Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Treatments and Design
2.3. Measurements and Calculations
2.3.1. Morphological Index
2.3.2. Quality Index
2.3.3. Water Use Efficiency
2.3.4. Total N Measurement
2.3.5. Soil NO3-N Content
2.3.6. Economic Benefits
2.4. Statistical Analysis
3. Results
3.1. Growth Characteristics
3.2. Yield and Water Use Efficiency
3.3. Quality
3.4. Total Nitrogen Content in Different Plant Organs
3.5. The Distribution of Residual Soil NO3-N
3.6. Economic Benefit Analysis
4. Discussion
4.1. Growth Characteristics, Yield, Quality, Water Use Efficiency and Economic Benefits
4.2. Irrigation Levels and Irrigation Frequencies Adjust the Soil NO3-N Distribution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The Effects of Mulch and Nitrogen Fertilizer on the Soil Environment of Crop Plants. 2019. Available online: https://www.researchgate.net/profile/Wang_Xiukang2/publication/328118479_The_Effects_of_Mulch_and_Nitrogen_Fertilizer_on_the_Soil_Environment_of_Crop_Plants/links/5bb86c2b299bf1049b701869/The-Effects-of-Mulch-and-Nitrogen-Fertilizer-on-the-Soil-Environment-of-Crop-Plants.pdf (accessed on 20 December 2018).
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Zhang, X.S.; Liu, Z.H.; Jiang, L.H.; Yan, F.; Sui, F.G. Study on the Technology of Soil Nitrate Nitrogen Leaching Preventive and Control in Mushroom House. J. Qingdao Agric. Univ. 2009, 26, 207–211. [Google Scholar]
- Huang, X.; Song, Y.; Li, M.; Li, J.; Huo, Q.; Cai, X.; Zhu, T.; Hu, M.; Zhang, H. A high-resolution ammonia emission inventory in China. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hu, K.; Fan, Z.; Wei, Y.; Lin, S.; Wang, J. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate_N model. Agric. Water Manag. 2013, 128, 72–84. [Google Scholar] [CrossRef]
- Xie, X.; Xie, H.; Shu, C.; Wu, Q.; Lu, H. Estimation of Ecological Compensation Standards for Fallow Heavy Metal-Polluted Farmland in China Based on Farmer Willingness to Accept. Sustainability 2017, 9, 1859. [Google Scholar] [CrossRef]
- Zhang, F.; Li, C.; Wang, Z.; Li, X. Long-term effects of management history on carbon dynamics in agricultural soils in Northwest China. Environ. Earth Sci. 2015, 75, 65. [Google Scholar] [CrossRef]
- Li, L.; Wu, W.; Giller, P.; O’Halloran, J.; Liang, L.; Peng, P.; Zhao, G. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China. Sustainability 2018, 10, 983. [Google Scholar] [CrossRef]
- Wang, X.; Yun, J.; Shi, P.; Li, Z.; Li, P.; Xing, Y. Root Growth, Fruit yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels. J. Plant Growth Regul. 2018. [Google Scholar] [CrossRef]
- Dong, T.L.; Doyle, R.; Beadle, C.L.; Corkrey, R.; Quat, N.X. Impact of short-rotation Acacia hybrid plantations on soil properties of degraded lands in Central Vietnam. Soil Res. 2014, 52, 271–281. [Google Scholar] [CrossRef]
- Ju, X.; Xing, G.; Chen, X.; Zhang, S.; Zhang, L.; Liu, X.; Cui, Z.; Yin, B.; Christie, P.; Zhu, Z.; Zhang, F. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; He, Z.; Du, J.; Zhao, L.; Chen, L.; Zhu, X.; Lin, P.; Fang, S.; Zhao, M.; Tian, Q. Regional Variability of Agriculturally Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014. Sustainability 2018, 10, 1393. [Google Scholar] [CrossRef]
- Kong, L.; Xie, Y.; Hu, L.; Si, J.; Wang, Z. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, P.; Li, Z.B.; Yu, G.Q. Soil water-salt dynamics state and associated sensitivity factors in an irrigation district of the loess area: A case study in the Luohui Canal Irrigation District, China. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Shi, S.; Nan, L.; Smith, K. The current status, Problems, and Prospects of Alfalfa (Medicago sativa L.) Breeding in China. Agronomy 2017, 7, 1. [Google Scholar] [CrossRef]
