Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy” Snacks
Abstract
:1. Introduction
1.1. Definition of Snacks—Are There Any “Healthy Snacks”
1.2. The Possibilities of Elaboration of Innovative Snacks in the Trend of Sustainable Food Production
1.2.1. Fruit Leathers and Edible Films as the Type of Healthy Snacks. The Possibilities of Increasing the Quality of Such Products
1.2.2. Dried Fruit and Vegetable Gels on the Basic of Hydrocolloid as the Innovative Healthy Snacks
1.2.3. Properties of Dried Gels and the Effect of Different Ingredients on Them
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brillat-Savarin, J.A. The Physiology of Taste, or, Meditations on Transcendental Gastronomy; Everyman’s Library: London, UK, 2009; Volume 314. [Google Scholar]
- Bailey, C. We are what we eat: Feminist vegetarianism and the reproduction of racial identity. Hypatia 2007, 22, 39–59. [Google Scholar] [CrossRef]
- Barwińska, M. Analysis of “healthy snacks” market and consumer preferences. Engineer Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2018. (In Polish, abstract In English). [Google Scholar]
- Gołąbek, R.; Majcher, P. The Assessment of overweight and overweight obesity occurrence in children aged 11–12 by the example of public primary school Nr 3 in Radom. Prace Naukowe Akademii im. Jana Długosza w Częstochowie Kultura Fizyczna 2018, 17, 119–130, (In Polish, abstract In English). [Google Scholar]
- Dziennik Gazeta Prawna. pl. Available online: http://serwisy.gazetaprawna.pl/zdrowie/artykuly/1045469,otylosc-polskich-dzieci.html/ (accessed on 9 November 2018).
- World Health Organization. Available online: https://www.who.int/mediacentre/news/releases/2017/increase%E2%80%93childhood-obesity/en/Tenfold increase in childhood and adolescent obesity in four decades/ (accessed on 6 December 2017).
- Mendyk, K.; Antos–Latek, K.; Kowalik, M.; Pagacz, K.; Lewicki, M.; Obel, E. Pro–health behavior in adolescents in regard to nourishment and physical activity. Nurs. Public Health 2017, 26, 13–17. [Google Scholar] [CrossRef]
- Tkaczuk, M.; Wiercioch–Klin, B.; Szymańska, J. Twenty–four–hour analysis of nutrition of children and cariogenicity of food products consumed. Gen. Med. Health Sci. 2012, 18, 448–452. [Google Scholar]
- Kiczorowska, B.; Samolińska, W. Snack popularity among pupils of primary schools. Probl Hyg. Epidemiol. 2013, 94, 385–388. [Google Scholar]
- Chapelot, D. The role of snacking in energy balance: A biobehavioral approach. J. Nutr. 2011, 141, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. What is a snack, why do we snack, and how can we choose better snacks? A review of the definitions of snacking, motivations to snack, contributions to dietary intake, and recommendations for improvement. Adv. Nutr. 2016, 7, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Taillie, L.S.; Afeiche, M.C.; Eldridge, A.L.; Popkin, B.M. Increased snacking and eating occasions are associated with higher energy intake among mexican children aged 2–13 years. J. Nutr. 2015, 145, 2570–2577. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.; Moreno, L.A. Is dietary intake able to explain differences in body fatness in children and adolescents? Nutr. Metab. Cardiovasc Dis. 2006, 16, 294–301. [Google Scholar] [CrossRef]
- Marmonier, C.; Chapelot, D.; Fantino, M.; Louis–Sylvestre, J. Snacks consumed in a nonhungry state have poor satiating efficiency: Influence of snack composition on substrate utilization and hunger. Am. J. Clin. Nutr. 2002, 76, 518–528. [Google Scholar] [CrossRef]
- O’connor, L.; Brage, S.; Griffin, S.J.; Wareham, N.J.; Forouhi, N.G. The cross–sectional association between snacking behaviour and measures of adiposity: The Fenland study, UK. Br. J. Nutr. 2015, 114, 1286–1293. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegňst, M.; Van Der Horst, K. Snack frequency: Associations with health and unheatlthy food choices. Public Health Nutr. 2013, 16, 1487–1496. [Google Scholar] [CrossRef]
- Garriguet, D. Canadians’eating habits. Health Rep. 2007, 18, 17–32. [Google Scholar]
- Bellisle, F. Meals and snacking, diet quality and energy balance. Physiol. Behav. 2014, 134, 38–43. [Google Scholar] [CrossRef]
- Instytut Żywności i Żywienia. 2017. Available online: http://www.izz.waw.pl/pl/zasady–prawidowego–zywienia/ (accessed on 21 November 2017). (In Polish, abstract In English).
