Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Model Description
2.3. Data Sets
2.4. The Statistical Analysis
3. Results
3.1. The Future Changes in Precipitation and Temperature
3.2. Temporal and Spatial Variations of the Annual Evapotranspiration
3.3. Evapotranspiration Changes Related to Precipitation and Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature and precipitation over Xinjiang, Northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Su, H.; Shen, Y.; Han, P.; Li, J.; Lan, Y.-C. Precipitation and its impact on water resources and ecological environment in Xinjiang region. J. Glaciol. Geocryol. 2007, 29, 343–350. [Google Scholar]
- Jia, B.Q.; Zhang, Z.Q.; Ci, L.J.; Ren, Y.P.; Pan, B.R.; Zhang, Z. Oasis land-use dynamics and its influence on the oasis environment in Xinjiang, China. J. Arid Environ. 2004, 56, 11–26. [Google Scholar] [CrossRef]
- Li, B.F.; Chen, Y.N.; Chen, Z.S.; Li, W.H. Trends in runoff versus climate change in typical rivers in the arid region of Northwest China. Quat. Int. 2012, 282, 87–95. [Google Scholar] [CrossRef]
- Xue, Y.; Han, P.; Feng, G. Change trend of the precipitation and air temperature in Xinjiang since recent 50 years. Arid Zone Res. 2002, 20, 127–130. [Google Scholar]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and changes of annual precipitation in central asia over the last century. Int. J. Clim. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Liljedahl, A.; Hinzman, L.; Harazono, Y.; Zona, D.; Tweedie, C.; Hollister, R.D.; Engstrom, R.; Oechel, W. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 2011, 8, 3375–3389. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ma, Z.; Feng, J.; Wei, R. The relationship between pan evaporation and actual evapotranspiration in Xinjiang since 1960. Acta Geogr. Sin. 2008, 63, 1131–1139. [Google Scholar]
- Yuan, X.; Bai, J.; Li, L.; Kurban, A.; De Maeyer, P. The dominant role of climate change in determining changes in evapotranspiration in Xinjiang, China from 2001 to 2012. PLoS ONE 2017, 12, e0183071. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, B.; Li, Q.; Li, J.; Abdulla, S. Spatio-temporal pattern and changes of evapotranspiration in arid central asia and Xinjiang of China. J. Arid Land 2012, 4, 105–112. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature changes in central asia from 1979 to 2011 based on multiple datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Li, L.; Bai, L.; Yao, Y.; Yang, Q. Projection of climate change in Xinjiang under ipcc sres. Resour. Sci. 2012, 34, 602–612. (In Chinese) [Google Scholar]
- Shi, Y.F.; Shen, Y.P.; Kang, E.; Li, D.L.; Ding, Y.J.; Zhang, G.W.; Hu, R.J. Recent and future climate change in Northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.Q.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the tibetan plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Yang, Q.; Tian, H.; Li, X.; Tao, B.; Ren, W.; Chen, G.; Lu, C.; Yang, J.; Pan, S.; Banger, K. Spatiotemporal patterns of evapotranspiration along the north american east coast as influenced by multiple environmental changes. Ecohydrology 2015, 8, 714–725. [Google Scholar] [CrossRef]
- Shi, X.; Mao, J.; Thornton, P.E.; Huang, M. Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the community land model. Environ. Res. Lett. 2013, 8, 024012. [Google Scholar] [CrossRef]
- Liu, M.; Tian, H.; Lu, C.; Xu, X.; Chen, G.; Ren, W. Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. J. Hydrol. 2012, 426–427, 39–54. [Google Scholar] [CrossRef]
- Liu, M.; Tian, H.; Chen, G.; Ren, W.; Zhang, C.; Liu, J. Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–2001. J. Am. Water Resour. Assoc. 2008, 44, 1193–1207. [Google Scholar] [CrossRef]
- Jing, C.Q.; Li, L.; Chen, X.; Luo, G.P. Comparison of root water uptake functions to simulate surface energy fluxes within a deep-rooted desert shrub ecosystem. Hydrol. Process. 2014, 28, 5436–5449. [Google Scholar] [CrossRef]