- Wei, Y.-ni.; Fan, W.; Wang, W.; Deng, L. Identification of nitrate pollution sources of groundwater and analysis of potential pollution paths in loess regions: a case study in Tongchuan region, China. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Cole, K.J. Soil nutrient variability and groundwater nitrate-N in agricultural fields. Sci. Total Environ. 2018, 627, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Pang, Z.; Liu, J.; Ma, J.; Gates, J. Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: Insights from environmental tracers. Hydrogeol. J. 2017, 25, 2049–2065. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant Soil 2006, 288, 233–248. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Tang, M.; Jiang, H.; Chen, W.; Zhang, W.; Wang, R.; Liu, L. Functional and Integrative Analysis of the Proteomic Profile of Radish Root under Pb Exposure. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Staver, K.W.; Brinsfield, R.B. Using cereal grain winter cover crops to reduce groundwater nitrate contamination in the mid-Atlantic coastal plain. J. Soil Water Conser. 1998, 53, 230–240. [Google Scholar]
- Thorup-Kristensen, K. Root Development of Nitrogen Catch Crops and of a Succeeding Crop of Broccoli. Acta Agriculturae Scandinavica Section B Soil Plant Sci. 1993, 43, 58–64. [Google Scholar] [CrossRef]
- Min, J.; Shi, W.; Xing, G.; Zhang, H.; Zhu, Z. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems. Nutr. Cycl. Ecosyst. 2011, 91, 31–39. [Google Scholar] [CrossRef]
- Xiong, X.; Chang, L.; Khalid, M.; Zhang, J.; Huang, D. Alleviation of Drought Stress by Nitrogen Application in Brassica Campestris ssp. Chinensis L. Agronomy 2018, 8, 66. [Google Scholar] [CrossRef]
- Hu, L.; Liao, W.; Dawuda, M.M.; Yu, J.; Lv, J. Appropriate NH4 +: NO3− ratio improves low light tolerance of mini Chinese cabbage seedlings. BMC Plant Biol. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Roberto, C.A.; Swinburn, B.; Hawkes, C.; Huang, T.K.; Costa, S.A.; Ashe, M.; Zwicker, L.; Cawley, J.H.; Brownell, K.D. Patchy progress on obesity prevention: emerging examples, entrenched barriers, and new thinking. Lancet 2015, 385, 2400–2409. [Google Scholar] [CrossRef]
- Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J.H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae 2010, 127, 162–171. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Marra, F.P.; Marino, G.; Marchese, A.; Caruso, T. Effects of different irrigation regimes on a superhigh-density olive grove cv. “Arbequina”: Vegetative growth, productivity and polyphenol content of the oil. Irrig. Sci. 2016, 34, 313–325. [Google Scholar] [CrossRef]
- Colella, T.; Candido, V.; Campanelli, G.; Camele, I.; Battaglia, D. Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica 2014, 42, 235–246. [Google Scholar] [CrossRef]
- Ayars, J.E.; Fulton, A.; Taylor, B. Subsurface drip irrigation in California—Here to stay? Agricul. Water Manag. 2015, 157, 39–47. [Google Scholar] [CrossRef]
- Rogers, M.-J.; Lawson, A.; Kelly, K. Forage options for Dairy Farms with Reduced Water Availability in the Southern Murray Darling Basin of Australia. Sustainability 2017, 9, 2369. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.W.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Rodriguez-Ortega, W.M.; Martinez, V.; Rivero, R.M.; Camara-Zapata, J.M.; Mestre, T.; Garcia-Sanchez, F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricul. Water Manag. 2017, 183, 158–168. [Google Scholar] [CrossRef]
- Savvas, D.; Stamati, E.; Tsirogiannis, I.L.; Mantzos, N.; Barouchas, P.E.; Katsoulas, N.; Kittas, C. Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems. Agricul. Water Manag. 2007, 91, 102–111. [Google Scholar] [CrossRef]
- Hanson, B.; May, D.; Voss, R.; Cantwell, M.; Rice, R. Response of garlic to irrigation water. Agricul. Water Manag. 2003, 58, 29–43. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1998; pp. 1–15. Available online: https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf (accessed on 21 December 2018).
