Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan
Abstract
:1. Introduction
- generation of renewable energy has minimal impact on physical and natural environment [21], flexible to various landscapes, and has lower requirements to infrastructure, compared to coal-fired power plants;
- production of renewable energy in decentralized manner helps meeting the rural and small-scale energy needs in remote and sparsely populated areas, including desert and mountain zones, natural reserves, and specially protected territories, in a reliable and environmentally sustainable way [22];
- implementation of renewable energy projects has social and territorial development effects, particularly, in rural areas, where it can create job opportunities and bring other economic benefits [23];
- renewable energy generating facilities require less maintenance costs compared to traditional energy generators [24].
2. Materials and Methods
2.1. Wind Availability
- f(V)—probability of achieving wind speed V;
- V—average annual wind speed, m/s;
- k—frequency distribution (Weibull dimensionless shape factor), k = 1.6 ÷ 3.0; and
- c—dimension speed (scale factor), c ≈ 2.
2.2. Gross Potential of Wind Power Engineering
- GP—gross potential of wind power engineering, kWh;
- PW—power-weight ratio of wind flow;
- SA—swept area of a windmill, m2; and
- t—period of time;
- PW—power-weight ratio of wind flow;
- d—average air density, kg/m3;
- Vi—average wind speed within the range i, m/s; and
- pi—wind speed probability within the range i.
2.3. Technical Potential of Wind Power Engineering
- TP—technical potential of wind power engineering, kWh;
- GP—gross potential of wind power engineering, kWh;
- L—share of the territories within location appropriate for wind power generation; and
- Ec—wind energy efficiency coefficient.
2.4. Economic Potential of Wind Power Engineering
- LCOE—levelised cost of electricity, $;
- CE—capital expenditures, $;
- OEn—operational expenditures in year n, $;
- r—discount rate, %;
- N—operating life of power generating facilities, years; and
- En—electric power output in year n, kWh.
2.5. GHG Emission Reduction Potential
- Vco2—volume of CO2 emission, g/kWh;
- F—volume of fuel required to generate 1 kWh;
- Ox—oxidation coefficient (a fraction of carbon oxidized during combustion);
- NCV—country-specific net caloric of fuel, TJ/natural unit;
- Ce—carbon emission coefficient, tC/TJ; and
- 44/12—conversion ratio of C to CO2.
- VcH4—volume of CH4 emission, g/kWh;
- F—volume of fuel required to generate 1 kWh;
- NCV—country-specific net caloric of fuel, TJ/natural unit; and
- Me—methane emission coefficient, tC/TJ.
- VN2O—volume of N2O emission, g/kWh;
- F—volume of fuel required to generate 1 kWh;
- NCV—country-specific net caloric of fuel, TJ/natural unit; and
- NOe—nitrous oxide emission coefficient, tC/TJ.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Demirbas, A. Recent Advances in Biomass Conversion Technologies. Energy Educ. Sci. Technol. 2000, 6, 19–40. [Google Scholar]
- Commission for Environmental Cooperation. North American Power Plant Air Emissions; Commission for Environmental Cooperation: Montreal, QC, Canada, 2011. [Google Scholar]
- Steen, M. Greenhouse Gas Emissions from Fossil Fuel Fired Power Generation Systems; Institute for Advanced Materials: Seville, Spain, 2001. [Google Scholar]
- Frankfurt School—UNEP Collaborating Centre. Global Trends in Renewable Energy Investment 2018; Frankfurt School of Finance & Management: Frankfurt am Main, Germany, 2018. [Google Scholar]
- Farhad, S.; Saffar-Avval, M.; Younessi-Sinaki, M. Efficient Design of Feedwater Heaters Network in Steam Power Plants Using Pinch Technology and Exergy Analysis. Int. J. Energy Res. 2008, 32, 1–11. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. GISS Surface Temperature Analysis (GISTEMP). Available online: https://data.giss.nasa.gov/gistemp/ (accessed on 8 August 2018).
- United Nations Development Programme. Transforming On-Grid Renewable Energy Markets; United Nations Development Programme: New York, NY, USA, 2012. [Google Scholar]
- United Nations. Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 17 July 2018).
