Identifying the Relationship between Soil Properties and Rice Growth for Improving Consolidated Land in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Soil Sampling and Analysis
2.3. Interpretation and Processing of Remote Sensing Data
3. Results
3.1. Short-Term Interference of Land Consolidation on Soil Properties
3.2. Spatial Difference of Rice Growth in Different Land Leveling Areas
3.3. Relationship between Soil Properties and Rice Growth
4. Discussion
4.1. Variability of Soil Properties under Different Land-Leveling Patterns
4.2. Factors Influencing of the Ndvi Value of Rice Growth
4.3. Mitigating the Disturbance of Land Leveling to Soil
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, G.; Wang, X.; Yun, W.; Zhang, R. A new system will lead to an optimal path of land consolidation spatial management in China. Land Use Policy 2015, 42, 27–37. [Google Scholar]
- Sharifi, A.; Gorji, M.; Asadi, H.; Pourbabaee, A.A. Land leveling and changes in soil properties in paddy fields of Guilan province, Iran. Paddy Water Environ. 2014, 12, 139–145. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Sobolewska-Mikulska, K.; Sajnóg, N.; Leń, P. The idea of rational management of problematic agricultural areas in the course of land consolidation. Land Use Policy 2018, 78, 36–45. [Google Scholar] [CrossRef]
- Miranda, D.; Crecente, R.; Alvarez, M.F. Land consolidation in inland rural Galicia, N.W. Spain, since 1950: An example of the formulation and use of questions, criteria and indicators for evaluation of rural development policies. Land Use Policy 2006, 23, 511–520. [Google Scholar] [CrossRef]
- FAO. The Design of Land Consolidation Pilot Projects in Central and Eastern Europe. Available online: http://www.fao.org/3/a-Y4954E.pdf (accessed on 8 August 2018).
- Bahnas, O.B.M.Y. Effect of precision land leveling on faba bean response to compost application in sandy soils. Misr. J. Agric. Eng. 2010, 2, 465–481. [Google Scholar]
- Wu, Z.; Liu, M.; Davis, J. Land consolidation and productivity in Chinese household crop production. China Econ. Rev. 2005, 16, 28–49. [Google Scholar] [CrossRef]
- Wei, S.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar]
- Du, X.; Zhang, X.; Jin, X. Assessing the effectiveness of land consolidation for improving agricultural productivity in China. Land Use Policy 2018, 70, 360–367. [Google Scholar] [CrossRef]
- Long, H. Land consolidation: An indispensable way of spatial restructuring in rural China. J. Geogr. Sci. 2014, 24, 211–225. [Google Scholar] [CrossRef]
- Jin, X.; Shao, Y.; Zhang, Z.; Resler, L.M.; Campbell, J.B.; Chen, G.; Zhou, Y. The evaluation of land consolidation policy in improving agricultural productivity in China. Sci. Rep. 2017, 7, 2792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, W.; Gu, X. Changes resulting from a land consolidation project (LCP) and its resource-environment effects: A case study in Tianmen City of Hubei Province, China. Land Use Policy 2014, 40, 74–82. [Google Scholar] [CrossRef]
- Wang, J.; Yan, S.; Guo, Y.; Li, J.; Sun, G. The effects of land consolidation on the ecological connectivity based on ecosystem service value: A case study of Da’an land consolidation project in Jilin province. J. Geogr. Sci. 2015, 25, 603–616. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Fiore, A.; Montemurro, F.; Canali, S. Agro-ecology for potential adaptation of horticultural systems to climate change: Agronomic and energetic performance evaluation. Agronomy 2017, 7, 35. [Google Scholar] [CrossRef]
- Dijk, T.V. Complications for traditional land consolidation in Central Europe. Geoforum 2007, 38, 505–511. [Google Scholar] [CrossRef]
- Nguyen, T.; Cheng, E.; Findlay, C. Land fragmentation and farm productivity in China in the 1990s. China Econ. Rev. 1996, 7, 169–180. [Google Scholar] [CrossRef]
- Wójcik-Leń, J.; Leń, P.; Sobolewska-Mikulska, K. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works. Comput. Electron. Agric. 2018, 152, 333–339. [Google Scholar] [CrossRef]
- Zeng, S.; Zhu, F.; Chen, F.; Yu, M.; Zhang, S.; Yang, Y. Assessing the impacts of land consolidation on agricultural technical efficiency of producers: A Survey from Jiangsu Province, China. Sustainability 2018, 10, 2490. [Google Scholar] [CrossRef]
- Bonfanti, P.; Fregonese, A.; Sigura, M. Landscape analysis in areas affected by land consolidation. Landsc. Urban Plann. 1997, 37, 91–98. [Google Scholar] [CrossRef]
- Brye, K.R.; Slaton, N.A.; Norman, R.J. Soil Physical and biological properties as affected by land leveling in a clayey aquert. Soil Sci. Soc. Am. J. 2006, 70, 631–642. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, P.; Prasad, R.; Tiwari, A.K.; Yadav, R.P. Land leveling effects on soil properties and crop productivity. Indian J. Soil Conserv. 2010, 173–177. [Google Scholar]