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass; Royal Society: London, UK, 1948. [Google Scholar]
- Wang, H. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Scientia Horticulturae 2019, 243, 357–366. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Yang, J.; Huang, G.; Yao, R. Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model. Agricul. Water Manag. 2017, 185, 13–26. [Google Scholar] [CrossRef]
- López-Vicente, M.; Álvarez, S. Stability and patterns of topsoil water content in rainfed vineyards, olive groves, and cereal fields under different soil and tillage conditions. Agricul. Water Manag. 2018, 201, 167–176. [Google Scholar] [CrossRef]
- Yu, G.; Yang, Y.; Tu, Z.; Jie, Y.; Yu, Q.; Hu, X.; Yu, H.; Zhou, R.; Chen, X.; Wang, H. Modeling the water-satisfied degree for production of the main food crops in China. Sci. Total Environ. 2016, 547, 215–225. [Google Scholar] [CrossRef]
- Chilundo, M. Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semiarid loamy sand. Agricul. Water Manag. 2016, 168, 68–77. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, J.Y.; Tan, C.S.; Drury, C.F.; Reynolds, W.D.; Zhang, T.Q.; Bai, Y.L.; Jin, J.; He, P.; Hoogenboom, G. Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricul. Water Manag. 2011, 98, 1105–1111. [Google Scholar] [CrossRef]
- Goudriaan, J.; Monteith, J.L. A Mathematical Function for Crop Growth Based on Light Interception and Leaf Area Expansion. Ann. Botany 1990, 66, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Ramiro, D.A.; Barbosa, M.D.A.; Santos, F.D.; Gomez, S.G.P.; Massola Júnior, N.S.; Lam, E.; Carrer, H. Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance. Plant Biotechnol. J. 2016, 14, 1826–1837. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Optimizing supplemental irrigation: tradeoffs between profitability and sustainability. Agricul. Water Manag. 2009, 96, 511–516. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Adams, W.A. Loss of nitrogen in compacted grassland soil by simultaneous nitrification and denitrification. Plant Soil 1998, 200, 265–277. [Google Scholar] [CrossRef]
- Friedl, J.; Scheer, C.; Rowlings, D.W.; Mcintosh, H.V.; Strazzabosco, A.; Warner, D.I.; Grace, P.R. Denitrification losses from an intensively managed subtropical pasture—Impact of soil moisture on the partitioning of N 2 and N 2° emissions. Soil Biol. Biochem. 2016, 92, 58–66. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of nonequilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Lv, J.; Liu, H.; Wang, X.; Li, K.; Tian, C.; Liu, X. Highly Arid Oasis Yield, Soil Mineral N Accumulation and N Balance in a Wheat-Cotton Rotation with Drip Irrigation and Mulching Film Management. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Fernandez, R.T.; Fisher, P.R.; Hitchcock, D.R.; Lea-Cox, J.; Owen, J.S.; Oki, L.R.; White, S.A. Water Use and Treatment in Container-Grown Specialty Crop Production: A Review. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef]
- Sakadevan, K.; Nguyen, M.L. Livestock production and its impact on nutrient pollution and greenhouse gas emissions. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2017; Available online: https://www.sciencedirect.com/science/article/pii/S0065211316301080 (accessed on 20 December 2018).
