in Nepal; Bird Conservation Nepal: Kathmandu, Nepal, 2012; pp. 1–40. [Google Scholar]
- Zhao, Z.; Wu, X.; Yili, Z.; Jungang, G. Assessment of changes in the value of ecosystem services in the koshi river basin, central high himalayas based on land cover changes and the ca-markov model. J. Resour. Ecol. 2017, 8, 67–76. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Xie, G.-D.; Lu, C.-X.; Leng, Y.-F.; Zheng, D.; Li, S. Ecological assets valuation of the tibetan plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Pradhan, N.; Providoli, I.; Regmi, B.; Kafle, G. Valuing Water and Its Ecological Services in Rural Landscapes: A Case Study from Nepal; Mountain Forum Bulletin: Kathmandu, Nepal, 2010; pp. 32–34. [Google Scholar]
- Hu, H.; Liu, W.; Cao, M. Impact of land use and land cover changes on ecosystem services in menglun, xishuangbanna, southwest China. Environ. Monit. Assess. 2008, 146, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Roy, A. Land use and land cover change in india: Aremote sensing & gis prespective. J. Indian Inst. Sci. 2012, 90, 489–502. [Google Scholar]
- Baidya, N.; Bhuju, D.; Kandel, P. Land use change in buffer zone of chitwan national park, Nepal between 1978 and 1999. Ecoprint 2009, 16, 79–86. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the zhujiang delta of China using satellite remote sensing, gis and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Q.; Chen, J. A gis and remote sensing-based analysis of land use change using the asymmetric relation analysis method: A case study from the city of hangzhou, China. Math. Geosci. 2011, 43, 435–453. [Google Scholar] [CrossRef]
- Rindfuss, R.R.; Walsh, S.J.; Turner, B.L.; Fox, J.; Mishra, V. Developing a science of land change: Challenges and methodological issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.; DeFries, R.; Townshend, J.R.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Climate Change Initiative Land Cover (CCI-LC) Dataset; European Space Agency: Bruxelles, Belgium, 2017. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and igbp discover from 1 km avhrr data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Beusen, A.; Van Drecht, G.; De Vos, M. The hyde 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011, 20, 417–433. [Google Scholar] [CrossRef]
- Rimal, B. Urban growth and land use/land cover change of pokhara sub-metropolitan city, Nepal. J. Theor. Appl. Inf. Technol. 2011, 26, 118–129. [Google Scholar]
- Dai, X.-A.; Yang, W.-N.; Tang, C. Land use and land cover change analysis using satellite remote sensing and gis. In Proceedings of the 2010 Second IITA International Conference on Geoscience and Remote Sensing (IITA-GRS), Sichuwan, China, 28–31 August 2010; pp. 385–388. [Google Scholar]
- Poudel, K.R. Urban growth and land use change in the himalaya region: A case study of pokhara sub metropolitan city, Nepal. GIS Ostrav. 2008, 27, 1–11. [Google Scholar]
- Khanal, N.R.; Watanabe, T. Abandonment of agricultural land and its consequences: A case study in the sikles area, gandaki basin, Nepal himalaya. Mt. Res. Dev. 2006, 26, 32–40. [Google Scholar] [CrossRef]
- Regmi, B.; Pandit, A. Classification of Adaptation Measures in Criteria for Evaluation: Case Studies in the Gandaki River Basin; HI-AWARE Working Paper; HI-AWARE: Kathmandu, Nepal, 2016. [Google Scholar]
- Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the gandaki river basin, central himalaya Nepal. Sci. Total Environ. 2018, 622, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.A. Supervised classification techniques. In Remote Sensing Digital Image Analysis; Springer: Berlin, Germany, 2013; pp. 247–318. [Google Scholar]
- Bailly, J.; Arnaud, M.; Puech, C. Boosting: A classification method for remote sensing. Int. J. Remote Sens. 2007, 28, 1687–1710. [Google Scholar] [CrossRef]