- Kokorin, A. The United Nations Paris Climate Agreement: Contemporary and Future Effect on the Economies of Russia and Other Countries. Environ. Bull. Russ. 2016, 3, 34–37. [Google Scholar]
- Barinova, V.; Lanshina, T. Methodological Approaches to the Analysis of the Opportunities for Development of Wind and Solar Power Engineering in Russia; The Russian Presidential Academy of National Economy and Public Administration: Moscow, Russia, 2017. [Google Scholar]
- Somani, S.; Koenig, H. Global Trends in Renewable Energy; KMPG: Singapore, 2018. [Google Scholar]
- Sims, R.E.H. Bioenergy to Mitigate for Climate Change and Meet the Needs of Society, the Economy and the Environment. Mitig. Adapt. Strat. Glob. Chang. 2003, 8, 349–370. [Google Scholar] [CrossRef]
- Dincer, I. Renewable Energy and Sustainable Development: A Crucial Review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Jonaitis, A.; Gudzius, S.; Morkvenas, A.; Azubalis, M.; Konstantinaviciute, I.; Baranauskas, A.; Ticka, V. Challenges of Integrating Wind Power Plants into the Electric Power System: Lithuanian Case. Renew. Sustain. Energy Rev. 2018, 94, 468–475. [Google Scholar] [CrossRef]
- Weitzel, T.; Glock, C.H. Energy Management for Stationary Electric Energy Storage Systems: A Systematic Literature Review. Eur. J. Oper. Res. 2018, 264, 582–606. [Google Scholar] [CrossRef]
- Pokharel, R.; Grala, R.K.; Grebner, D.L. Woody Remediation for Bioenergy by Primary Forest Products Manufacturers: An Exploratory Analysis. For. Policy Econ. 2017, 85, 161–171. [Google Scholar] [CrossRef]
- Banshwar, A.; Sharma, N.K.; Sood, Y.R.; Shrivastava, R. Renewable Energy Sources as a New Participant in Ancillary Service Markets. Energy Strategy Rev. 2017, 18, 106–120. [Google Scholar] [CrossRef]
- Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhnc, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; van Wees, J.D. Geothermal Energy in Deep Aquifers: A Global Assessment of the Resource Base for Direct Heat Utilization. Renew. Sustain. Energy Rev. 2018, 82, 961–975. [Google Scholar] [CrossRef]
- Chilvers, J.; Foxon, T.J.; Galloway, S.; Hammond, G.P.; Infield, D.; Leach, M.; Pearson, P.J.G.; Strachan, N.; Strbac, G.; Thomson, M. Realizing the Transition Pathways for the More Electric, Lowcarbon Energy System in the United Kingdom: Challenges, Insights and Opportunities. Proc. Inst. Mech. Eng. Part A J. Power Energy 2017, 231, 440–477. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Review of Solutions to Global Warming, Air Pollution, and Energy Security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Zakhidov, R.A. Central Asian Countries Energy System and Role of Renewable Energy Sources. Appl. Sol. Energy 2008, 44, 218–223. [Google Scholar] [CrossRef]
- Bergmann, A.; Colombo, S.; Hanley, N. Rural versus Urban Preferences for Renewable Energy Developments. Ecol. Econ. 2008, 65, 616–625. [Google Scholar] [CrossRef]
- Babazhanova, Z.; Khambar, B.; Yessenbekova, A.; Sartanova, N.; Jandossova, F. New Energy System in the Republic of Kazakhstan: Exploring the Possibility of Creating and Mechanisms of Implementing. Int. J. Energy Econ. Policy 2017, 7, 164–170. [Google Scholar]
- Slattery, M.C.; Lantz, E.; Johnson, B.L. State and Local Economic Impacts from Wind Energy Projects: Texas Case Study. Energy Policy 2011, 39, 7930–7940. [Google Scholar] [CrossRef]
- Gagliano, A.; Patania, F.; Capizzi, A.; Nocera, F.; Galesi, A. A Proposed Methodology for Estimating the Performance of Small Wind Turbines in Urban Areas. Smart Innov. Syst. Technol. 2012, 12, 539–548. [Google Scholar]
- European Commission. External Costs. Research Results on Socio-Environmental Damages Due to Electricity and Transport; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Balat, M. A Review of Modern Wind Turbine Technology. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 1561–1572. [Google Scholar] [CrossRef]
- World Wind Energy Association. Wind Power Capacity Reaches 539 GW, 52.6 GW Added in 2017. Available online: https://wwindea.org/blog/2018/02/12/2017-statistics/ (accessed on 25 July 2018).
- Thomas, B.G.; Urquhart, J. Wind Energy for the 1990s and Beyond. J. Energy Convers. Manag. 1996, 37, 1741–1752. [Google Scholar]
- Ejdemo, T.; Soderholm, P. Wind Power, Regional Development and Benefit-Sharing: The Case of Northern Sweden. Renew. Sustain. Energy Rev. 2015, 47, 476–485. [Google Scholar] [CrossRef]
- Shakeel, S.R.; Takala, J.; Zhu, L.D. Commercialization of Renewable Energy Technologies: A Ladder Building Approach. Renew. Sustain. Energy Rev. 2017, 78, 855–867. [Google Scholar] [CrossRef]
- Singh, S.; Bhatti, T.S.; Kothari, D.P. Indian Scenario of Wind Energy: Problems and Solutions. Energy Sources Part A Recover. Util. Environ. Eff. 2004, 26, 811–819. [Google Scholar] [CrossRef]
- Kelsey, N.; Meckling, J. Who Wins in Renewable Energy? Evidence from Europe and the United States. Energy Res. Soc. Sci. 2018, 37, 65–73. [Google Scholar] [CrossRef]
- Saavedra, M.M.R.; Fontes, C.H.O.; Freires, F.G.M. Sustainable and Renewable Energy Supply Chain: A System Dynamics Overview. Renew. Sustain. Energy Rev. 2018, 82, 247–259. [Google Scholar] [CrossRef]
- Banshwar, A.; Sharma, N.K.; Sood, Y.R.; Shrivastava, R. Real Time Procurement of Renewable Energy. Renew. Energy 2017, 113, 855–866. [Google Scholar] [CrossRef]
- Ryzhenkov, M.; Ermolenko, B.; Ermolenko, G. Environmental Aspects of Wing Power Engineering. Available online: https://rawi.ru/ru/ekologicheskie-aspektyi-vetroenergetiki/ (accessed on 11 August 2018).