- Molénat, J.; Durand, P.; Gascuel-Odoux, C.; Davy, P.; Gruau, G. Mechanisms of Nitrate Transfer from Soil to Stream in an Agricultural Watershed of French Brittany. Water Air Soil Pollut. 2002, 133, 161–183. [Google Scholar] [CrossRef]
- Crevoisier, D.; Popova, Z.; Mailhol, J.C.; Ruelle, P. Assessment and simulation of water and nitrogen transfer under furrow irrigation. Agricul. Water Manag. 2008, 95, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Postma, D.; Boesen, C.; Kristiansen, H.; Larsen, F. Nitrate Reduction in an Unconfined Sandy Aquifer: Water Chemistry, Reduction Processes, and Geochemical Modeling. Water Resour. Res. 1991, 27, 2027–2045. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M.; Lin, W.D. Advanced applications of solar energy in agricultural greenhouses. Renew. Sust. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Bai, H.; Lu, X.; Xiang, Y. New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: A case study in South China. Energy Convers. Manag. 2018, 156, 618–625. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
Years | Soil Depth (cm) | BD (g cm−3) | OM (g kg−1) | pH | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
2014 | 0–20 | 1.42 | 14.33 | 8.2 | 0.62 | 0.59 | 12.8 | 34.2 | 101.2 |
20–40 | 1.38 | 15.44 | 8.4 | 0.76 | 0.52 | 16.8 | 21.6 | 97.6 | |
40–60 | 1.49 | 11.66 | 8.3 | 0.87 | 0.49 | 16.7 | 26.7 | 107.1 | |
60–80 | 1.43 | 13.59 | 8.3 | 0.71 | 0.53 | 15.5 | 13.5 | 91.5 | |
2015 | 0–20 | 1.40 | 16.63 | 8.0 | 0.71 | 0.68 | 14.8 | 18.7 | 114.6 |
20–40 | 1.47 | 15.88 | 8.3 | 0.65 | 0.53 | 15.6 | 15.8 | 103.3 | |
40–60 | 1.44 | 14.52 | 8.3 | 0.86 | 0.52 | 17.1 | 14.6 | 88.6 | |
60–80 | 1.37 | 13.49 | 8.1 | 0.79 | 0.42 | 16.8 | 12.6 | 94.5 | |
2016 | 0–20 | 1.38 | 14.54 | 8.2 | 0.87 | 0.49 | 11.6 | 22.1 | 109.2 |
20–40 | 1.44 | 15.87 | 8.2 | 0.79 | 0.56 | 14.7 | 16.7 | 115.8 | |
40–60 | 1.49 | 13.15 | 8.0 | 0.66 | 0.54 | 16.2 | 17.4 | 110 | |
60–80 | 1.40 | 12.98 | 8.1 | 0.75 | 0.46 | 14.4 | 10.9 | 94.4 |
Treatments | Yield (t ha−1) | WUE (kg m−3) | |||||
---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2014 | 2015 | 2016 | ||
WL | F2 | 13.45 ± 0.60 e | 13.89 ± 0.62 f | 11.85 ± 0.28 g | 20.66 ± 0.90 c | 21.32 ± 0.93 c | 18.5 ± 0.81 e |
F4 | 12.9 ± 0.58 e | 13.55 ± 0.61 f | 12.63 ± 0.30 f | 20.4 ± 0.25 c | 21.43 ± 0.26 c | 20.31 ± 0.25 c | |
F8 | 9.79 ± 0.44 f | 8.73 ± 0.39 g | 8.69 ± 0.20 h | 16.83 ± 0.39 d | 15.01 ± 0.35 e | 15.19 ± 0.36 f | |
WM | F2 | 24.05 ± 1.08 b | 26.14 ± 1.17 b | 23.34 ± 0.55 b | 26.15 ± 1.02 b | 28.42 ± 1.11 b | 25.81 ± 1.01 b |
F4 | 27.3 ± 1.23 a | 28.34 ± 1.27 a | 25.88 ± 0.61 a | 29.62 ± 0.58 a | 30.76 ± 0.60 a | 28.56±0.56 a | |
F8 | 17.79 ± 0.80 d | 18.08 ± 0.81 d | 15.73 ± 0.37 e | 20.55 ± 1.09 c | 20.89 ± 1.11 c | 18.49 ± 0.98 e | |