- Li, L.; Van der Tol, C.; Chen, X.; Jing, C.; Su, B.; Luo, G.; Tian, X. Representing the root water uptake process in the common land model for better simulating the energy and water vapour fluxes in a central asian desert ecosystem. J. Hydrol. 2013, 502, 145–155. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Xu, G.; Zou, T. Ecophysiological response and morphological adjustment of two central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 2007, 30, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Y.; Yu, Q.; Pak, B.; Eamus, D.; Yan, J.; Gorsel, E.; Baker, I.T. Improving the responses of the australian community land surface model (cable) to seasonal drought. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Luo, G.; Chen, X. Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007—The spatiotemporal patterns and climate controls. Ecol. Model. 2013, 267, 148–157. [Google Scholar] [CrossRef]
- Dai, Y.J.; Dickinson, R.E.; Wang, Y.P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Bonan, G.B. A Land Surface Model (Lsm Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide; NCAR Tech. Note NCAR/TN-417+STR; Atmospheric Research: Boulder, CO, USA, 1996. [Google Scholar]
- Dickinson, E.; Henderson-Sellers, A.; Kennedy, J. Biosphere-Atmosphere Transfer Scheme (Bats) Version 1e as Coupled to the Ncar Community Climate Model; NCAR Tech. Note NCAR/TN-387+STR; Atmospheric Research: Boulder, CO, USA, 1993. [Google Scholar]
- Philip, J.R. Evaporation, and moisture and heat fields in the soil. J. Meteorol. 1957, 14, 354–366. [Google Scholar] [CrossRef]
- Hao, L.; Pan, C.; Liu, P.L.; Zhou, D.C.; Zhang, L.X.; Xiong, Z.; Liu, Y.Q.; Sun, G. Detection of the coupling between vegetation leaf area and climate in a multifunctional watershed, Northwestern China. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Li, J.; Fan, K.; Zhou, L.M. Satellite observations of el nino impacts on eurasian spring vegetation greenness during the period 1982–2015. Remote. Sens. 2017, 9, 628. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Smith, C.; Wallace, J.M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef]
- Pan, S.; Tian, H.; Dangal, S.R.; Yang, Q.; Yang, J.; Lu, C.; Tao, B.; Ren, W.; Ouyang, Z. Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century. Earth's Future 2015, 3, 15–35. [Google Scholar] [CrossRef]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Betts, R.A.; Boucher, O.; Collins, M.; Cox, P.M.; Falloon, P.D.; Gedney, N.; Hemming, D.L.; Huntingford, C.; Jones, C.D.; Sexton, D.M. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 2007, 448, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ye, B.S.; Zhang, S.Q.; Qiao, C.J.; Zhang, X.W. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci. China Earth Sci. 2010, 53, 880–891. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of Northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Mannig, B.; Muller, M.; Starke, E.; Merkenschlager, C.; Mao, W.Y.; Zhi, X.F.; Podzun, R.; Jacob, D.; Paeth, H. Dynamical downscaling of climate change in central Asia. Glob. Planet. Chang. 2013, 110, 26–39. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Frankl, A.; Duan, Y.C.; Meng, F.H.; Bao, A.M.; Kurban, A.; De Maeyer, P. Defining spatiotemporal characteristics of climate change trends from downscaled gcms ensembles: How climate change reacts in Xinjiang, China. Int. J. Clim. 2018, 38, 2538–2553. [Google Scholar] [CrossRef]
- Zhu, B.; Xue, L.; Wei, G.; Zhang, L.; Chen, X. Cmip5 projected changes in temperature and precipitation in arid and humid basins. Theor. Appl. Climatol. 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Su, B.D.; Jian, D.N.; Li, X.C.; Wang, Y.J.; Wang, A.Q.; Wen, S.S.; Tao, H.; Hartmann, H. Projection of actual evapotranspiration using the cosmo-clm regional climate model under global warming scenarios of 1.5 °C and 2.0 °C in the Tarim River Basin, China. Atmos. Res. 2017, 196, 119–128. [Google Scholar] [CrossRef]
- Kingston, D.G.; Todd, M.C.; Taylor, R.G.; Thompson, J.R.; Arnell, N.W. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys. Res. Lett. 2009, 36, 1437–1454. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Bai, J. Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation. Sustainability 2018, 10, 3281. https://doi.org/10.3390/su10093281
Yuan X, Bai J. Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation. Sustainability. 2018; 10(9):3281. https://doi.org/10.3390/su10093281
Chicago/Turabian StyleYuan, Xiuliang, and Jie Bai. 2018. "Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation" Sustainability 10, no. 9: 3281. https://doi.org/10.3390/su10093281
APA StyleYuan, X., & Bai, J. (2018). Future Projected Changes in Local Evapotranspiration Coupled with Temperature and Precipitation Variation. Sustainability, 10(9), 3281. https://doi.org/10.3390/su10093281