- Mizina, S.V.; Smith, J.B.; Gossen, E.; Speiker, K.F.; Witkowski, S.L. An Evaluation of Adaptation Options for Climate Change Impacts on Agriculture in Kazakhstan. Mitig. Adapt. Strat. Glob. Chang. 1999, 4, 25–41. [Google Scholar] [CrossRef]
- Coronel, A.L.; Rozhkov, D.; Al-Eyd, A.; Raman, N. Republic of Kazakhstan: Selected Issues; International Monetary Fund: Washington, DC, USA, 2011. [Google Scholar]
- Pilifosova, O.V.; Eserkepova, I.B.; Dolgih, S.A. Regional Climate Change Scenarios under Global Warming in Kazakhstan. Clim. Chang. 1997, 36, 23–40. [Google Scholar] [CrossRef]
- Kalyuzhnova, Y.; Pomfret, R. Sustainable Energy in Kazakhstan: Moving to Cleaner Energy in a Resource-Rich Country; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Ministry of National Economy of the Republic of Kazakhstan. Official Statistical Information. Available online: http://stat.gov.kz/ (accessed on 2 August 2018).
- Bukhman, M.; Kaimirasova, S. On Stability of Pulverized Coal Combustion and Reliability of Furnace. Energy Fuel Resour. Kazakhstan 2010, 2, 4–5. [Google Scholar]
- Oprisan, M. Prospects for Coal and Clean Coal Technologies in Kazakhstan; IEA Clean Coal Centre: London, UK, 2011. [Google Scholar]
- European Bank for Reconstruction and Development. Renewable Energy in Kazakhstan; European Bank for Reconstruction and Development: London, UK, 2016. [Google Scholar]
- Drobyshev, A.; Baltakhanova, A. Prospects and Problems of Development of Wind Power Engineering in Kazakhstan; Kazakh Academy of Transport and Communications Named after M. Tynyshpayev: Almaty, Kazakhstan, 2017. [Google Scholar]
- Polyakhov, I. Wind and Solar Energy. Available online: http://kzenergy.kz/2018/01/01/vetryanaya-i-solnechnaya-energetika/ (accessed on 14 August 2018).
- Karatayev, M.; Clarke, M.L. Current Energy Resources in Kazakhstan and the Future Potential of Renewables: A Review. Energy Procedia 2014, 59, 97–104. [Google Scholar] [CrossRef]
- Kashkinbekov, A. Renewable Energy of Kazakhstan. Available online: http://www.confindustria.ge.it/images/downloads/8fb71deab046e5cddf6c75b9f659c435de7a4c71/AREK%20KazEnergy%20Forum.pdf (accessed on 23 July 2018).
- Sabrassov, Y.; Kerimray, A.; Tokmurzin, D.; Tosato, G.; de Miglio, R. Electricity and Heating System in Kazakhstan: Exploring Energy Efficiency Improvement Paths. Energy Policy 2013, 60, 431–444. [Google Scholar]
- Aghbalou, N.; Charki, A.; Elazzouzi, S.R.; Reklaoui, K. A Probabilistic Assessment Approach for Wind Turbine-Site Matching. Int. J. Electr. Power Energy Syst. 2018, 103, 497–510. [Google Scholar] [CrossRef]
- Hetzer, J.; Yu, D.C. An Economic Dispatch Model Incorporating Wind Power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.R.; Lee, K.S. Optimum Hub Height of a Wind Turbine for Maximizing Annual Net Profit. Energy Convers. Manag. 2015, 100, 90–96. [Google Scholar] [CrossRef]
- Albadi, M.H.; El-Saadany, E.F. New Method for Estimating CF of Pitch-Regulated Wind Turbines. Electr. Power Syst. Res. 2010, 80, 1182–1188. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, J.; Jiang, H.; Shi, X. Intelligent Optimized Wind Resource Assessment and Wind Turbines Selection in Huitengxile of Inner Mongolia, China. Appl. Energy 2013, 109, 239–253. [Google Scholar] [CrossRef]
- Chang, T.-P.; Cheng, S.-P.; Liu, F.-J.; Sun, L.-C.; Chang, Y.-P. Site Matching Study of Pitch-Controlled Wind Turbine Generator. Energy Convers. Manag. 2014, 86, 664–669. [Google Scholar] [CrossRef]
- Wang, L.F.; Singh, C. Stochastic Economic Emission Load Dispatch through a Modified Particle Swarm Optimization Algorithm. Electr. Power Syst. Res. 2008, 78, 1466–1476. [Google Scholar] [CrossRef]
- Jin, J.; Zhou, P.; Zhang, M.; Yu, X.; Din, H. Balancing Low-Carbon Power Dispatching Strategy for Wind Power Integrated System. Energy 2018, 149, 914–924. [Google Scholar] [CrossRef]
- Udalov, S.; Zubova, N. Simulation of Wind Speed in the Problems of Wind Power. J. Sib. Fed. Univ. Eng. Technol. 2013, 6, 150–165. [Google Scholar]
- Soloviev, A.; Degtyarev, K. Featherbrained Wind Energy. Available online: https://www.nkj.ru/archive/articles/22733/ (accessed on 28 July 2018).