WH | F2 | 21.69 ± 0.97 c | 22.9 ± 1.03 c | 22.5 ± 0.53 c | 18.08 ± 0.43 d | 19.1 ± 0.46 d | 19.08 ± 0.46 d,e |
F4 | 24.27 ± 1.09 b | 23.94 ± 1.08 c | 22.95 ± 0.54 bc | 21.02 ± 0.63 c | 20.73 ± 0.62 c | 20.21 ± 0.61 c,d | |
F8 | 18.66 ± 0.84 d | 15.96 ± 0.72 e | 17.23 ± 0.40 d | 16.91 ± 0.65 d | 14.47 ± 0.55 e | 15.88 ± 0.61 f | |
CK | 16.49 ± 0.36 d | 17.07 ± 0.83 d | 16.06 ± 0.45 d | 13.51 ± 0.81 e | 13.93 d ± 0.45 e | 13.15 ± 0.55 g | |
Significance level (F value) | |||||||
Irrigation amount | 408.26 ** | 436.97 ** | 1630.63 ** | 246.43 ** | 368.16 ** | 246.62 ** | |
Irrigation Frequency | 112.42 ** | 194.16 ** | 573.26 ** | 140.38 ** | 271.52 ** | 222.25 ** | |
Amount × Frequency | 11.16 ** | 6.93 ** | 42.71 ** | 17.81 ** | 7.13 ** | 17.55 ** |
Treatments | Nitrate (mg kg−1) | Vitamin C (mg (100 g)−1) | |||||
---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2014 | 2015 | 2016 | ||
WL | F2 | 278.25 ± 8.43 c | 270.93 ± 6.32 c | 273.92 ± 3.60 c | 42.92 ± 2.50 f,g | 42.25 ± 0.75 f | 42.75 ± 0.56 d |
F4 | 306.13 ± 9.05 b | 301.56 ± 7.89 b | 298.53 ± 10.53 b | 44.00 ± 2.64 d,e,f | 43.25 ± 0.53 e | 43.10 ± 0.35 d | |
F8 | 351.14 ± 7.94 a | 346.82 ± 3.93 a | 351.17 ± 10.67 a | 41.36 ± 2.86 g | 40.60 ± 0.45 g | 40.05 ± 1.01 e | |
WM | F2 | 251.26 ± 7.45 e | 247.55 ± 6.58 f | 273.26 ± 8.65 c | 48.82 ± 3.35 b | 47.60 ± 0.26 b | 48.01 ± 0.61 b |
F4 | 270.10 ± 5.81 c,d | 265.83 ± 6.24 d,e | 276.05 ± 6.51 c | 50.16 ± 3.16 a | 48.90 ± 0.50 a | 49.25 ± 0.30 a | |
F8 | 290.17 ± 6.39 c | 285.66 ± 4.96 c | 298.53 ± 9.95 b | 44.35 ± 3.31 d,e | 43.15 ± 0.58 e,f | 43.05 ± 0.73 d | |
WH | F2 | 230.64 ± 7.44 g | 225.63 ±7.14 g | 213.06 ± 7.65 e | 46.77 ± 3.12 b,c,d | 45.91 ± 0.31 c,d | 45.10 ± 0.79 c |
F4 | 247.82 ± 7.67 e,f | 241.82 ± 6.20 f | 235.82 ± 8.36 d | 47.57 ± 3.15 b,c | 46.75 ± 0.39 b,c | 47.25 ± 0.23 b | |
F8 | 261.19 ± 5.75 d | 258.61 ± 4.12 e | 279.15 ± 13.78 c | 44.78 ± 3.55 d,e | 43.71 ± 0.92 e | 45.20 ± 0.38 c | |
CK | 267.52 ± 6.70 c,d | 267.60 ± 1.67 d,e | 280.54 ± 3.83 c | 46.51 ± 3.02 b,c,d | 45.55 ± 0.09 d | 44.75 ± 1.34 c | |
Significance level (F value) | |||||||
Irrigation amount | 5.36 * | 11.22 * | 4.07 * | 102.35 ** | 169.45 ** | 97.50 ** | |
Irrigation Frequency | 12.23 * | 5.41 * | 9.74 * | 87.19 ** | 127.22 ** | 75.09 ** | |
Amount × Frequency | 9.06 ** | 12.81 ** | 7.10 ** | 13.25 ** | 9.13 ** | 11.84 ** |
Treatments | 2014 | 2015 | 2016 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Residual N (kg ha−1) | Plant N Uptake (kg ha−1) | Leached N (kg ha−1) | Residual N (kg ha−1) | Plant N Uptake (kg ha−1) | Leached N (kg ha−1) | Residual N (kg ha−1) | Plant N Uptake (kg ha−1) | Leached N (kg ha−1) | ||
WL | F2 | 107.00 | 36.78 | 26.79 | 117.67 | 34.45 | 19.05 | 127.24 | 39.43 | 20.57 |
F4 | 100.62 | 39.89 | 32.72 | 114.56 | 39.13 | 27.30 | 114.05 | 45.49 | 26.97 | |