- Yun, W.; Zhu, D.; Tang, H. Reshaping and innovation of China land consolidation strategy. Trans. Chin. Soc. Agric. Eng. 2016, 32, 1–8. [Google Scholar]
- Rahman, S.; Rahman, M. Impact of land fragmentation and resource ownership on productivity and efficiency: the case of rice producers in Bangladesh. Land Use Policy 2009, 26, 95–103. [Google Scholar] [CrossRef]
- Chen, F.; Yu, M.; Zhu, F. Rethinking rural transformation caused by comprehensive land consolidation: insight from program of whole village restructuring in Jiangsu Province, China. Sustainability 2018, 6, 2029. [Google Scholar] [CrossRef]
- Jones, R.; Tonts, M. Rural restructuring and social sustainability: Some reflections on the Western Australian Wheatbelt. Aust. Geogr. 1995, 26, 133–140. [Google Scholar] [CrossRef]
- Leń, P. An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas. Comput. Electron. Agric. 2018, 144, 216–221. [Google Scholar] [CrossRef]
- Jin, X.; Ding, N.; Zhang, Z.; Zhou, Y.; Yang, X. Inter-provincial allocation of land consolidation fund and effects of land consolidation in China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–9. [Google Scholar]
- He, X.Y.; Su, Y.R.; Liang, Y.M.; Chen, X.B.; Zhu, H.H.; Wang, K.L. Land reclamation and short-term cultivation change soil microbial communities and bacterial metabolic profiles. J. Sci. Food Agric. 2012, 92, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Akala, V.A.; Lal, R. Potential of mine land reclamation for soil organic carbon sequestration in Ohio. Land Degrad. Dev. 2015, 11, 289–297. [Google Scholar] [CrossRef]
- Brye, K.R.; Chen, P.; Purcell, L.C.; Mozaffari, M.; Norman, R.J. First-year soybean growth and production as affected by soil properties following land leveling. Plant Soil 2004, 263, 323–334. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, X.; Liu, L.; Hu, Y. A potential evaluation model for land consolidation in fragmental regions. Ecol. Indic. 2017, 74, 230–240. [Google Scholar] [CrossRef]
- Bronstert, A.; Vollmer, S.; Ihringer, J. A review of the impact of land consolidation on runoff production and flooding in Germany. Phys. Chem. Earth 1995, 20, 321–329. [Google Scholar] [CrossRef]
- Gagnon, P.; Chrétien, F.; Thériault, G. Land leveling impact on surface runoff and soil losses: Estimation with coupled deterministic/stochastic models for a Québec agricultural field. J. Hydrol. 2017, 544, 488–499. [Google Scholar] [CrossRef]
- Hazeu, G.; Milenov, P.; Pedroli, B.; Samoungi, V.; Van Eupen, M.; Vassilev, V. High Nature Value farmland identification from satellite imagery, a comparison of two methodological approaches. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 98–112. [Google Scholar] [CrossRef]
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu, F. Impact of land fragmentation on rice producers’ technical efficiency in South-East China. J. Life Sci. 2010, 57, 117–123. [Google Scholar] [CrossRef]
- Yan, J.; Xia, F.; Bao, H.X.H. Strategic planning framework for land consolidation in China: A top-level design based on SWOT analysis. Habitat Int. 2015, 48, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lu, S.; Chen, Y. Spatio-temporal change of urban–rural equalized development patterns in China and its driving factors. J. Rural Stud. 2013, 32, 320–330. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, P.; Wei, C.; Li, M.; Wang, L.; Yuan, G.; Yuzhe, P.; Nan, X.; Duan, Y.; Huang, Q. Farmland protection policies and rapid urbanization in China: A case study for Changzhou City. Land Use Policy 2015, 48, 552–566. [Google Scholar] [CrossRef]
- Niroula, G.S.; Thapa, G.B. Impacts and causes of land fragmentation, and lessons learned from land consolidation in South Asia. Land Use Policy 2005, 22, 358–372. [Google Scholar] [CrossRef]
- Muzangwa, L.; Mnkeni, P.N.S.; Chiduza, C. assessment of conservation agriculture practices by smallholder farmers in the Eastern Cape province of South Africa. Agronomy 2017, 7, 46. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, W.; Ma, J.; Yang, Y.; Zhang, S.; Chen, R. Experimental study on the effects of underground CO2 leakage on soil microbial consortia. Int. J. Greenh. Gas Contr. 2017, 63, 241–248. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Lee, B.W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 2006, 24, 349–356. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Schoeneberger, P.J. Field Book for Describing and Sampling Soils, 1st ed.; Usda Natural Resources Conservation Service: Lincoln, UK, 1998.