- ATLAS. Wind Energy Atlas. Available online: http://energy-atlas.kz/WindEnergyAtlas (accessed on 25 July 2018).
- Akhmetov, A. Potential of Wind Power in Kazakhstan: Resource Potential and Environmental Improving Effect of Wind Energy Technologies in Kazakhstan; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2012. [Google Scholar]
- Carta, J.A.; Ramırez, P.; Velazquez, S. A Review of Wind Speed Probability Distributions Used in Wind Energy Analysis: Case Studies in the Canary Islands. Renew. Sustain. Energy Rev. 2009, 13, 933–955. [Google Scholar] [CrossRef]
- Fadare, D.A. The Application of Artificial Neural Networks to Mapping of Wind Speed Profile for Energy Application in Nigeria. Appl. Energy 2010, 87, 934–942. [Google Scholar] [CrossRef]
- Akdag, S.A.; Bagiorgas, H.S.; Mihalakakou, G. Use of Two-Component Weibull Mixtures in the Analysis of Windspeed in the Eastern Mediterranean. Appl. Energy 2010, 87, 2566–2573. [Google Scholar] [CrossRef]
- Darwish, A.; Sayigh, A. Wind Energy Potential in Iraq. Sol. Technol. Wind. 1988, 5, 215–222. [Google Scholar] [CrossRef]
- Soulouknga, M.H.; Oyedepo, S.O.; Doka, S.Y.; Kofane, T.C. Assessment of Wind Energy Potential in the Sudanese Zone in Chad. Energy Power Eng. 2017, 9, 386–402. [Google Scholar] [CrossRef]
- The Royal Academy of Engineering. Wind Turbine Power Calculations. Available online: https://www.raeng.org.uk/publications/other/23-wind-turbine (accessed on 1 August 2018).
- Verma, S.; Meena, R.; Mudgal, A. A Cost-Effective Wind Power-Driven RO Plant for Treatment of Brackish Water. J. Geosci. Environ. Prot. 2015, 3, 40–46. [Google Scholar] [CrossRef]
- Zhang, M.H. Wind Resource Assessment and Micro-Siting: Science and Engineering; John Wiley & Sons: Singapore, 2015. [Google Scholar]
- Trethowan, A.; Webb, A. UNDP Wind Monitoring Sites. Wind Resource and Energy Assessment; United Nations Development Programme: New York, NY, USA, 2008. [Google Scholar]
- United Nations Development Programme. Kazakhstan: Derisking Renewable Energy Investment; United Nations Development Programme: New York, NY, USA, 2017. [Google Scholar]
- KAZEUROPE. Renewable Energy Opportunities in Kazakhstan. Available online: http://kazeurope.com/wp-content/uploads/2016/04/Renewable_Energy_Opportunities_in_Kazakhstan.pdf (accessed on 1 August 2018).
- Gassan-zade, O. National GHG Emission Factors in Former Soviet Union Countries; Institute for Global Environmental Strategies: Kanagawa, Japan, 2004. [Google Scholar]
- United States Agency for International Development. Midterm Evaluation of the Kazakhstan Climate Change Mitigation Program; United States Agency for International Development: Washington, DC, USA, 2017.