- Liu, X.-H.; Skidmore, A.; Van Oosten, H. Integration of classification methods for improvement of land-cover map accuracy. ISPRS J. Photogramm. Remote Sens. 2002, 56, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, R.; Odeh, I.O.; Ancev, T. Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement. Remote Sens. 2009, 1, 330–344. [Google Scholar] [CrossRef]
- Di Gregorio, A.; Jansen, L.J. Land Cover Classification System (LCCS): Classification Concepts and User Manual; Food and Agriculture Organization (FAO): Rome, Italy, 1998. [Google Scholar]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Sun, X.; Rijal, S. Quantifying the spatiotemporal pattern of urban expansion and hazard and risk area identification in the kaski district of Nepal. Land 2018, 7, 37. [Google Scholar] [CrossRef]
- International Center for Integrated Mountain Development (ICIMOD). Land cover of Nepal 1990; ICIMOD: Kathmandu, Nepal, 2015. [Google Scholar]
- Uddin, K.; Shrestha, H.L.; Murthy, M.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 national land cover database for the Nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gao, J.; Zhang, Y.; Liu, L.; Zhao, Z.; Paudel, B. Land cover status in the koshi river basin, central himalayas. J. Resour. Ecol. 2017, 8, 10–19. [Google Scholar]
- Roy, P.S.; Meiyappan, P.; Joshi, P.K.; Kale, M.P.; Srivastav, V.K.; Srivasatava, S.K.; Behera, M.D.; Roy, A.; Sharma, Y.; Ramachandran, R.M.; et al. Decadal Land Use and Land Cover Classifications across India, 1985, 1995, 2005; ORNL DAAC: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Rwanga, S.S.; Ndambuki, J. Accuracy assessment of land use/land cover classification using remote sensing and gis. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef]
- Tilahun, A.; Teferie, B. Accuracy assessment of land use land cover classification using google earth. Am. J. Environ. Protect. 2015, 4, 193–198. [Google Scholar] [CrossRef]
- Rimal, B.; Zhang, L.; Stork, N.; Sloan, S.; Rijal, S. Urban expansion occurred at the expense of agricultural lands in the tarai region of Nepal from 1989 to 2016. Sustainability 2018, 10, 1341. [Google Scholar] [CrossRef]
- Paudyal, K.; Baral, H.; Putzel, L.; Bhandari, S.; Keenan, R. Change in land use and ecosystem services delivery from community-based forest landscape restoration in the phewa lake Watershed, Nepal. Int. For. Rev. 2017, 19, 1–14. [Google Scholar] [CrossRef]
- Regmi, R.; Saha, S.; Balla, M. Geospatial analysis of land use land cover change modeling at phewa lake watershed of Nepal by using cellular automata markov model. Int. J. Curr. Eng. Technol. 2014, 4, 2617–2627. [Google Scholar]
- Paudel, B.; Gao, J.; Zhang, Y.; Wu, X.; Li, S.; Yan, J. Changes in cropland status and their driving factors in the koshi river basin of the central himalayas, Nepal. Sustainability 2016, 8, 933. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Takada, T.; Miyamoto, A.; Hasegawa, S.F. Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landsc. Ecol. 2010, 25, 561–572. [Google Scholar] [CrossRef]
- Wan, L.; Ye, X.; Lee, J.; Lu, X.; Zheng, L.; Wu, K. Effects of urbanization on ecosystem service values in a mineral resource-based city. Habitat Int. 2015, 46, 54–63. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem service values in the San Antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- He, F.; Li, M.; Li, S.; Xiao, R. Comparison of changes in land use and land cover in China and the USA over the past 300 years. J. Geogr. Sci. 2015, 25, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Zhu, F.; Sun, Z.; Moore, J.C.; Cui, X. China’s land-use changes during the past 300 years: A historical perspective. Int. J. Environ. Res. Public Health 2016, 13, 847. [Google Scholar] [CrossRef] [PubMed]
- Gilani, H.; Qamer, F.M.; Sohail, M.; Uddin, K.; Jain, A.; Ning, W. Review of ecosystem monitoring in Nepal and evolving earth observation technologies. In Land Cover Change and Its Eco-Environmental Responses in Nepal; Springer: Berlin, Germany, 2017; pp. 165–183. [Google Scholar]
