A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight
Abstract
:1. Introduction
2. Materials and Methods
2.1. BlightPro Decision Support System and Field Trial Evaluation
2.2. Computer Smiluation Experiments and Economic Data
2.3. Stochastic Dominance and Stochastic Efficiency
3. Results
3.1. Fungicide Applications and Disease Rating
3.2. Yield and Net Return Per Acre
3.3. Stochastic Dominance Results
3.4. Stochastic Efficiency Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- Griffin, T.W.; Lowenberg-DeBoer, J. Worldwide adoption and profitability of precision agriculture: Implications for Brazil. Rev. De Politica Agricola 2005, 14, 20–37. [Google Scholar]
- Vorotnikova, E.; Borisova, T.; VanSickle, J.J. Evaluation of the profitability of a new precision fungicide application system for strawberry production. Agric. Syst. 2014, 130, 77–88. [Google Scholar] [CrossRef]
- Wale, S.; Platt, B.; Cattlin, N.D. Diseases, Pests and Disorders of Potatoes: A Color Handbook; Academic Press: Burlington, MA, USA, 2008; pp. 48–52. [Google Scholar]
- Krause, R.A.; Massie, L.B.; Hyre, R.A. Blitecast: A computerized forecast of potato late blight. Plant Dis. Rep. 1975, 59, 95–98. [Google Scholar]
- Wallin, J. Summary of recent progress in predicting late blight epidemics in United States and Canada. Am. J. Potato Res. 1962, 39, 306–312. [Google Scholar] [CrossRef]
- Olanya, O.M.; Starr, G.C.; Honeycutt, C.W.; Griffin, T.S.; Lambert, D.H. Microclimate and potential for late blight development in irrigated potato. Crop. Prot. 2007, 26, 1412–1421. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Database Collections; FAO: Rome, Italy, 2018. [Google Scholar]
- United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS). Quick Stats; USDA-NASS: Washington, DC, USA, 2018.
- Andrade-Piedra, J.L.; Hijmans, R.J.; Forbes, G.A.; Fry, W.E.; Nelson, R.J. Simulation of potato late blight in the Andes. I: Modification and parameterization of the LATEBLIGHT model. Phytopathology 2005, 95, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Small, I.M.; Joseph, L.; Fry, W.E. Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Comput. Electron. Agric. 2015, 115, 57–65. [Google Scholar] [CrossRef]
- Fry, W.E. Phytophthora infestans: New tools (and old ones) lead to new understanding and precision management. Annu. Rev. Phytopathol. 2016, 54, 529–547. [Google Scholar] [CrossRef] [PubMed]
- Small, I.M.; Joseph, L.; Fry, W.E. Evaluation of the BlightPro Decision Support System for management of potato late blight using computer simulation and field validation. Phytopathology 2015. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Langemeier, M.R.; Small, I.M.; Joseph, L.; Fry, W.E. Risk Management Strategies using Precision Agriculture Technology to Manage Potato Late Blight. Agron. J. 2017, 109, 562–575. [Google Scholar] [CrossRef]
- McGrath, M.T.; Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA. Personal communication, April 2013.
- Lazarus, W.F. Machinery Cost Estimates; University of Minnesota: St. Paul, MN, USA, 2013. [Google Scholar]
- Schumann, K.D. Semi-nonparametric test of second degree stochastic dominance with respect to a function. J. Econ. 2011, 162, 71–78. [Google Scholar] [CrossRef]
- Monjardino, M.; McBeath, T.; Ouzman, J.; Llewellyn, R.; Jones, B. Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt. Agric. Syst. 2015, 137, 108–118. [Google Scholar] [CrossRef]