- Moro, A.; Lonza, L. Electricity Carbon Intensity in European Member States: Impacts on GHG Emissions of Electric Vehicles. Transp. Res. Part D Transp. Environ. 2017. [Google Scholar] [CrossRef]
- Ensslen, A.; Schucking, M.; Jochem, P.; Steffens, H.; Fichtner, W.; Wollersheim, O.; Stella, K. Empirical Carbon Dioxide Emissions of Electric Vehicles in a French-German Commuter Fleet Test. J. Clean. Prod. 2017, 142, 263–278. [Google Scholar] [CrossRef]
- Huo, H.; Wang, M.; Zhang, X.; He, K.; Gong, H.; Jiang, K.; Jin, Y.; Shi, Y.; Yu, X. Projection of Energy Use and Greenhouse Gas Emissions by Motor Vehicles in China: Policy Options and Impacts. Energy Policy 2012, 43, 37–48. [Google Scholar] [CrossRef]
- Soimakallio, S.; Saikku, L. CO2 Emissions Attributed to Annual Average Electricity Consumption in OECD (the Organisation for Economic Co-operation and Development) Countries. Energy 2012, 38, 13–20. [Google Scholar] [CrossRef]
- Doroshin, G. About the Development Prospects of Wind Power Engineering in the Republic of Kazakhstan. Available online: https://carnegieendowment.org/files/Presentation_-%20Doroshin%20Rus.pdf (accessed on 6 August 2018).
- Vakhguelt, A. Renewable Energy Potential of Kazakhstan. Defect Diffus. Forum 2017, 379, 189–194. [Google Scholar] [CrossRef]
- Cochran, J. Kazakhstan’s Potential for Wind and Concentrated Solar Power. Available online: https://www.kimep.kz/files/downloads/research/Cochran_Wind_and_Concentrated_Solar.pdf (accessed on 4 August 2018).
- Petersen, E. Wind Power Potential of the Djungar Gate and Chilik Corridor; Technical University of Denmark: Copenhagen, Denmark, 1999. [Google Scholar]
- Nazarbayev, N. Global Energy and Ecological Strategy of Sustainable Development in the 21st Century; Ekonomika: Moscow, Russia, 2011. [Google Scholar]
- Wind Energy and Electric Vehicle Review. Kazakhstan First Wind Farm. Available online: https://www.evwind.es/2017/09/04/kazakhstan-first-wind-farm/60907 (accessed on 20 August 2018).
- Afonso, T.L.; Marques, A.C.; Fuinhas, J.A. Strategies to Make Renewable Energy Sources Compatible with Economic Growth. Energy Strategy Rev. 2017, 18, 121–126. [Google Scholar] [CrossRef]
- Vidadili, N.; Suleymanov, E.; Bulut, C.; Mahmudlu, C. Transition to Renewable Energy and Sustainable Energy Development in Azerbaijan. Renew. Sustain. Energy Rev. 2017, 80, 1153–1161. [Google Scholar] [CrossRef]
- Srebotnik, T.; Hardi, P. Prospects for Sustainable Bioenergy Production in Selected Former Communist Countries. Ecol. Indic. 2011, 11, 1009–1019. [Google Scholar] [CrossRef]
- Choukri, K.; Naddami, A.; Hayani, S. Renewable Energy in Emergent Countries: Lessons from Energy Transition in Morocco. Energy Sustain. Soc. 2017, 7, 25. [Google Scholar] [CrossRef]
Zone/Region | Output | Domestic Consumption | Balance |
---|---|---|---|
Western zone, total | 23.562 | 24.574 | −1.012 |