- Davids, W. Wheat Belly; Rodale Inc.: New York, NY, USA, 2011. [Google Scholar]
- Paszczyk, B.; Łuczyńska, J.; Tońska, E. Fatty acid profile and trans fatty acids content in cereals and cereal bars from polish market. Pol. J. Nat. Sci. 2017, 32, 733–743. [Google Scholar]
- Mahesar, S.A.; Kandhro, A.A.; Cerretani, L.; Bendini, L.; Sherazi, S.T.H.; Bhanger, M.I. Determination of total trans fat content in Pakistani cereal-based foods by SB-HATR FT-IR spectroscopy coupled with partial least square regression. Food Chem. 2010, 123, 1289–1293. [Google Scholar] [CrossRef]
- Walczak, Z.; Starzycki, M.; Dymkowska–Malesa, M. Fatty acid profile in the bars for people involved in high–level physical activity. Pol. J. Sports Med. 2013, 29, 139–149. [Google Scholar]
- Jeppesen, C.; Bjerregaard, P.; Young, K. Nordic Countries. Food–based dietary guidelines in circumpolar regions. Int. J. Circumpolar Health 2011, 70, 1–42. [Google Scholar] [CrossRef]
- Schweizerische Gesellschaft für Ernährung. Available online: http://www.sge–ssn.ch/media/sb_znueniblatt_2012_en_web.pd/ (accessed on 29 November 2017).
- Ruxton, C.; Derbyshire, E. Strategies to encourage healthy eating among children and young adults. Prim. Health Care 2014, 24, 33–41. [Google Scholar] [CrossRef]
- Gawęcki, J.; Czapski, J. Wstęp. In Warzywa i Owoce; Gawęcki, J., Czapski, J., Eds.; Wydawnictwo Uniwersytetu Przyrodniczego: Poznań, Poland, 2017; pp. 7–11, (In Polish, abstract In English). [Google Scholar]
- Kaya, S.; Maskan, A. Water vapor permeability of pestil (a fruit leather) made from boiled grape juice with starch. J. Food Eng. 2003, 57, 295–299. [Google Scholar] [CrossRef]
- Offia-Olua, B.; Ekwunife, O.A. Production and evaluation of the physico-chemical and sensory qualities of mixed fruit leather and cakes produced fro apple (Musa Pumila), banana (Musa Sapientum), pineapple (Ananas Comosus). Niger. Food J. 2015, 33, 22–28. [Google Scholar] [CrossRef]
- Ruiz, N.A.Q.; Demarchi, S.M.; Massolo, J.F.; Rodoni, L.M.; Giner, S.A. Evaluation of quality during storage of apple leather. LWT Food Sci. Technol. 2012, 47, 485–492. [Google Scholar] [CrossRef]
- Gujral, H.S.; Khanna, G. Effect of skim milk powder, soy protein concentrate and sucrose on the dehydration behaviour, texture, color and acceptability of mango leather. J. Food Eng. 2002, 55, 343–348. [Google Scholar] [CrossRef]
- Gujral, H.S.; Brar, S.S. Effect of hydrocolloids on the dehydration kinetics, color, and texture of mango leather. Int. J. Food Prop. 2003, 6, 269–279. [Google Scholar] [CrossRef]
- Valenzuela, C.; Aguilera, J.M. Aerated apple leathers: Effect of microstructure on drying and mechanical properties. Dry Technol. 2013, 31, 1951–1959. [Google Scholar] [CrossRef]
- Ashaye, A.; Babalola, S.O.; Babalola, A.O.; Aina, J.O.; Fasoyiro, S.B. Chemical and organoleptic characterization of pawpaw and guava leathers. World J. Agric. Res. 2005, 1, 50–51. [Google Scholar]
- Huang, X.; Hsieh, F.-H. Physical properties, sensory attributes, and consumer preference of pear fruit leather. J. Food Sci. 2005, 70, 177–186. [Google Scholar] [CrossRef]
- Vatthanakul, S.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Wilkinson, B. Gold kiwifruit leather product development using Quality function deployment approach. Food Qual. Prefer. 2010, 21, 339–345. [Google Scholar] [CrossRef]
- Maskan, A.; Kaya, S.; Maskan, M. Effect of concentration and drying processes on color change of grape juice and leather (pestil). J. Food Eng. 2002, 54, 75–80. [Google Scholar] [CrossRef]
- Kaya, S.; Kahyaoglu, T. Thermodynamic properties and sorption equilibrium of pestil (grape leather). J. Food Eng. 2005, 71, 200–207. [Google Scholar] [CrossRef]
- Phimpharian, Ch.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Prinyawiwatkul, W.; Kyoon No, H. Physicochemical characteristics and sensory optimisation of pineapple leather snack as affected by glucose syrup and pectin concentrations. Int. J. Food Sci. Technol. 2011, 46, 972–981. [Google Scholar] [CrossRef]