- Paudel, B.; Zhang, Y.-L.; Li, S.-C.; Liu, L.-S.; Wu, X.; Khanal, N.R. Review of studies on land use and land cover change in Nepal. J. Mt. Sci. 2016, 13, 643–660. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Banger, K.; Bo, T.; Dadhwal, V.K. History of land use in india during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Glob. Planet. Chang. 2014, 121, 78–88. [Google Scholar] [CrossRef]
- Nagendra, H.; Sudhira, H.; Katti, M.; Tengö, M.; Schewenius, M. Urbanization and its impacts on land use, biodiversity and ecosystems in india. Interdisciplina 2014, 2, 305–313. [Google Scholar] [CrossRef]
- Cui, X.; Graf, H.-F. Recent land cover changes on the tibetan plateau: A review. Clim. Chang. 2009, 94, 47–61. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, Y.; Liu, L.; Zhang, J. Glacial change in the vicinity of mt. Qomolangma (everest), central high himalayas since 1976. J. Geogr. Sci. 2010, 20, 667–686. [Google Scholar] [CrossRef]
- Nie, Y.; Li, A. Assessment of alpine wetland dynamics from 1976–2006 in the vicinity of mount everest. Wetlands 2011, 31, 875–884. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Bajracharya, O.R.; Baidya, S. Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2014. [Google Scholar]
- Shrestha, A.B.; Joshi, S.P. Snow cover and glacier change study in Nepalese himalaya using remote sensing and geographic information system. J. Hydrol. Meteorol. 2009, 6, 26–36. [Google Scholar] [CrossRef]
- Shrestha, M. The dynamics of mountain agriculture and land change in lamjung district, Nepal. Glob. Environ. Res. 2014, 18, 151–160. [Google Scholar]
- Zhang, W.; Zhang, Y.; Wang, Z.; Ding, M.; Yang, X.; Lin, X.; Liu, L. Vegetation change in the mt. Qomolangma nature reserve from 1981 to 2001. J. Geogr. Sci. 2007, 17, 152–164. [Google Scholar] [CrossRef]
- Chetri, M. Diet analysis of gaur (bos gaurus gaurus smith, 1827) by micro-histological analysis of fecal samples in parsa wildlife reserve, Nepal. Our Nat. 2006, 4, 20–28. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in upper mustang, trans himalaya, Nepal. Remote Sens. Environ. 2010, 114, 1845–1855. [Google Scholar] [CrossRef]
- Krakauer, N.; Panthi, J.; Kirat, N.; Dahal, P. Climate and land use change in gandaki river basin and its impacts to livestock herding. Res. Brief 2015, 22, 1–4. [Google Scholar]
- Thapa, G.B.; Weber, K.E. Natural resource degradation in a small watershed in Nepal: Complex causes and remedial measures. Nat. Resour. Forum 1995, 19, 285–296. [Google Scholar] [CrossRef]
- Koirala, S. Land use/Land Cover Change and Its Impact on Soil Erosion Process in Begnas Tal Rupa Tal Watershed Using Geospatial Tools, Kaski District, Nepal. Master’s Thesis, University of NOVA, Hannover, Germany, 2010. [Google Scholar]
- Shrestha, B.M.; Dick, Ø.B.; Singh, B. Effects of land-use change on carbon dynamics assessed by multi-temporal satellite imagery in a mountain watershed of Nepal. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 10–23. [Google Scholar] [CrossRef]
- Thapa, G.B.; Weber, K.E. Deforestation in the upper pokhara valley, Nepal. Singap. J. Trop. Geogr. 1991, 12, 52–67. [Google Scholar] [CrossRef]
- Chapagain, P.S. Changing population, landuse and environment in the Nepal himalayas. J. Hydrol. Meteorol. 2012, 8, 66–71. [Google Scholar] [CrossRef]
- Massey, D.S.; Axinn, W.G.; Ghimire, D.J. Environmental change and out-migration: Evidence from Nepal. Popul. Environ. 2010, 32, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M. The human dimensions of land change in lamjung district of Nepal. Himal. J. Dev. Democr. 2007, 2, 27–33. [Google Scholar]
- Ministry of Agricultural Development (MoAD). Agriculture Development Strategy (ADS), 2014; Government of Nepal, Ministry of Agricultural Development, Singhdurbar: Kathmandu, Nepal, 2015.