West Kazakhstan Region | 9.931 | 10.157 | −0.226 |
Atyrau Region | 4.557 | 4.995 | −0.438 |
Aktobe Region | 3.791 | 5.294 | −1.503 |
Mangystau Region | 5.283 | 4.128 | +1.155 |
Northern zone, total | 63.581 | 46.132 | +17.449 |
Kostanay Region | 1.300 | 5.143 | −3.843 |
North Kazakhstan Region | 3.229 | 2.978 | +0.251 |
Akmola Region | 0.884 | 3.127 | −2.243 |
Pavlodar Region | 34.205 | 14.124 | +20.081 |
Karaganda Region | 14.033 | 11.473 | +2.560 |
East Kazakhstan Region | 9.930 | 9.287 | +0.643 |
Southern zone, total | 9.733 | 16.851 | −7.118 |
Kyzylorda Region | 1.557 | 2.598 | −1.041 |
South Kazakhstan Region | 0.990 | 4.744 | −3.754 |
Zhambyl Region | 2.895 | 4.512 | −1.617 |
Almaty Region | 4.291 | 4.997 | −0.706 |
Zone/Region | Breakdown of Power Generation Sources in Electricity Production, % of Total | Intensity of GHG Emission, gCO2 eq/kWh | |||
---|---|---|---|---|---|
Coal | Natural Gas | Crude Oil | Oil Products | ||
Western zone | 419.2 | ||||
West Kazakhstan Region | 0.3 | 96.2 | 0.4 | 3.1 | 426.8 |
Atyrau Region | 0.2 | 95.7 | 0.5 | 3.6 | 409.3 |
Aktobe Region | 0.4 | 64.5 | 26.7 | 8.4 | 342.9 |
Mangystau Region | 0.1 | 97.8 | 0.3 | 1.8 | 497.6 |
Northern zone | 828.4 | ||||
Kostanay Region | 96.8 | 2.1 | 0.3 | 0.8 | 723.8 |
North Kazakhstan Region | 98.3 | 0.3 | 0.2 | 1.2 | 902.4 |
Akmola Region | 98.7 | 0.2 | 0.2 | 0.9 | 706.9 |
Pavlodar Region | 98.9 | 0.1 | 0.2 | 0.8 | 966.3 |
Karaganda Region | 96.0 | 0.3 | 1.3 | 2.4 | 1129.7 |
East Kazakhstan Region | 99.1 | 0.1 | 0.1 | 0.7 | 541.2 |
Southern zone | 630.1 | ||||
Kyzylorda Region | 0.3 | 0.1 | 88.4 | 11.2 | 799.6 |
South Kazakhstan Region | 3.1 | 59.4 | 0.1 | 37.4 | 511.7 |
Zhambyl Region | 0.2 | 52.6 | 0.4 | 46.8 | 594.3 |
Almaty Region | 92.5 | 3.7 | 0.3 | 3.5 | 614.8 |
Zone/Location | Winter | Spring | Summer | Autumn | Average Annual (V) | |||||
---|---|---|---|---|---|---|---|---|---|---|
50 m | 100 m | 50 m | 100 m | 50 m | 100 m | 50 m | 100 m | 50 m | 100 m | |
Zone I | ||||||||||
Aktau | 6.5 | 8.5 | 6.5 | 8.5 | 5.5 | 8.0 | 6.5 | 8.0 | 6.25 | 8.25 |
Aktobe | 6.0 | 9.0 | 6.5 | 8.5 | 5.0 | 7.5 | 5.5 | 8.5 | 5.75 | 8.38 |
Atyrau | 6.0 | 8.0 | 6.0 | 8.0 | 6.0 | 8.0 | 6.5 | 8.5 | 6.13 | 8.13 |
Emba | 5.5 | 8.0 | 6.0 | 8.0 | 5.0 | 7.5 | 5.5 | 8.0 | 5.50 | 8.00 |
Fort Shevchenko | 6.5 | 9.5 | 6.0 | 8.5 | 5.0 | 7.5 | 6.5 | 8.5 | 6.00 | 8.50 |
Kandyagash | 6.0 | 9.0 | 6.0 | 8.5 | 5.0 | 7.0 | 5.5 | 8.5 | 5.63 | 8.25 |
Karabatan | 5.0 | 8.0 | 5.5 | 7.5 | 5.0 | 7.5 | 6.0 | 7.5 | 5.38 | 7.63 |
Kulsary | 5.0 | 7.0 | 5.5 | 7.5 | 5.0 | 7.0 | 5.0 | 7.0 | 5.13 | 7.13 |
Makat | 5.0 | 7.0 | 5.5 | 7.0 | 5.0 | 7.5 | 5.0 | 7.0 | 5.13 | 7.13 |
Shalkar | 5.0 | 7.0 | 5.5 | 7.5 | 5.0 | 7.5 | 5.5 | 7.5 | 5.25 | 7.38 |
Uralsk | 5.5 | 8.0 | 5.5 | 7.5 | 4.5 | 6.0 | 5.0 | 7.0 | 5.13 | 7.13 |
Zhanaozen | 6.0 | 7.5 | 6.5 | 8.0 | 6.0 | 8.0 | 6.5 | 8.0 | 6.25 | 7.88 |