- Hadar, J.; Russell, W.R. Rules for ordering uncertain prospect. Am. Econ. Rev. 1969, 59, 25–34. [Google Scholar]
- Hanoch, G.; Levy, H. Efficiency analysis of choices involving risk. Rev. Econ. Stud. 1969, 36, 335–346. [Google Scholar] [CrossRef]
- Meyer, J. Choice among distributions. J. Econ. Theory 1977, 14, 326–336. [Google Scholar] [CrossRef]
- Rothschild, M.; Stiglitz, J.E. Increasing risk. 1. definition. J. Econ. Theory 1970, 2, 225–243. [Google Scholar] [CrossRef]
- Harris, T.R.; Mapp, H.P. A stochastic dominance comparison of water-conserving irrigation strategies. Am. J. Agric. Econ. 1986, 68, 298–305. [Google Scholar] [CrossRef]
- King, R.P.; Robison, L.J. Implementation of the interval approach to the measurement of decision maker preference. Mich. Agric. Exp. Stn. Res. Rep. 1981, 60, 2–19. [Google Scholar]
- Raskin, R.; Cochran, M.J. Interpretations and transformations of scale for the Pratt-Arrow absolute risk aversion coefficient: Implications for generalized stochastic dominance. Am. J. Agric. Econ. 1986, 68, 1375. [Google Scholar]
- Hardaker, J.B.; Richardson, J.W.; Lien, G.; Schumann, K.D. Stochastic efficiency analysis with risk aversion bounds: A simplified approach. Aust. J. Agric. Resour. Econ. 2004, 48, 253–270. [Google Scholar] [CrossRef]
- Williams, J.R.; Saffert, A.T.; Barnaby, G.; Llewelyn, R.V.; Langemeier, M.R. A risk analysis of adjusted gross revenue-lite on beef farms. J. Agric. Appl. Econ. 2014, 46, 227–244. [Google Scholar] [CrossRef]
- Meyer, J.; Richardson, J.W.; Schumann, K.D. Stochastic efficiency analysis with risk aversion bounds: A correction. Aust. J. Agric. Resour. Econ. 2009, 53, 521–525. [Google Scholar] [CrossRef]
- Hardaker, J.B.; Lien, G. Stochastic efficiency analysis with risk aversion bounds: A comment. Aust. J. Agric. Resour. Econ. 2010, 54, 379–383. [Google Scholar] [CrossRef]
- Schumann, K.D.; Richardson, J.W.; Lien, G.; Hardaker, J.B. Stochastic efficiency analysis using multiple utility functions. In Proceedings of the American Agricultural Economics Association Meeting, Denver, CO, USA, 1–4 August 2004. [Google Scholar]
- Wakker, P.P. Explaining the characteristics of the power (CRRA) utility family. Health Econ. 2008, 17, 1329–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardaker, J.B.; Huirne, R.B.M.; Anderson, J.R.; Lien, G. Coping with Risk in Agriculture, 3rd ed.; CABI Publishing: Cambridge, MA, USA, 2004. [Google Scholar]
- Quirk, J.P.; Saposnik, R. Admissibility and measurable utility functions. Rev. Econ. Stud. 1962, 29, 140–146. [Google Scholar] [CrossRef]
- Parcell, J.L.; Langemeier, M.R. Feeder-pig producers and finishers: Who should contract? Can. J. Agric. Econ. Rev. Can. D Agroecon. 1997, 45, 317–327. [Google Scholar] [CrossRef]
- Varner, B.T.; Epplin, F.M.; Strickland, G.L. Economics of no-till versus tilled dryland cotton, grain sorghum, and wheat. Agron. J. 2011, 103, 1329–1338. [Google Scholar] [CrossRef]
- Llata, M.D.L.; Langemeier, M.R.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L. Economics of Adding Fat and Increasing Lysine: Calorie Ratio in Diets for Growing-Finishing Gilts; Kansas State University Swine Day 1999; Report of Progress 841; Kansas State University Agricultural Experiment Station and Cooperative Extension Servie: Manhattan, KS, USA; pp. 113–116.