- Joshi, K.; Conroy, C.; Witcombe, J. Agriculture, Seed, and Innovation in Nepal: Industry and Policy Issues for the Future; International Food Policy Research Institute: Washington, DC, USA, 2012. [Google Scholar]
- Deshar, B. An overview of agricultural degradation in Nepal and its impact on economy and environment. Glob. J. Econ. Soc. Dev. 2013, 3, 1–20. [Google Scholar]
- Reddy, C.S.; Pasha, S.V.; Satish, K.; Saranya, K.; Jha, C.; Murthy, Y.K. Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): Implications on forest fragmentation. Biodivers. Conserv. 2017, 27, 91–107. [Google Scholar] [CrossRef]
- Fox, J. Forest resources in a Nepali village in 1980 and 1990: The positive influence of population growth. Mt. Res. Dev. 1993, 13, 89–98. [Google Scholar] [CrossRef]
- Bhandari, B.; Grant, M.R. Land use and population dynamics in the kalikhola watershed of Nepal. J. Rural Community Dev. 2007, 2, 100–109. [Google Scholar]
- Lamichhane, B. Dynamics and Driving Forces of Land Use/Forest Cover Change and Indicators of Climate Change in a Mountain Sub-Watershed of Gorkha. Ph.D. Thesis, Tribhuvan University/Institute of Forestry, Pokhara, Nepal, 2008. [Google Scholar]
- Neupane, K. An Assessment of Land Use Land cover Change in Barandabhar Forest Corridor, Chitwan District, Nepal. Ph.D. Thesis, Tribhuvan University, Kathmandu Forestry College, Kathmandu, Nepal, 2016. [Google Scholar]
- Awasthi, K.; Sitaula, B.; Singh, B.; Bajacharaya, R. Land-use change in two Nepalese watersheds: Gis and geomorphometric analysis. Land Degrad. Dev. 2002, 13, 495–513. [Google Scholar] [CrossRef]
- Fleming, B.; Fleming, J.P. A watershed conservation success story in Nepal: Land use changes over 30 years. Waterlines 2009, 28, 29–46. [Google Scholar] [CrossRef]
- Regmi, L.K. An overview of population growth trends of Nepal. J. Inst. Sci. Technol. 2015, 19, 57–61. [Google Scholar] [CrossRef]
- Schweik, C.M.; Adhikari, K.; Pandit, K.N. Land-cover change and forest institutions: A comparison of two sub-basins in the southern siwalik hills of Nepal. Mt. Res. Dev. 1997, 99–116. [Google Scholar] [CrossRef]
- Bhattarai, K.; Conway, D.; Yousef, M. Determinants of deforestation in Nepal’s central development region. J. Environ. Manag. 2009, 91, 471–488. [Google Scholar] [CrossRef] [PubMed]
- Panta, M.; Kim, K.; Joshi, C. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation. For. Ecol. Manag. 2008, 256, 1587–1595. [Google Scholar] [CrossRef]
- Sinha, D.; Ahmad, N.; Singh, K. Shrinking Net Sown Area: An Analysis of Changing Land Use Pattern in Bihar; Munich Personal RePEc Archive (MPRA): Bihar, India, 2016. [Google Scholar]
- Dhakal, K.R. Land use change in Khageri Watershed, Chitwan. J. Geogr. Educ. 2014, 8, 51–56. [Google Scholar] [CrossRef]
- Mishra, V.N.; Rai, P.K.; Mohan, K. Prediction of land use changes based on land change modeler (lcm) using remote sensing: A case study of muzaffarpur (bihar), india. J. Geogr. Inst. 2014, 64, 111–127. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.; Chen, J.; Nakagoshi, N. An ecosystem service value assessment of land-use change on chongming island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Howarth, R.B.; Farber, S. Accounting for the value of ecosystem services. Ecol. Econ. 2002, 41, 421–429. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on ecosystem service values: The case of the andassa watershed in the upper blue nile basin of ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Temesgen, H.; Wu, W.; Shi, X.; Yirsaw, E.; Bekele, B.; Kindu, M. Variation in ecosystem service values in an agroforestry dominated landscape in ethiopia: Implications for land use and conservation policy. Sustainability 2018, 10, 1126. [Google Scholar] [CrossRef]