Zone II | ||||||||||
Arkalyk | 6.0 | 8.0 | 6.0 | 7.5 | 5.5 | 7.0 | 6.0 | 8.0 | 5.88 | 7.63 |
Astana | 6.5 | 8.5 | 6.5 | 8.0 | 5.5 | 7.0 | 6.0 | 8.0 | 6.13 | 7.88 |
Atbasar | 5.5 | 7.5 | 5.5 | 8.0 | 4.5 | 6.0 | 5.0 | 7.5 | 5.13 | 7.25 |
Ekibastuz | 5.5 | 7.5 | 5.0 | 7.0 | 4.5 | 6.5 | 5.5 | 7.5 | 5.13 | 7.13 |
Erementau | 6.0 | 8.5 | 6.0 | 7.5 | 5.5 | 7.0 | 6.0 | 8.0 | 5.88 | 7.75 |
Karaganda | 5.5 | 7.5 | 5.0 | 7.5 | 4.5 | 6.5 | 5.5 | 7.5 | 5.13 | 7.25 |
Karkaralinsk | 6.0 | 8.0 | 5.5 | 7.5 | 5.0 | 7.5 | 6.0 | 8.0 | 5.63 | 7.75 |
Kokshetau | 5.5 | 7.5 | 5.5 | 8.0 | 4.5 | 6.0 | 5.0 | 7.5 | 5.13 | 7.25 |
Kostanay | 6.0 | 8.5 | 6.0 | 8.5 | 5.0 | 6.5 | 6.0 | 7.5 | 5.75 | 7.75 |
Pavlodar | 5.0 | 7.5 | 5.0 | 7.0 | 4.5 | 6.0 | 5.0 | 7.0 | 4.88 | 6.88 |
Petropavlovsk | 4.5 | 6.0 | 4.5 | 6.0 | 4.0 | 5.5 | 4.5 | 6.0 | 4.38 | 5.88 |
Schuchinsk | 5.5 | 7.0 | 5.5 | 7.5 | 4.5 | 6.0 | 5.0 | 6.5 | 5.13 | 6.75 |
Stepnogorsk | 5.5 | 7.5 | 5.5 | 7.0 | 4.5 | 6.0 | 5.0 | 7.0 | 5.13 | 6.88 |
Urzhar | 6.5 | 7.5 | 6.0 | 8.0 | 5.5 | 7.5 | 6.5 | 8.5 | 6.13 | 7.88 |
Zhezkazgan | 5.5 | 8.0 | 5.0 | 7.5 | 5.0 | 7.5 | 5.0 | 7.5 | 5.13 | 7.63 |
Zone III | ||||||||||
Akbakay | 6.0 | 8.0 | 6.0 | 7.5 | 5.5 | 7.5 | 6.0 | 7.5 | 5.88 | 7.63 |
Aralsk | 5.0 | 6.5 | 6.0 | 7.5 | 5.5 | 7.5 | 5.0 | 7.0 | 5.38 | 7.13 |
Chilik | 6.0 | 8.5 | 6.0 | 9.0 | 5.0 | 8.0 | 6.0 | 9.0 | 5.75 | 8.63 |
Djungar | 8.0 | 9.5 | 7.5 | 8.0 | 7.0 | 8.0 | 8.0 | 9.0 | 7.63 | 8.63 |
Kapshagay | 6.0 | 7.5 | 5.0 | 7.5 | 5.0 | 7.0 | 5.5 | 7.5 | 5.38 | 7.38 |
Karakur | 7.0 | 8.0 | 6.5 | 7.5 | 6.0 | 7.5 | 7.0 | 7.5 | 6.63 | 7.63 |
Kordai | 7.0 | 9.0 | 6.0 | 8.0 | 5.5 | 7.5 | 6.5 | 9.0 | 6.25 | 8.38 |
Kyzylorda | 5.0 | 6.5 | 5.5 | 7.0 | 5.0 | 7.0 | 5.0 | 7.0 | 5.13 | 6.88 |
Mirny | 5.5 | 7.0 | 5.0 | 7.0 | 5.0 | 6.5 | 5.5 | 7.0 | 5.25 | 6.88 |
Sarkand | 6.0 | 7.5 | 5.0 | 7.0 | 5.0 | 7.0 | 5.5 | 7.5 | 5.38 | 7.25 |
Saryzhas | 7.5 | 8.0 | 6.5 | 8.0 | 6.5 | 8.0 | 7.0 | 8.5 | 6.88 | 8.13 |
Taldykorgan | 6.0 | 8.0 | 5.0 | 7.0 | 5.0 | 7.0 | 5.5 | 7.5 | 5.38 | 7.38 |
Taraz | 7.0 | 9.0 | 6.0 | 7.5 | 6.5 | 8.0 | 7.0 | 8.5 | 6.63 | 8.25 |
Zharkent | 7.5 | 10.0 | 6.0 | 8.0 | 5.5 | 7.5 | 8.0 | 9.5 | 6.75 | 8.75 |
Zhuzimdyk | 8.0 | 8.5 | 7.5 | 8.5 | 7.5 | 8.5 | 7.5 | 9.0 | 7.63 | 8.63 |
Zone/Location | V | k | c | f(V) | ||||
---|---|---|---|---|---|---|---|---|
50 m | 100 m | 50 m | 100 m | 50 m | 100 m | 50 m | 100 m | |
Zone I | ||||||||
Aktau | 6.25 | 8.25 | 2.45 | 2.18 | 7.74 | 8.02 | 0.92 | 0.85 |
Aktobe | 5.75 | 8.38 | 1.68 | 1.97 | 8.03 | 8.14 | 0.79 | 0.83 |
Atyrau | 6.13 | 8.13 | 1.97 | 2.03 | 7.98 | 7.65 | 0.85 | 0.90 |
Emba | 5.50 | 8.00 | 1.80 | 1.88 | 6.61 | 6.83 | 0.51 | 0.88 |
Fort Shevchenko | 6.00 | 8.50 | 2.43 | 2.21 | 7.88 | 8.11 | 0.94 | 0.92 |
Kandyagash | 5.63 | 8.25 | 1.83 | 1.97 | 7.92 | 7.75 | 0.63 | 0.72 |
Karabatan | 5.38 | 7.63 | 2.59 | 2.92 | 7.21 | 7.80 | 0.68 | 0.89 |