- Ritchie, J.W.; Abawi, G.Y.; Dutta, S.C.; Harris, T.R.; Bange, M. Risk management strategies using seasonal climate forecasting in irrigated cotton production: A tale of stochastic dominance. Aust. J. Agric. Resour. Econ. 2004, 48, 65–93. [Google Scholar] [CrossRef]
- Zacharias, T.P.; Grube, A.H. An economic evaluation of weed control methods used in combination with crop rotation: A stochastic dominance approach. North Cent. J. Agric. Econ. 1984, 6, 113–120. [Google Scholar] [CrossRef]
- Danok, A.B.; McCarl, B.A.; White, T.K. Machinery selection modeling: Incorporation of weather variability. Am. J. Agric. Econ. 1980, 62, 700–708. [Google Scholar] [CrossRef]
- King, R.P.; Lybecker, D.W. Flexible, Risk-Oriented Marketing Strategies for Pinto Bean Producers. West. J. Agric. Econ. 1983, 124–133. [Google Scholar]
- King, R.P.; Oamek, G.E. Risk management by Colorado dryland wheat farmers and the elimination of the disaster assistance program. Am. J. Agric. Econ. 1983, 65, 247–255. [Google Scholar] [CrossRef]
- Musser, W.N.; Tew, B.V.; Epperson, J.E. An economic examination of an integrated pest management production system with a contrast between E-V and stochastic dominance analysis. South. J. Agric. Econ. 1981, 13, 119–124. [Google Scholar] [CrossRef]
- Moffitt, L.J.; Tanigoshi, L.K.; Baritelle, J.L. Incorporating risk in comparisons of alternative pest control methods. Environ. Èntomol. 1983, 12, 1003–1011. [Google Scholar] [CrossRef]
- Greene, C.R.; Kramer, R.A.; Norton, G.W.; Rajotte, E.G.; McPherson, R.M. An economic analysis of soybean integrated pest management. Am. J. Agric. Econ. 1985, 67, 567–572. [Google Scholar] [CrossRef]
- Cochran, M.J.; Robison, L.J.; Lodwick, W. Improving the efficiency of stochastic dominance techniques using convex set stochastic dominance. Am. J. Agric. Econ. 1985, 67, 289–295. [Google Scholar] [CrossRef]
Rep | Treatment | AUDPC | Wt. Marketable | Wt. Cull | Wt. Total |
---|---|---|---|---|---|
I | Control | 4037.39 | 2.49 | 5.36 | 7.85 |
I | Calendar | 43.38 | 14.30 | 2.72 | 17.02 |
I | DSS | 6.74 | 15.46 | 3.33 | 18.79 |
II | Control | 3866.27 | 0.71 | 5.41 | 6.12 |
II | Calendar | X | X | X | X |
II | DSS | 112.31 | 16.18 | 2.36 | 18.54 |
III | Control | 3378.66 | 2.26 | 5.11 | 7.37 |
III | Calendar | 6.74 | 13.16 | 2.48 | 13.16 |
III | DSS | 6.92 | 19.05 | 4.07 | 20.21 |
IV | Control | 4100.21 | 1.39 | 4.27 | 5.66 |
IV | Calendar | 33.88 | 11.14 | 4.63 | 15.78 |
IV | DSS | 6.74 | 9.81 | 4.01 | 13.82 |
State | Plant Date | Harvest Date |
---|---|---|
North Carolina | 26 March | 27 July |
New York | 15 May | 15 September |
Calendar | DSS Yield Improvement Percentage | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0% | 5% | 10% | 15% | |||||||||||||||||
Item | Mean | S.D | Min | Max | Mean | S.D | Min | Max | Mean | S.D. | Min | Max | Mean | S.D | Min | Max | Mean | S.D | Min | Max |
Susceptible Cultivars | ||||||||||||||||||||
Tomato Yield (cwt/acre) | 245.0 | 85.4 | 140.0 | 440.0 | 245.0 | 85.4 | 140.0 | 440.0 | 257.3 | 89.7 | 147.0 | 462.0 | 269.5 | 93.9 | 154.0 | 484.0 | 281.8 | 98.2 | 161.0 | 506.0 |
Net Return per Acre ($/acre) | 10,926 | 2572 | 6450 | 16,685 | 10,898 | 2566 | 6395 | 16,774 | 11,451 | 2696 | 6725 | 17,616 | 12,004 | 2825 | 7055 | 18,459 | 12,557 | 2954 | 7385 | 19,301 |
Moderately Susceptible Cultivars | ||||||||||||||||||||
Tomato Yield (cwt/acre) | 245.0 | 85.4 | 140.0 | 440.0 | 245.0 | 85.4 | 140.0 | 440.0 | 257.3 | 89.7 | 147.0 | 462.0 | 269.5 | 93.9 | 154.0 | 484.0 | 281.8 | 98.2 | 161.0 | 506.0 |