- Konarska, K.M.; Sutton, P.C.; Castellon, M. Evaluating scale dependence of ecosystem service valuation: A comparison of noaa-avhrr and landsat tm datasets. Ecol. Econ. 2002, 41, 491–507. [Google Scholar] [CrossRef]
- Hao, F.; Lai, X.; Ouyang, W.; Xu, Y.; Wei, X.; Song, K. Effects of land use changes on the ecosystem service values of a reclamation farm in northeast China. Environ. Manag. 2012, 50, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.; Miah, M.; Afrad, M.; Mehraj, H.; Mandal, M. Land use change and its impact on ecosystem services, livelihood in tanguar haor wetland of bangladesh. Sci. Agric. 2015, 12, 78–88. [Google Scholar]
- Zhang, Y.; Qi, W.; Zhou, C.; Ding, M.; Liu, L.; Gao, J.; Bai, W.; Wang, Z.; Zheng, D. Spatial and temporal variability in the net primary production of alpine grassland on the tibetan plateau since 1982. J. Geogr. Sci. 2014, 24, 269–287. [Google Scholar] [CrossRef]
- Wen, L.; Dong, S.; Li, Y.; Li, X.; Shi, J.; Wang, Y.; Liu, D.; Ma, Y. Effect of degradation intensity on grassland ecosystem services in the alpine region of qinghai-tibetan plateau, China. PLoS ONE 2013, 8, e58432. [Google Scholar] [CrossRef] [PubMed]
- Arunyawat, S.; Shrestha, R.P. Assessing land use change and its impact on ecosystem services in northern thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land use and land cover change in the qinghai lake region of the tibetan plateau and its impact on ecosystem services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- Tianhong, L.; Wenkai, L.; Zhenghan, Q. Variations in ecosystem service value in response to land use changes in shenzhen. Ecol. Econ. 2010, 69, 1427–1435. [Google Scholar] [CrossRef]
- Chen, J.; Sun, B.-M.; Chen, D.; Wu, X.; Guo, L.-Z.; Wang, G. Land use changes and their effects on the value of ecosystem services in the small sanjiang plain in China. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Zhang, S.; Liu, X.; Chen, D.; Chen, J.; Bu, K.; Yang, J.; Chang, L. The effects of spatiotemporal changes in land degradation on ecosystem services values in sanjiang plain, China. Remote Sens. 2016, 8, 917. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in munessa–shashemene landscape of the ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-González, G.; Martínez, M.; Lithgow, D.; Pérez-Maqueo, O.; Simonin, P. Land use change and its effects on the value of ecosystem services along the coast of the gulf of mexico. Ecol. Econ. 2012, 82, 23–32. [Google Scholar] [CrossRef]
- Wu, K.-Y.; Ye, X.-Y.; Qi, Z.-F.; Zhang, H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities 2013, 31, 276–284. [Google Scholar] [CrossRef]
- Nagendra, H.; Sudhira, H.; Katti, M.; Schewenius, M. Sub-regional assessment of india: Effects of urbanization on land use, biodiversity and ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Berlin, Germany, 2013; pp. 65–74. [Google Scholar]
- Paudel, K.P.; Tamang, S.; Shrestha, K.K. Transforming land and livelihood: Analysis of agricultural land abandonment in the mid hills of Nepal. J. For. Livelihood 2014, 12, 11–19. [Google Scholar]
- Jägerskog, A. Transboundary water management—Why it is important and why it needs to be developed. In Free Flow–Reaching Water Security through Cooperation; UNESCO: Paris, France, 2013; pp. 49–52. [Google Scholar]