- Ma, J.; Zhang, W.; Zhang, S.; Zhu, Q.; Feng, Q.; Chen, F. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario. Peer J. 2017, 5, e4024. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Ma, J.; Chen, F.; Li, X.; Zhang, S. Effects of Pb Smelting on the Soil Bacterial Community near a Secondary Lead Plant. Int. J. Environ. Res. Public Health 2018, 15, 1030. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.A.; Saldaña, M.M.; Aguilar, F.J. GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. Int. J. Remote Sens. 2013, 34, 2583–2606. [Google Scholar] [CrossRef]
- Crespi, M.; Colosimo, G.; Vendictis, L.D.; Fratarcangeli, F.; Pieralice, F. GeoEye-1: Analysis of Radiometric and Geometric Capability. In Proceedings of the International Conference on Personal Satellite Services, Rome, Italy, 4–5 February 2010; pp. 354–369. [Google Scholar]
- Tewes, A.; Schellberg, J. Towards remote estimation of radiation use efficiency in maize using uav-based low-cost camera imagery. Agronomy 2018, 8, 16. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.; Mysterud, A.; Gaillard, J.; Tucker, C.; Stenseth, N. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trend Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Egido, A.; Caparrini, M.; Ruffini, G.; Paloscia, S.; Santi, E.; Guerriero, L.; Pierdicca, N.; Floury, N. Global navigation satellite systems reflectometry as a remote sensing tool for agriculture. Remote Sens. 2012, 4, 2356–2372. [Google Scholar] [CrossRef]
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote sensing of soil properties in precision agriculture: A review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, J.; Huang, Y.; Fassnacht, S.R.; Xie, S.; Lv, E.; Chen, M. Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecol. Indic. 2018, 92, 18–29. [Google Scholar] [CrossRef]
- Svensgaard, J.; Roitsch, T.; Christensen, S. Development of a Mobile Multispectral Imaging Platform for Precise Field Phenotyping. Agronomy 2014, 4, 322–336. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Fu, W.J.; Jiang, P.K.; Zhou, G.M.; Zhao, K.L. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 2014, 11, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Sliuzas, R.; Cai, J.; Ottens, H.F.L. Exploring spatial evolution of economic clusters: A case study of Beijing. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 252–265. [Google Scholar] [CrossRef]
- Xinli, K.E.; Deng, X. A partitioned GeoCA based on dual-constraint spatial cluster and its effect on the accuracy of simulating result. J. Remote Sens. 2011, 15, 512–523. [Google Scholar]
- Yang, H.L.; Peng, J.H.; Xia, B.R.; Zhang, D.X. Remote sensing classification using fuzzy c-means clustering with spatial constraints based on markov random field. Eur. J. Remote Sens. 2013, 46, 305–316. [Google Scholar]
- Thilakarathna, M.S.; Raizada, M.N. Challenges in using precision agriculture to optimize symbiotic nitrogen fixation in legumes: progress, limitations, and future improvements needed in diagnostic testing. Agronomy 2018, 8, 78. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Shen, W.; Duan, Z. Effect of the slow-release nitrogen fertilizer oxamide on ammonia volatilization and nitrogen use efficiency in paddy soil. Agronomy 2018, 8, 53. [Google Scholar] [CrossRef]
- Brye, K.R.; Slaton, N.A.; Mozaffari, M.; Savin, M.C.; Norman, R.J.; Miller, D.M. Short-Term effects of land leveling on soil chemical properties and their relationships with microbial biomass. Soil Sci. Soc. Am. J. 2004, 68, 924–934. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K.; Zaeen, A.A. A case study of potential reasons of increased soil phosphorus levels in the Northeast United States. Agronomy 2017, 7, 85. [Google Scholar] [CrossRef]
