Modeling Spatial Patterns of Humus Forms in Montane and Subalpine Forests: Implications of Local Variability for Upscaling
Abstract
:1. Introduction
- Which spatial patterns of humus forms occur at the local scale? Does the local variability coincide with local site factors, especially vegetation cover?
- What are the main influencing factors of humus form patterns at the slope and the landscape scale?
- How do spatial models combining random forest with ordinary kriging of the model residuals perform depending on the spatial scale?
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Spatial Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ponge, J.F. Plant-soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem. 2013, 57, 1048–1060. [Google Scholar] [CrossRef]
- Ponge, J.F. Humus forms in terrestrial ecosystems: A framework to biodiversity. Soil Biol. Biochem. 2003, 35, 935–945. [Google Scholar] [CrossRef]
- Hellwig, N.; Gómez-Brandón, M.; Ascher-Jenull, J.; Bardelli, T.; Anschlag, K.; Fornasier, F.; Pietramellara, G.; Insam, H.; Broll, G. Humus Forms and Soil Microbiological Parameters in a Mountain Forest: Upscaling to the Slope Scale. Soil Syst. 2018, 2, 12. [Google Scholar] [CrossRef]
- Bardelli, T.; Gómez-Brandón, M.; Ascher-Jenull, J.; Fornasier, F.; Arfaioli, P.; Francioli, D.; Egli, M.; Sartori, G.; Insam, H.; Pietramellara, G. Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Sci. Total Environ. 2017, 575, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Brandón, M.; Ascher-Jenull, J.; Bardelli, T.; Fornasier, F.; Sartori, G.; Pietramellara, G.; Arfaioli, P.; Egli, M.; Beylich, A.; Insam, H.; et al. Ground cover and slope exposure effects on micro- and mesobiota in forest soils. Ecol. Indic. 2017, 80, 174–185. [Google Scholar] [CrossRef]
- Hellwig, N.; Graefe, U.; Tatti, D.; Sartori, G.; Anschlag, K.; Beylich, A.; Gobat, J.M.; Broll, G. Upscaling the spatial distribution of enchytraeids and humus forms in a high mountain environment on the basis of GIS and fuzzy logic. Eur. J. Soil Biol. 2017, 79, 1–13. [Google Scholar] [CrossRef]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- O’Brien, S.L.; Gibbons, S.M.; Owens, S.M.; Hampton-Marcell, J.; Johnston, E.R.; Jastrow, J.D.; Gilbert, J.A.; Meyer, F.; Antonopoulos, D.A. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 2016, 18, 2039–2051. [Google Scholar] [CrossRef]
- Bednorz, F.; Reichstein, M.; Broll, G.; Holtmeier, F.K.; Urfer, W. Humus Forms in the Forest-Alpine Tundra Ecotone at Stillberg (Dischmatal, Switzerland): Spatial Heterogeneity and Classification. Arct. Antarct. Alp. Res. 2000, 32, 21–29. [Google Scholar] [CrossRef]
- Hiller, B.; Müterthies, A.; Holtmeier, F.K.; Broll, G. Investigations on Spatial Heterogeneity of Humus Forms and Natural Regeneration of Larch (Larix decidua Mill.) and Swiss Stone Pine (Pinus cembra L.) in an Alpine Timberline Ecotone (Upper Engadine, Central Alps, Switzerland). Geogr. Helv. 2002, 57, 81–90. [Google Scholar] [CrossRef]
- Anschlag, K.; Tatti, D.; Hellwig, N.; Sartori, G.; Gobat, J.M.; Broll, G. Vegetation-based bioindication of humus forms in coniferous mountain forests. J. Mt. Sci. 2017, 14, 662–673. [Google Scholar] [CrossRef]
- Ascher, J.; Sartori, G.; Graefe, U.; Thornton, B.; Ceccherini, M.T.; Pietramellara, G.; Egli, M. Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions? Biol. Fertil. Soils 2012, 48, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Badía, D.; Ruiz, A.; Girona, A.; Martí, C.; Casanova, J.; Ibarra, P.; Zufiaurre, R. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe. J. Mt. Sci. 2016, 13, 2155–2169. [Google Scholar] [CrossRef]