- Joshi, L. Protected Areas and Payment for Ecosystem Services: A Feasibility Study in Shivapuri-Nagarjun National Park, Nepal; International Center for Integrated Mountain Development: Patan, Nepal, 2011. [Google Scholar]
- Liu, Y.; Li, J.; Zhang, H. An ecosystem service valuation of land use change in taiyuan city, China. Ecol. Model. 2012, 225, 127–132. [Google Scholar] [CrossRef]
- Bhatta, L.D.; van Oort, B.E.H.; Rucevska, I.; Baral, H. Payment for ecosystem services: Possible instrument for managing ecosystem services in Nepal. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 289–299. [Google Scholar] [CrossRef]
- Dong, S.; Lassoie, J.; Shrestha, K.; Yan, Z.; Sharma, E.; Pariya, D. Institutional development for sustainable rangeland resource and ecosystem management in mountainous areas of northern Nepal. J. Environ. Manag. 2009, 90, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Maskey, N.; Wallman, P. Investing in Ecosystem Services: Opportunities and Challenges for Shivapuri National Park, Nepal; Lund University Centre for Sustainability Studies: Lund, Sweden, 2008. [Google Scholar]
- Acharya, H. Payment for ecosystem services: Protected area and biodiversity conservation. In National Workshop on Payment for Ecosystem Services: Opportunities and Challenges in Nepal; Ministry of Forest and Soil Conservation, ICIMOD, WWF, and IUCN: Kathmandu, Nepal, 2014; pp. 39–42. [Google Scholar]
- Karki, R.; Paudel, N.S.; Khatri, D.B.; Joshi, L. Payment for ecosystem services in protected areas: A case of shivapuri-nagarjun national park. In Payment for Ecosystem Services: Opportunities and Challenges in Nepal; Ministry of Forest and Soil Conservation, ICIMOD, WWF, and IUCN: Kathmandu, Nepal, 2014; pp. 25–38. [Google Scholar]
Satellite/Sensor | Path/Row | Spatial Resolution | Image Date |
---|---|---|---|
Landsat 5-TM 1990 | 141/40 | 30 m | 30 November 1991 |
141/42 | 3 March 1990 | ||
142/40 | 29 January 1991 | ||
142/41 | 16 April 1990 | ||
Landsat 8-OLI 2015 | 141/40 | 30 m | 26 December 2015 |
141/41 | 1 January 2015 | ||
141/42 | 10 October 2015 | ||
142/40 | 1 December 2015 | ||
142/41 | 5 April 2015 | ||
143/40 | 22 November 2015 |
Land Cover Types | Description |
---|---|
Cropland | Wet and dry croplands, orchards |
River/lake | Rivers, lake, streams, pond |
Forest | Evergreen broad leaf forest, deciduous forest, scattered forest, low-density sparse forest, Mixed forest and degraded forest |
Built-up area | Urban and rural settlements, commercial and industrial area, construction areas, airport |
Swamp/wetland | Swamp land with a permanent mixture of water and marsh |
Snow/glacier | Perpetual/temporary snow-cover, perpetual ice/glacier lake |
Barren land | Bare rocks, cliffs, other permanently abandoned land |
Bush/shrub | Mix of trees (<5 m tall) and other natural covers |
Grassland | Dense coverage grass, moderate coverage grass and low coverage grass |
Land Cover Types | Costanza et al. (1997) | Xie et al. (2003) | ||
---|---|---|---|---|
Equivalent Biome | ESV Coefficient | Equivalent Biome | ESV Coefficient | |
Swamp/wetland | Wetlands | 14,785 | Swamp | 8939.26 |
Forest | Forest | 969 | Woodland | 2168.84 |
Shrub land | - | - | Shrub land | 1089.19 |
Grassland | Grass/rangelands | 232 | Grassland | 565.88 |
Cropland | Cropland | 92 | Cropland | 699.37 |
Barren land | - | - | Barren land | 59.83 |
River/lake | Lakes/rivers | 8498 | River/lake | 6552.97 |
Snow/glacier | - | - | Snow/glacier | 59.83 |
