Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach
Abstract
:1. Introduction
2. Materials and Method
2.1. Data Description
2.2. Connectedness Measurement Approach
3. Results and Discussion
3.1. Connectedness Analysis Using the Full Sample
3.1.1. Total Connectedness Using the Full Sample
3.1.2. Total Directional Connectedness Using the Full Sample
3.1.3. Pairwise Directional Connectedness Using the Full Sample
3.2. Connectedness Analysis Under Rolling Sample
3.2.1. Total Connectedness Under Rolling Sample
3.2.2. Total Directional Connectedness Under Rolling Sample
3.2.3. Pairwise Directional Connectedness Under Rolling Sample
3.3. Robustness Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lundgren, A.I.; Milicevic, A.; Uddin, G.S.; Kang, S.H. Connectedness network and dependence structure mechanism in green investments. Energy Econ. 2018, 72, 145–153. [Google Scholar] [CrossRef]
- Wind. Available online: http://www.wind.com.cn (accessed on 10 May 2018).
- Weiner, R.J. Is the World Oil Market “One Great Pool”? Energy J. 1991, 12, 95–107. [Google Scholar] [CrossRef]
- Adelman, M.A. International Oil Agreements. Energy J. 1984, 5, 1–9. [Google Scholar] [CrossRef]
- Adelman, M.A. “Is the World Oil Market One Great Pool?”—Comment. Energy J. 1992, 13, 157–158. [Google Scholar] [CrossRef]
- Bachmeier, L.J.; Griffin, J.M. Testing for Market Integration Crude Oil, Coal, and Natural Gas. Energy J. 2006, 27, 55–71. [Google Scholar] [CrossRef]
- Bentzen, J. Does OPEC influence crude oil prices? Testing for co-movements and causality between regional crude oil prices. Appl. Econ. 2007, 39, 1375–1385. [Google Scholar] [CrossRef]
- Fattouh, B. The dynamics of crude oil price differentials. Energy Econ. 2010, 32, 334–342. [Google Scholar] [CrossRef]
- Dai, Y.-H.; Xie, W.-J.; Jiang, Z.-Q.; Jiang, G.J.; Zhou, W.-X. Correlation structure and principal components in the global crude oil market. Empir. Econ. 2016, 51, 1501–1519. [Google Scholar] [CrossRef] [Green Version]
- Ziramba, E. Price and income elasticities of crude oil import demand in South Africa: A cointegration analysis. Energy Policy 2010, 38, 7844–7849. [Google Scholar] [CrossRef]
- Uri, N.D. Changing crude oil price effects on US agricultural employment. Energy Econ. 1996, 18, 185–202. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, H.; Zhu, H. A framework for assessing the systemic risk of major financial institutions. J. Bank. Financ. 2009, 33, 2036–2049. [Google Scholar] [CrossRef]
- Patro, D.K.; Qi, M.; Sun, X. A simple indicator of systemic risk. J. Financ. Stab. 2013, 9, 105–116. [Google Scholar] [CrossRef]
- Bekiros, S.D.; Diks, C.G.H. The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality. Energy Econ. 2008, 30, 2673–2685. [Google Scholar] [CrossRef] [Green Version]
- Power, G.J.; Vedenov, D.V.; Anderson, D.P.; Klose, S. Market volatility and the dynamic hedging of multi-commodity price risk. Appl. Econ. 2013, 45, 3891–3903. [Google Scholar] [CrossRef]
- Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J. Financ. Econ. 2012, 104, 535–559. [Google Scholar] [CrossRef] [Green Version]
- Acharya, V.V.; Brownlees, C.; Engle, R.; Farazmand, F.; Richardson, M.; Cooley, T.F.; Walter, I. Measuring Systemic Risk; New York University Stern School of Business: New York, NY, USA, 2010; pp. 85–119. [Google Scholar]
- Acharya, V.; Engle, R.; Richardson, M. Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks. Am. Econ. Rev. 2012, 102, 59–64. [Google Scholar] [CrossRef]
- Adrian, T.; Brunnermeier, M. CoVaR. FRB of New York Staff Report No. 348. 2011. Available online: https://ssrn.com/abstract=1269446 (accessed on 15 June 2018).
- Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Maghyereh, A.I.; Awartani, B.; Bouri, E. The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes. Energy Econ. 2016, 57, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Demirer, M.; Diebold, F.X.; Liu, L.; Yilmaz, K. Estimating global bank network connectedness. J. Appl. Econom. 2017, 33, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Diebold, F.X.; Yilmaz, K. Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014. J. Financ. Econom. 2016, 14, 81–127. [Google Scholar] [CrossRef]
- Koop, G.; Pesaran, M.H.; Potter, S.M. Impulse response analysis in nonlinear multivariate models. J. Econom. 1996, 74, 119–147. [Google Scholar] [CrossRef]
- Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1997, 58, 17–29. [Google Scholar] [CrossRef]
- Wlazlowski, S.; Hagströmer, B.; Giulietti, M. Causality in crude oil prices. Appl. Econ. 2011, 43, 3337–3347. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Huang, Z.; Yi, Y. Is there a structural change in the persistence of WTI–Brent oil price spreads in the post-2010 period? Econ. Model. 2015, 50, 64–71. [Google Scholar] [CrossRef]
- Maslyuk, S.; Smyth, R. Cointegration between oil spot and future prices of the same and different grades in the presence of structural change. Energy Policy 2009, 37, 1687–1693. [Google Scholar] [CrossRef]
- Han, L.; Xu, Y.; Yin, L. Does investor attention matter? The attention-return relationships in FX markets. Econ. Model. 2018, 68, 644–660. [Google Scholar] [CrossRef]
- Wu, Y.; Han, L.; Yin, L. Our currency, your attention: Contagion spillovers of investor attention on currency returns. Econ. Model 2018, in press. [Google Scholar] [CrossRef]
- Scheitrum, D.P.; Carter, C.A.; Revoredo-Giha, C. WTI and Brent Futures Pricing Structure. Energy Econ. 2018, 72, 462–469. [Google Scholar] [CrossRef]
- Jia, X.; An, H.; Fang, W.; Sun, X.; Huang, X. How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective. Energy Econ. 2015, 49, 588–598. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, F.; Gómez-Puig, M.; Sosvilla-Rivero, S. Using connectedness analysis to assess financial stress transmission in EMU sovereign bond market volatility. J. Int. Financ. Mark. Inst. Money 2016, 43, 126–145. [Google Scholar] [CrossRef]
- Yang, W.; Han, A.; Hong, Y.; Wang, S. Analysis of crisis impact on crude oil prices: A new approach with interval time series modelling. Quant. Financ. 2016, 16, 1–12. [Google Scholar] [CrossRef]
- Yoshino, N.; Hesary, F.T. Monetary policy and oil price fluctuations following the subprime mortgage crisis. Inter. J. Monetary Econ. Financ. 2014, 7, 157–174. [Google Scholar] [CrossRef]
- Kim, J.M.; Jung, H. Relationship between oil price and exchange rate by FDA and copula. Appl. Econ. 2018, 50, 2486–2499. [Google Scholar] [CrossRef]
- Juvenal, L.; Petrella, I. Speculation in the Oil Market. J. Appl. Econ. 2015, 30, 621–649. [Google Scholar] [CrossRef]
- Ogawa, E.; Wang, Z. Effects of Quantitative Easing Monetary Policy Exit Strategy on East Asian Currencies. Dev. Econ. 2016, 54, 103–129. [Google Scholar] [CrossRef]
- Farzanegan, M.R.; Parvari, M.R. Iranian-Oil-Free Zone and international oil prices. Energy Econ. 2014, 45, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Yeeles, A.; Akporiaye, A. Risk and resilience in the Nigerian oil sector: The economic effects of pipeline sabotage and theft. Energy Policy 2016, 88, 187–196. [Google Scholar] [CrossRef]
- Ratti, R.A.; Vespignani, J.L. OPEC and non-OPEC oil production and the global economy. Energy Econ. 2015, 50, 364–378. [Google Scholar] [CrossRef]
- Han, L.; Wu, Y.; Yin, L. Investor attention and currency performance: International evidence. Appl. Econ. 2017, 50, 2525–2551. [Google Scholar] [CrossRef]
WTI | Brent | Minas | Tapes | Daqing | Dubai | |
---|---|---|---|---|---|---|
Mean | 69.6 | 73.1 | 73.5 | 76.9 | 70.6 | 70.3 |
Median | 68.3 | 69.2 | 68.8 | 73.1 | 65.8 | 66.6 |
Max | 145.3 | 144.2 | 149.7 | 156.1 | 143.4 | 140.5 |
Min | 23.7 | 22.8 | 22.3 | 25.5 | 20.1 | 22.4 |
Std Dev | 24.9 | 29.1 | 30. 6 | 30.5 | 29.6 | 28.7 |
Skewness | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 |
Kurtosis | 2.1 | 1.8 | 1.8 | 1.9 | 1.8 | 1.8 |
ADF | −2.2 | −1.8 | −1.8 | −1.8 | −1.7 | −1.8 |
1st-ADF | −60.3 *** | −56.3 *** | −39.9 *** | −61.1 *** | −58.9 *** | −60.5 *** |
From Others | |||||
---|---|---|---|---|---|
To others |
WTI | Brent | Minas | Tapes | Daqing | Dubai | From | |
---|---|---|---|---|---|---|---|
WTI | 53.3 | 25.1 | 4.5 | 6.4 | 5.4 | 5.3 | 46.7 |
Brent | 20.3 | 39.3 | 8.5 | 11.5 | 10.2 | 10.1 | 60.7 |
Minas | 12.6 | 12.1 | 28.5 | 15.3 | 18.2 | 13.2 | 71.5 |
Tapes | 17.0 | 15.0 | 13.2 | 24.2 | 16.5 | 14.0 | 75.8 |
Daqing | 14.6 | 13.7 | 15.9 | 16.6 | 24.5 | 14.7 | 75.5 |
Dubai | 16.5 | 14.2 | 12.3 | 15.1 | 15.7 | 26.3 | 73.7 |
To | 81.0 | 80.1 | 54.4 | 64.9 | 66.0 | 57.4 | 67.3 |
NET | 34.3 | 19.5 | −17.0 | −10.9 | −9.5 | −16.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Huang, J. Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach. Sustainability 2018, 10, 3298. https://doi.org/10.3390/su10093298
Xiao X, Huang J. Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach. Sustainability. 2018; 10(9):3298. https://doi.org/10.3390/su10093298
Chicago/Turabian StyleXiao, Xiaoyong, and Jing Huang. 2018. "Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach" Sustainability 10, no. 9: 3298. https://doi.org/10.3390/su10093298
APA StyleXiao, X., & Huang, J. (2018). Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach. Sustainability, 10(9), 3298. https://doi.org/10.3390/su10093298