F8 | 124.70 | 31.74 | 38.12 | 118.01 | 27.24 | 42.82 | 122.34 | 31.62 | 35.33 | |
WM | F2 | 104.21 | 78.93 | 13.03 | 95.04 | 71.12 | 15.95 | 100.23 | 80.38 | 10.60 |
F4 | 92.07 | 86.39 | 24.26 | 96.99 | 76.71 | 21.93 | 102.30 | 84.92 | 20.06 | |
F8 | 102.55 | 56.62 | 36.02 | 94.51 | 52.90 | 33.70 | 111.62 | 61.93 | 25.02 | |
WH | F2 | 101.55 | 63.66 | 17.38 | 115.01 | 59.79 | 6.18 | 98.73 | 67.85 | 10.03 |
F4 | 112.66 | 67.59 | 16.11 | 97.54 | 64.55 | 16.53 | 94.37 | 74.07 | 18.23 | |
F8 | 114.87 | 58.28 | 22.58 | 101.62 | 51.99 | 23.55 | 102.25 | 62.19 | 23.26 | |
CK | 90.89 | 48.22 | 40.88 | 94.51 | 46.34 | 29.71 | 87.08 | 53.35 | 41.78 |
Treatments | Water Fee ($ ha−1) | Other Inputs ($ ha−1) | Gross Profit ($ ha−1) | Economic Benefits ($ ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2014 | 2015 | 2016 | 2014 | 2015 | 2016 | 2014 | 2015 | 2016 | ||
WL | F2 | 103 | 109 | 84 | 1233 | 1242 | 1198 | 1947 | 2009 | 1715 | 611 | 658 | 433 |
F4 | 103 | 109 | 84 | 1221 | 1235 | 1215 | 1866 | 1960 | 1827 | 543 | 617 | 529 | |
F8 | 103 | 109 | 84 | 1153 | 1130 | 1129 | 1417 | 1264 | 1258 | 161 | 24 | 45 | |
WM | F2 | 155 | 164 | 126 | 1463 | 1508 | 1447 | 3480 | 3782 | 3378 | 1863 | 2110 | 1805 |
F4 | 155 | 164 | 126 | 1533 | 1556 | 1502 | 3950 | 4101 | 3745 | 2262 | 2382 | 2117 | |
F8 | 155 | 164 | 126 | 1327 | 1333 | 1282 | 2573 | 2616 | 2277 | 1092 | 1119 | 869 | |
WH | F2 | 206 | 218 | 168 | 1411 | 1438 | 1429 | 3138 | 3314 | 3256 | 1521 | 1658 | 1659 |
F4 | 206 | 218 | 168 | 1467 | 1460 | 1439 | 3513 | 3464 | 3320 | 1839 | 1786 | 1714 | |
F8 | 206 | 218 | 168 | 1345 | 1287 | 1315 | 2699 | 2310 | 2493 | 1148 | 805 | 1011 | |
CK | 362 | 420 | 325 | 1299 | 1311 | 1289 | 2386 | 2470 | 2324 | 725 | 739 | 710 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Zou, H.; Zhang, F.; Qiang, S.; Wu, Y.; Yan, S.; Wang, H.; Wu, L.; Fan, J.; Wang, X. Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen. Sustainability 2019, 11, 111. https://doi.org/10.3390/su11010111
Xiang Y, Zou H, Zhang F, Qiang S, Wu Y, Yan S, Wang H, Wu L, Fan J, Wang X. Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen. Sustainability. 2019; 11(1):111. https://doi.org/10.3390/su11010111
Chicago/Turabian StyleXiang, Youzhen, Haiyang Zou, Fucang Zhang, Shengcai Qiang, You Wu, Shicheng Yan, Haidong Wang, Lifeng Wu, Junliang Fan, and Xiukang Wang. 2019. "Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen" Sustainability 11, no. 1: 111. https://doi.org/10.3390/su11010111
APA StyleXiang, Y., Zou, H., Zhang, F., Qiang, S., Wu, Y., Yan, S., Wang, H., Wu, L., Fan, J., & Wang, X. (2019). Effect of Irrigation Level and Irrigation Frequency on the Growth of Mini Chinese Cabbage and Residual Soil Nitrate Nitrogen. Sustainability, 11(1), 111. https://doi.org/10.3390/su11010111