Zhanaozen | 6.25 | 7.88 | 2.05 | 2.14 | 6.23 | 6.09 | 0.82 | 0.73 |
Zone II | ||||||||
Arkalyk | 5.88 | 7.63 | 1.88 | 2.11 | 7.89 | 7.12 | 0.93 | 0.72 |
Astana | 6.13 | 7.88 | 1.74 | 2.16 | 6.60 | 7.02 | 0.74 | 0.86 |
Erementau | 5.88 | 7.75 | 1.66 | 1.86 | 8.03 | 8.82 | 0.87 | 0.90 |
Karkaralinsk | 5.63 | 7.75 | 1.69 | 1.65 | 6.14 | 6.08 | 0.91 | 0.70 |
Kostanay | 5.75 | 7.75 | 1.70 | 1.68 | 6.62 | 6.15 | 0.74 | 0.79 |
Urzhar | 6.13 | 7.88 | 2.48 | 2.59 | 6.07 | 6.42 | 0.91 | 0.85 |
Zhezkazgan | 5.13 | 7.63 | 2.06 | 2.18 | 6.22 | 6.84 | 0.88 | 0.83 |
Zone III | ||||||||
Akbakay | 5.88 | 7.63 | 2.02 | 1.95 | 7.23 | 7.04 | 0.66 | 0.79 |
Chilik | 5.75 | 8.63 | 2.74 | 2.87 | 8.32 | 8.50 | 0.70 | 0.92 |
Djungar | 7.63 | 8.63 | 2.55 | 2.96 | 8.59 | 8.97 | 0.89 | 0.93 |
Karakur | 6.63 | 7.63 | 1.63 | 1.78 | 7.66 | 7.94 | 0.61 | 0.74 |
Kordai | 6.25 | 8.38 | 1.87 | 1.69 | 6.95 | 6.47 | 0.87 | 0.67 |
Saryzhas | 6.88 | 8.13 | 1.70 | 1.82 | 7.34 | 7.22 | 0.84 | 0.82 |
Taraz | 6.63 | 8.25 | 1.99 | 2.03 | 7.96 | 7.67 | 0.71 | 0.85 |
Zharkent | 6.75 | 8.75 | 2.09 | 2.26 | 7.55 | 7.90 | 0.62 | 0.73 |
Zhuzimdyk | 7.63 | 8.63 | 1.89 | 1.71 | 7.87 | 7.94 | 0.88 | 0.81 |
Zone/Location | GP | TP | EP | |||
---|---|---|---|---|---|---|
50 m | 100 m | 50 m | 100 m | 50 m | 100 m | |
Zone I | ||||||
Aktau | 745 | 1932 | 287 | 429 | 42 | 125 |
Aktobe | 288 | 415 | 62 | 84 | 4 | 23 |
Atyrau | 412 | 899 | 76 | 102 | 15 | 39 |
Emba | 659 | 1528 | 308 | 497 | 22 | 152 |
Fort Shevchenko | 1496 | 2145 | 499 | 636 | 46 | 181 |
Karabatan | 128 | 483 | 66 | 95 | 10 | 19 |
Zone II | ||||||
Astana | 412 | 590 | 108 | 144 | 22 | 55 |
Erementau | 995 | 1847 | 501 | 783 | 49 | 246 |
Kostanay | 250 | 572 | 54 | 86 | 3 | 20 |
Urzhar | 1266 | 2070 | 337 | 522 | 33 | 176 |
Zhezkazgan | 157 | 336 | 60 | 97 | 6 | 22 |
Zone III | ||||||
Akbakay | 202 | 378 | 72 | 121 | 8 | 26 |
Chilik | 259 | 501 | 108 | 166 | 17 | 49 |
Djungar | 1996 | 2587 | 832 | 954 | 208 | 283 |
Saryzhas | 1211 | 1806 | 403 | 512 | 50 | 197 |
Taraz | 985 | 1458 | 315 | 489 | 61 | 142 |
Zhuzimdyk | 1018 | 1671 | 507 | 554 | 129 | 156 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jianzhong, X.; Assenova, A.; Erokhin, V. Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan. Sustainability 2018, 10, 3315. https://doi.org/10.3390/su10093315
Jianzhong X, Assenova A, Erokhin V. Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan. Sustainability. 2018; 10(9):3315. https://doi.org/10.3390/su10093315
Chicago/Turabian StyleJianzhong, XU, Albina Assenova, and Vasilii Erokhin. 2018. "Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan" Sustainability 10, no. 9: 3315. https://doi.org/10.3390/su10093315
APA StyleJianzhong, X., Assenova, A., & Erokhin, V. (2018). Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan. Sustainability, 10(9), 3315. https://doi.org/10.3390/su10093315