- Bayranvand, M.; Kooch, Y.; Hosseini, S.M.; Alberti, G. Humus forms in relation to altitude and forest type in the Northern mountainous regions of Iran. For. Ecol. Manag. 2017, 385, 78–86. [Google Scholar] [CrossRef]
- Bojko, O.; Kabala, C. Organic carbon pools in mountain soils—Sources of variability and predicted changes in relation to climate and land use changes. Catena 2017, 149, 209–220. [Google Scholar] [CrossRef]
- Dobrowski, S.Z. A climatic basis for microrefugia: The influence of terrain on climate. Glob. Chang. Biol. 2011, 17, 1022–1035. [Google Scholar] [CrossRef]
- Egli, M.; Poulenard, J. Soils of Mountainous Landscapes. In The International Encyclopedia of Geography: People, the Earth, Environment, and Technology; Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., Marston, R.A., Eds.; Wiley: New York, NY, USA, 2017; ISBN 978-0-470-65963-2. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Barron-Gafford, G.A.; Gutiérrez-Jurado, H.; Hinckley, E.-L.S.; Istanbulluoglu, E.; McGuire, L.A.; Niu, G.-Y.; Poulos, M.J.; Rasmussen, C.; Richardson, P.; et al. Which way do you lean? Using slope aspect variations to understand Critical Zone processes and feedbacks. Earth Surf. Process. Landforms 2018, 43, 1133–1154. [Google Scholar] [CrossRef]
- Webster, R. The development of pedometrics. Geoderma 1994, 62, 1–15. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M.; Webster, R. Modelling soil variation: Past, present, and future. Geoderma 2001, 100, 269–301. [Google Scholar] [CrossRef]
- Gessler, P.E.; Moore, I.D.; McKenzie, N.J.; Ryan, P.J. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 1995, 9, 421–432. [Google Scholar] [CrossRef] [Green Version]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Grunwald, S. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 2009, 152, 195–207. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Ahamed, S.; Carré, F.; Hartemink, A.E.; Hempel, J.; Huising, J.; Lagacherie, P.; McBratney, A.B.; McKenzie, N.J.; Mendonça-Santos, M.L.; et al. Digital Soil Map of the World. Science 2009, 325, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Arrouays, D.; McKenzie, N.; Hempel, J.; Richer de Forges, A.; McBratney, A.B. (Eds.) GlobalSoilMap: Basis of the Global Spatial Soil Information System; CRC Press: London, UK, 2014; ISBN 978-1-138-00119-0. [Google Scholar]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Aberegg, I.; Egli, M.; Sartori, G.; Purves, R. Modelling spatial distribution of soil types and characteristics in a high Alpine valley (Val di Sole, Trentino, Italy). Studi Trent. Sci. Nat. 2009, 85, 39–50. [Google Scholar] [CrossRef]
- Hellwig, N.; Anschlag, K.; Broll, G. A fuzzy logic based method for modeling the spatial distribution of indicators of decomposition in a high mountain environment. Arct. Antarct. Alp. Res. 2016, 48, 623–635. [Google Scholar] [CrossRef]
- Von Seidlein, C. Petrographie und Struktur des Ostalpinen Altkristallins Südlich des Ultentales (Trentino, Nord-Italien). Ph.D. Thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2000. [Google Scholar]
- Hellwig, N. Spatial Patterns of Humus Forms, Soil Organisms and Soil Biological Acitivity at High Mountain Forest Sites in the Italian Alps. Ph.D. Thesis, Institute of Geography, Osnabrück University, Osnabrück, Germany, 2018. Available online: https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-20181024676?locale=en (accessed on 1 November 2018).