- Yu, Q.; Yu, G.; Zeng, Q. The influence of land consolidation on biomass and ecological environment. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 3656–3662. [Google Scholar] [CrossRef]
- Wang, F.; Miao, L.; Lu, W. Sand creep as a factor in land subsidence during groundwater level recovery in the southern Yangtze River delta, China. Bull. Eng. Geol. Environ. 2013, 72, 273–283. [Google Scholar] [CrossRef]
- Ying, W.; Lachun, W.; Dong, W. Bearing capacity and regularity of development of water resources and water environment of Yangtze River Delta and measures for sustainable development. Water Resour. Protect. 2003, 6, 34–40. [Google Scholar]
- Parfitt, J.M.B.; Timm, L.C.; Reichardt, K.; Pinto, L.F.S.; Pauletto, E.A.; Castilhos, D.D. Chemical and biological attributes of a lowland soil affected by land leveling. Pesquisa Agropecuária Brasileira 2013, 48, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Lehndorff, E.; Roth, P.J.; Cao, Z.H.; Amelung, W. Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China. Glob. Chang. Biol. 2014, 20, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.M.B.; Timm, L.C.; Reichardt, K.; Pauletto, E.A. Impacts of land leveling on lowland soil physical properties. Revista Brasileira De Ciência Do Solo 2014, 38, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Pow, C. Building a harmonious society through greening: ecological civilization and aesthetic governmentality in China. Ann. Assoc. Am. Geogr. 2018, 108, 864–883. [Google Scholar] [CrossRef]
Soil Properties | FW | TC | BT | CA |
---|---|---|---|---|
Sand (%) | 62.47 ± 5.10ab | 56.26 ± 5.97a | 57.33 ± 4.50a | 65.86 ± 2.94b |
Silt (%) | 32.79 ± 4.53ab | 38.47 ± 4.88b | 37.31 ± 4.00b | 29.71 ± 2.81a |
Clay (%) | 4.09 ± 1.09ab | 5.50 ± 1.07c | 4.88 ± 0.90bc | 3.39 ± 0.39a |
pH | 5.86 ± 0.09a | 6.32 ± 0.25b | 6.37 ± 0.32b | 6.38 ± 0.12b |
SOM (g kg−1) | 15.95 ± 3.36a | 13.68 ± 4.97a | 20.40 ± 5.90ab | 24.77 ± 4.94b |
TN (g kg−1) | 2.34 ± 0.53a | 2.29 ± 0.60a | 3.34 ± 0.87b | 3.85 ± 0.39b |
AP (mg kg−1) | 16.25 ± 7.67a | 14.34 ± 9.79a | 17.64 ± 9.05a | 12.13 ± 7.19a |
AK (mg kg−1) | 96.60 ± 12.80a | 94.98 ± 15.67a | 104.21 ± 10.58b | 108.18 ± 6.22b |
AZn (mg kg−1) | 8.70 ± 0.43ab | 8.06 ± 1.25a | 9.75 ± 0.99b | 11.60 ± 0.66c |
ASi (mg kg−1) | 265.90 ± 35.60ab | 327.35 ± 44.93c | 303.60 ± 47.09bc | 213.33 ± 13.20a |
Leveling Type | FW | TC | BT | CA |
---|---|---|---|---|
Mean value of NDVI | 0.763 ± 0.03a | 0.747 ± 0.06a | 0.808 ± 0.05ab | 0.834 ± 0.02b |
Variable | r | p | Variable | r | p |
---|---|---|---|---|---|
Clay | 0.151 | 0.333 | AK | 0.580 | <0.001 *** |
pH | 0.102 | 0.513 | AZn | 0.810 | <0.001 *** |
SOM | 0.831 | <0.001 *** | ASi | 0.487 | 0.001 *** |
TN | 0.731 | <0.001 *** | SOM + AZn a | 0.864 | <0.001 *** |
AP | 0.375 | 0.008 *** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yu, M.; Ma, J.; Luo, Z.; Chen, F.; Yang, Y. Identifying the Relationship between Soil Properties and Rice Growth for Improving Consolidated Land in the Yangtze River Delta, China. Sustainability 2018, 10, 3072. https://doi.org/10.3390/su10093072
Li X, Yu M, Ma J, Luo Z, Chen F, Yang Y. Identifying the Relationship between Soil Properties and Rice Growth for Improving Consolidated Land in the Yangtze River Delta, China. Sustainability. 2018; 10(9):3072. https://doi.org/10.3390/su10093072
Chicago/Turabian StyleLi, Xiaoxiao, Man Yu, Jing Ma, Zhanbin Luo, Fu Chen, and Yongjun Yang. 2018. "Identifying the Relationship between Soil Properties and Rice Growth for Improving Consolidated Land in the Yangtze River Delta, China" Sustainability 10, no. 9: 3072. https://doi.org/10.3390/su10093072
APA StyleLi, X., Yu, M., Ma, J., Luo, Z., Chen, F., & Yang, Y. (2018). Identifying the Relationship between Soil Properties and Rice Growth for Improving Consolidated Land in the Yangtze River Delta, China. Sustainability, 10(9), 3072. https://doi.org/10.3390/su10093072