Built-up area | Urban | 0 | Built up | 0 |
LULC Types | Cropland | Water Body | Forest | Built-Up Area | Snow/Glacier | Barren Land | Bush/Shrub | Grassland | Total | User’s Accuracy | Producer’s Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
Cropland | 206 | 2 | 8 | 1 | 0 | 4 | 1 | 1 | 223 | 92.38 | 85.12 |
Water body | 4 | 47 | 1 | 0 | 0 | 4 | 1 | 0 | 57 | 82.46 | 90.38 |
Forest | 18 | 0 | 187 | 0 | 0 | 1 | 1 | 4 | 211 | 88.63 | 92.57 |
Built-up area | 7 | 3 | 0 | 43 | 0 | 0 | 0 | 0 | 53 | 81.13 | 97.73 |
Snow/glacier | 0 | 0 | 0 | 0 | 98 | 3 | 0 | 7 | 108 | 90.74 | 70.00 |
Barren land | 2 | 0 | 0 | 0 | 16 | 105 | 0 | 0 | 123 | 85.37 | 82.68 |
Bush/shrub | 4 | 0 | 6 | 0 | 6 | 8 | 112 | 0 | 136 | 82.35 | 97.39 |
Grassland | 1 | 0 | 0 | 0 | 20 | 2 | 0 | 83 | 106 | 78.30 | 87.37 |
Total | 242 | 52 | 202 | 44 | 140 | 127 | 115 | 95 | 1017 |
Land Cover Types | Land Cover Area (km2) | Change in Area (km2) | |||
---|---|---|---|---|---|
1990 | % | 2015 | % | ||
Cropland | 14,229.80 | 31.78 | 14,628.78 | 32.67 | 398.98 |
Forest | 14,537.80 | 32.47 | 14,873.59 | 33.22 | 335.79 |
River/lake | 444.55 | 0.99 | 545.41 | 1.22 | 100.86 |
Built-up area | 84.71 | 0.19 | 263.71 | 0.59 | 179.00 |
Swamp/wetland | 85.88 | 0.19 | 185.12 | 0.41 | 99.24 |
Snow/glacier | 4273.66 | 9.55 | 3253.22 | 7.27 | −1020.44 |
Barren land | 5159.22 | 11.52 | 6113.83 | 13.66 | 954.61 |
Shrub land | 1199.98 | 2.68 | 1497.72 | 3.35 | 297.74 |
Grassland | 4755.29 | 10.62 | 3409.31 | 7.62 | −1345.98 |
1990 | 2015 | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1 | 11,599.52 | 262.96 | 1904.26 | 190.54 | 148.88 | 1.55 | 113.76 | 6.67 | 16.27 |
2 | 187.74 | 154.04 | 45.36 | 2.02 | 1.64 | 1.61 | 45.15 | 2.95 | 3.27 |
3 | 1969.50 | 28.21 | 12,058.87 | 8.07 | 2.15 | 6.01 | 109.73 | 275.65 | 81.78 |
4 | 25.72 | 0.93 | 2.26 | 55.42 | 0.34 | 0.00 | 0.10 | 0.00 | 0.03 |
5 | 38.56 | 3.14 | 5.47 | 0.47 | 32.11 | 0.00 | 0.00 | 0.00 | 1.28 |
6 | 2.04 | 2.90 | 74.86 | 0.00 | 0.00 | 2581.92 | 1141.92 | 126.68 | 362.78 |
7 | 285.50 | 72.61 | 70.22 | 3.05 | 0.00 | 187.48 | 3234.99 | 263.90 | 1008.22 |
8 | 128.57 | 3.27 | 220.66 | 0.33 | 0.00 | 14.01 | 214.05 | 196.48 | 421.03 |
9 | 391.62 | 17.30 | 491.62 | 3.80 | 0.00 | 460.64 | 1254.11 | 625.37 | 1514.64 |
Land Cover Types | Value (108 USD/ha−1y−1) | Change Value | |
---|---|---|---|
1990 | 2015 | 1990–2015 | |
Cropland | 9.95 | 10.23 | 0.28 |
River/lake | 2.91 | 3.57 | 0.66 |
Forest | 31.53 | 32.26 | 0.73 |
Swamp/wetland | 0.77 | 1.65 | 0.89 |
Snow/glacier | 0.26 | 0.19 | −0.06 |
Barren land | 0.31 | 0.37 | 0.06 |
Shrub land | 1.31 | 1.63 | 0.32 |
Grassland | 3.12 | 1.93 | −1.19 |
Total | 50.16 | 51.84 | 1.68 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, R.; Zhang, Y.; Paudel, B.; Acharya, B.K.; Basnet, L. Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas. Sustainability 2018, 10, 3052. https://doi.org/10.3390/su10093052
Rai R, Zhang Y, Paudel B, Acharya BK, Basnet L. Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas. Sustainability. 2018; 10(9):3052. https://doi.org/10.3390/su10093052
Chicago/Turabian StyleRai, Raju, Yili Zhang, Basanta Paudel, Bipin Kumar Acharya, and Laxmi Basnet. 2018. "Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas" Sustainability 10, no. 9: 3052. https://doi.org/10.3390/su10093052
APA StyleRai, R., Zhang, Y., Paudel, B., Acharya, B. K., & Basnet, L. (2018). Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas. Sustainability, 10(9), 3052. https://doi.org/10.3390/su10093052