- Sboarina, C.; Cescatti, A. Il clima del Trentino–Distribuzione Spaziale Delle Principali Variabili Climatiche, Report Centro Ecologia Alpina 33; Centro di Ecologia Alpina: Sardagna (Trento), Italy, 2004; pp. 1–20. [Google Scholar]
- Sartori, G.; Mancabelli, A. Carta dei suoli del Trentino: Scala 1:250.000. Museo Tridentino di Scienze Naturali di Trento; Centro di Ricerca per l’Agrobiologia e la Pedologia di Firenze: Trento, Italy, 2009. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Report 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Ad-hoc-AG Boden. Bodenkundliche Kartieranleitung, 5th ed.; E. Schweizerbart’sche Verlagsbuchhandlung: Hannover, Germany, 2005; ISBN 978-3-510-95920-4. [Google Scholar]
- Graefe, U. Gibt es in Deutschland die Humusform Amphi? Mitt. Dtsch. Bodenkd. Ges. 2007, 110, 459–460. [Google Scholar]
- Green, R.N.; Trowbridge, R.L.; Klinka, K. Towards a Taxonomic Classification of Humus Forms. For. Sci. Monogr. 1993, 29, 1–49. [Google Scholar]
- Jabiol, B. French humus forms classification: What’s new in the Référentiel pédologique 2008? Studi Trent. Sci. Nat. 2009, 85, 153–156. [Google Scholar]
- Zanella, A.; Ponge, J.-F.; de Waal, R.; Ferronato, C.; De Nobili, M.; Juilleret, J. Humusica 1, article 3: Essential bases – Quick look at the classification. Appl. Soil Ecol. 2018, 122, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Egli, M.; Mirabella, A.; Sartori, G.; Zanelli, R.; Bischof, S. Effect of north and south exposure on weathering rates and clay mineral formation in Alpine soils. Catena 2006, 67, 155–174. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 2014, 214–215, 141–154. [Google Scholar] [CrossRef]
- Guo, P.T.; Li, M.F.; Luo, W.; Tang, Q.F.; Liu, Z.W.; Lin, Z.M. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237, 49–59. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 14 October 2018).
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Böhner, J.; Antonic, O. Land surface parameters specific to topo-climatology. In Geomorphometry—Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 195–226. ISBN 978-0-12-374345-9. [Google Scholar] [CrossRef]
- Böhner, J.; Köthe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T. Soil regionalisation by means of terrain analysis and process parameterization. In Soil Classification 2001; Micheli, E., Nachtergaele, F., Montanarella, L., Eds.; The European Soil Bureau, Joint Research Centre: Ispra, Italy, 2002; pp. 213–222. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Freeman, T.G. Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 1991, 17, 413–422. [Google Scholar] [CrossRef]
- Friedrich, K. Multivariate distance methods for geomorphographic relief classification. In Land Information Systems—Developments for Planning the Sustainable Use of Land Resources; Heineke, H.J., Eckelmann, W., Thomasson, A.J., Jones, R.J.A., Montanarella, L., Buckley, B., Eds.; The European Soil Bureau, Joint Research Centre: Ispra, Italy, 1998; pp. 259–266. [Google Scholar]
- Malone, B.P.; McBratney, A.B.; Minasny, B. Spatial Scaling for Digital Soil Mapping. Soil Sci. Soc. Am. J. 2013, 77, 890–902. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Hill, R.L. Scale and scaling in soils. Geoderma 2017, 287, 4–30. [Google Scholar] [CrossRef]
- Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Tatti, D.; Fatton, V.; Sartori, L.; Gobat, J.-M.; Le Bayon, R.-C. What does ‘lignoform’ really mean? Appl. Soil Ecol. 2018, 123, 632–645. [Google Scholar] [CrossRef]
- Spielvogel, S.; Prietzel, J.; Kögel-Knabner, I. Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma 2016, 267, 112–122. [Google Scholar] [CrossRef]
- Egli, M.; Sartori, G.; Mirabella, A.; Favilli, F.; Giaccai, D.; Delbos, E. Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 2009, 149, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Egli, M.; Hafner, S.; Derungs, C.; Ascher-Jenull, J.; Camin, F.; Sartori, G.; Raab, G.; Bontempo, L.; Paolini, M.; Ziller, L.; et al. Decomposition and stabilisation of Norway spruce needle-derived material in Alpine soils using a 13C-labelling approach in the field. Biogeochemistry 2016, 131, 321–338. [Google Scholar] [CrossRef]
- Hellwig, N.; Anschlag, K.; Broll, G. Modellgestützte Analyse räumlicher Dekompositionsmuster im Hochgebirge. 2017. Available online: http://eprints.dbges.de/1232/1/Hellwig%20et%20al_2017_DBG%20eprints_Dekompositionsmuster%20R%C3%A4umliche%20Modelle%20Hochgebirge.pdf (accessed on 6 October 2018).
- Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. For. Ecol. Manag. 2017, 388, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Scholes, R.J. Taking the Mumbo Out of the Jumbo: Progress Towards a Robust Basis for Ecological Scaling. Ecosystems 2017, 20, 4–13. [Google Scholar] [CrossRef]
- Urban, D.L. Modeling ecological processes across scales. Ecology 2005, 86, 1996–2006. [Google Scholar] [CrossRef]
- Cuddington, K.; Fortin, M.J.; Gerber, L.R.; Hastings, A.; Liebhold, A.; O’Connor, M.; Ray, C. Process-based models are required to manage ecological systems in a changing world. Ecosphere 2013, 4, 20. [Google Scholar] [CrossRef]
- Sarmento Cabral, J.; Valente, L.; Hartig, F. Mechanistic simulation models in macroecology and biogeography: State-of-art and prospects. Ecography 2017, 40, 267–280. [Google Scholar] [CrossRef]
Predicted Humus Form Class | Presence of Organic Layers above Mineral Soil | Biogenic Soil Structure in the Mineral Soil |
---|---|---|
Moder | >0.75 | <0.25 |
Moder, partially eroded | ≥0.25 and ≤0.75 | <0.25 |
Eroded Moder | <0.25 | <0.25 |
Moder, trend to Amphi | >0.75 | ≥0.25 and ≤0.75 |
Mullmoder | ≥0.25 and ≤0.75 | ≥0.25 and ≤0.75 |
Mullmoder, eroded | <0.25 | ≥0.25 and ≤0.75 |
Amphi | >0.75 | >0.75 |
Mull, trend to Amphi | ≥0.25 and ≤0.75 | >0.75 |
Mull | <0.25 | >0.75 |
Factor | Method Reference | Data Source |
---|---|---|
Elevation a.s.l. | Digital terrain model, grid width 10 m ([27], provided by Museo Tridentino di Scienze Naturali) | |
Slope | Zevenbergen & Thorne [47] | |
Slope exposure | ||
Profile curvature | ||
Planform curvature | ||
General curvature | ||
Insolation | Böhner & Antonic [48] | |
SAGA wetness index | Böhner et al. [49] | |
LS factor | Moore et al. [50] | |
Overland flow distance to channel network | Freeman [51] | |
Vertical distance to channel network | ||
Mass balance index | Friedrich [52] | |
Mid-slope position | ||
Normalized height | ||
Forest type | Forest inventory data, provided by Provincia Autonoma di Trento, Servizio Foreste e Fauna | |
Forest density |
Site | Ground Cover | Sample Size | Dominant Humus Form Classes (according to [3]) |
---|---|---|---|
N1 | Fern | 3 | Mull |
Moss | 4 | Mull | |
Litter | 2 | Moder, Eroded Moder | |
Branches | 3 | Moder | |
N2 | Moss | 4 | Moder |
Litter | 2 | Moder | |
Branches | 1 | Moder | |
N3 | Grass | 4 | Moder |
Moss | 3 | Moder | |
Litter | 1 | Moder | |
Branches | 1 | Moder | |
S6 | Grass | 4 | Amphi |
Litter | 4 | Mull | |
Branches | 2 | Amphi, Mullmoder | |
S7 | Grass | 5 | Amphi, Mullmoder |
Litter | 3 | Mull, Amphi, Mullmoder | |
S8 | Grass/Moss | 5 | Moder |
Litter | 5 | Mullmoder | |
Branches | 1 | Moder |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellwig, N.; Tatti, D.; Sartori, G.; Anschlag, K.; Graefe, U.; Egli, M.; Gobat, J.-M.; Broll, G. Modeling Spatial Patterns of Humus Forms in Montane and Subalpine Forests: Implications of Local Variability for Upscaling. Sustainability 2019, 11, 48. https://doi.org/10.3390/su11010048
Hellwig N, Tatti D, Sartori G, Anschlag K, Graefe U, Egli M, Gobat J-M, Broll G. Modeling Spatial Patterns of Humus Forms in Montane and Subalpine Forests: Implications of Local Variability for Upscaling. Sustainability. 2019; 11(1):48. https://doi.org/10.3390/su11010048
Chicago/Turabian StyleHellwig, Niels, Dylan Tatti, Giacomo Sartori, Kerstin Anschlag, Ulfert Graefe, Markus Egli, Jean-Michel Gobat, and Gabriele Broll. 2019. "Modeling Spatial Patterns of Humus Forms in Montane and Subalpine Forests: Implications of Local Variability for Upscaling" Sustainability 11, no. 1: 48. https://doi.org/10.3390/su11010048
APA StyleHellwig, N., Tatti, D., Sartori, G., Anschlag, K., Graefe, U., Egli, M., Gobat, J. -M., & Broll, G. (2019). Modeling Spatial Patterns of Humus Forms in Montane and Subalpine Forests: Implications of Local Variability for Upscaling. Sustainability, 11(1), 48. https://doi.org/10.3390/su11010048