Net Return per Acre ($/acre) | 10,926 | 2572 | 6450 | 16,685 | 10,948 | 2571 | 6464 | 16,789 | 11,501 | 2700 | 6794 | 17,631 | 12,054 | 2829 | 7124 | 18,474 | 12,607 | 2958 | 7454 | 19,316 |
Moderately Resistant Cultivars | ||||||||||||||||||||
Tomato Yield (cwt/acre) | 245.0 | 85.4 | 140.0 | 440.0 | 245.0 | 85.4 | 140.0 | 440.0 | 257.3 | 89.7 | 147.0 | 462.0 | 269.5 | 93.9 | 154.0 | 484.0 | 281.8 | 98.2 | 161.0 | 506.0 |
Net Return per Acre ($/acre) | 10926 | 2572 | 6450 | 16,685 | 10,974 | 2574 | 6491 | 16,804 | 11,527 | 2703 | 6821 | 17,646 | 12,080 | 2832 | 7151 | 18,488 | 12,633 | 2961 | 7481 | 19,331 |
Item | Calendar | DSS | Both |
---|---|---|---|
Susceptible Cultivars | |||
FSD | 28.0% | 0.0% | 72.0% |
SSD | 64.0% | 16.0% | 20.0% |
SDRF | |||
Slightly Risk-Averse | 92.0% | 8.0% | 0.0% |
Moderately Risk-Averse | 92.0% | 8.0% | 0.0% |
Strongly Risk-Averse | 84.0% | 8.0% | 8.0% |
Moderately Susceptible Cultivars | |||
FSD | 4.0% | 32.0% | 64.0% |
SSD | 8.0% | 84.0% | 8.0% |
SDRF | |||
Slightly Risk-Averse | 16.0% | 84.0% | 0.0% |
Moderately Risk-Averse | 16.0% | 84.0% | 0.0% |
Strongly Risk-Averse | 16.0% | 84.0% | 0.0% |
Moderately Resistant Cultivars | |||
FSD | 0.0% | 100.0% | 0.0% |
SSD | 0.0% | 100.0% | 0.0% |
SDRF | |||
Slightly Risk-Averse | 0.0% | 100.0% | 0.0% |
Moderately Risk-Averse | 0.0% | 100.0% | 0.0% |
Strongly Risk-Averse | 0.0% | 100.0% | 0.0% |
Item | Spray Schedule | Risk Premium | |
---|---|---|---|
Calendar | DSS | DSS over Calendar | |
Susceptible Cultivars | |||
r = 0 | $10,974 | $10,946 | $(28) |
r = 1 | $10,855 | $10,827 | $(28) |
r = 3 | $10,636 | $10,608 | $(28) |
r = 4 | $10,536 | $10,508 | $(28) |
Moderately Susceptible Cultivars | |||
r = 0 | $10,974 | $10,995 | $21 |
r = 1 | $10,855 | $10,876 | $21 |
r = 3 | $10,637 | $10,658 | $21 |
r = 4 | $10,536 | $10,558 | $22 |
Moderately Resistant Cultivars | |||
r = 0 | $10,974 | $11,022 | $48 |
r = 1 | $10,855 | $10,903 | $48 |
r = 3 | $10,637 | $10,684 | $48 |
r = 4 | $10,537 | $10,584 | $48 |
Item | Risk Premium: DSS over 7-Day | ||
---|---|---|---|
5% | 10% | 15% | |
Susceptible Cultivars | |||
r = 0 | $527 | $1082 | $1638 |
r = 1 | $518 | $1065 | $1611 |
r = 3 | $503 | $1034 | $1564 |
r = 4 | $496 | $1020 | $1543 |
Moderately Susceptible Cultivars | |||
r = 0 | $576 | $1132 | $1687 |
r = 1 | $568 | $1114 | $1661 |
r = 3 | $552 | $1083 | $1614 |
r = 4 | $545 | $1069 | $1593 |
Moderately Resistant Cultivars | |||
r = 0 | $603 | $1158 | $1714 |
r = 1 | $594 | $1141 | $1687 |
r = 3 | $578 | $1109 | $1640 |
r = 4 | $571 | $1095 | $1619 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Langemeier, M.R.; Small, I.M.; Joseph, L.; Fry, W.E.; Ristaino, J.B.; Saville, A.; Gramig, B.M.; Preckel, P.V. A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight. Sustainability 2018, 10, 3108. https://doi.org/10.3390/su10093108
Liu Y, Langemeier MR, Small IM, Joseph L, Fry WE, Ristaino JB, Saville A, Gramig BM, Preckel PV. A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight. Sustainability. 2018; 10(9):3108. https://doi.org/10.3390/su10093108
Chicago/Turabian StyleLiu, Yangxuan, Michael R. Langemeier, Ian M. Small, Laura Joseph, William E. Fry, Jean B. Ristaino, Amanda Saville, Benjamin M. Gramig, and Paul V. Preckel. 2018. "A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight" Sustainability 10, no. 9: 3108. https://doi.org/10.3390/su10093108
APA StyleLiu, Y., Langemeier, M. R., Small, I. M., Joseph, L., Fry, W. E., Ristaino, J. B., Saville, A., Gramig, B. M., & Preckel, P. V. (2018). A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight. Sustainability, 10(9), 3108. https://doi.org/10.3390/su10093108