- Kumar, R.; Patil, R.T.; Mondal, G. Development and evaluation of blended papaya leather. Acta Hort. 2010, 851, 565–570. [Google Scholar] [CrossRef]
- Chowdhury, M.M.I.; Bala, B.K.; Haque, M.A. Energy and exergy analysis of the solar drying of jackfruit leather. Biosyst. Eng. 2011, 110, 222–229. [Google Scholar] [CrossRef]
- Raab, C.; Oehler, N. Making Dried Fruit Leather Fact Sheet; Oregon State University Extension Service: Corvallis, OR, USA, 1999; Volume 232, pp. 1–4. [Google Scholar]
- Valenzuela, C.; Aguilera, J.M. Effect of different factors on stickness of apple leathers. J. Food Eng. 2015, 149, 51–60. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Whey protein edible films modified with almond and walnut oils. Food Hydrocoll. 2016, 52, 78–86. [Google Scholar] [CrossRef]
- Cagri, A.; Ustunol, Z.; Ryser, E.T. Antimicrobial edible films and coatings. J. Food Prot. 2004, 67, 833–848. [Google Scholar] [CrossRef]
- Dea, S.; Ghidelli, Ch.; Perez-Gago, M.B.; Plotto, A. Coatings for minimally processed fruits and vegetables. In Edible Coatings and Films to Improve Food Quality; Baldwin, E.A., Hagenmaier, R., Bai, J., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 243–289. [Google Scholar]
- Pereda, M.; Dufresne, A.; Aranguren, M.I.; Marcovich, N.E. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr. Polym. 2014, 101, 1018–1026. [Google Scholar] [CrossRef]
- Dangaran, K.L.; Krochta, J.M. Preventing the loss of tensile, barrier and appearances properties caused by plasticizer crystallization in whey protein films. Int. J. Food Sci. Technol. 2006, 42, 1094–1100. [Google Scholar] [CrossRef]
- Pan, H.; Jiang, B.; Chen, J.; Jin, Z. Blend-modification of soy protein/lauric acid edible films using polysaccharides. Food Chem. 2014, 151, 1–6. [Google Scholar] [CrossRef]
- Sothornvit, R.; Pitak, N. Oxygen permeability and mechanical properties of banana films. Food Res. Int. 2007, 40, 365–370. [Google Scholar] [CrossRef]
- Viskelis, J.; Rubinskiene, M.; Bobinas, C.; Bobinaite, R. Enrichment of fruit leathers with berry press cake powder increase product functionality. In Proceedings of the 11th Baltic Conference on Food Science and Technology “Food science and technology in a changing world” FOODBALT 2017, Jelgava, Latvia, 27–28 April 2017; pp. 75–79. [Google Scholar]
- Kruczek, M.; Drygaś, B.; Habryka, C. Pomace in fruit industry and their contemporary potential application. World Sci. News 2016, 48, 259–265. [Google Scholar]
- Kadzińska, J.; Bryś, J.; Ostrowska-Ligęza, E.; Estéve, M.; Janowicz, M. Influence of vegetable oils addition on the selected physical properties of apple-sodium alginate edible films. Polym. Bull. 2019, 1–18. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Avena-Bustillos, R.J.; Du, W.X.; Teófilo, R.F.; Soares, N.F.F.; McHugh, T.H. Optimal antimicrobial formulation and physical-mechanical properties of edible films based on açaí and pectin for food preservation. Food Packag. Shelf. 2014, 2, 38–49. [Google Scholar] [CrossRef]
- Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors. Carbon 2000, 38, 1099–1105. [Google Scholar] [CrossRef]
- Nussinovitch, A.; Corradini, M.G.; Normand, M.D.; Peleg, M. Effect of starch, sucrose and their combinations on the mechanical and acoustic properties of freeze-dried alginate gels. Food Res. Int. 2001, 34, 871–878. [Google Scholar] [CrossRef]
- Sundaram, J.; Durance, T.D. Water sorption and physical properties of locust bean gum-pectin-starch composite gel dried using different drying method. Food Hydrocoll. 2008, 22, 1352–1361. [Google Scholar] [CrossRef]
- Cassanelli, M.; Norton, I.; Mills, T. Role of gellan gum microstructure in freeze drying and rehydration mechanisms. Food Hydrocoll. 2018, 75, 51–61. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Jasiorowska, A.; Ostrowska-Ligęza, E.; Lenart, A. The influence of the structure on the sorption properties and phase transition temperatures of freeze-dried gels. J. Food Eng. 2019, 252, 18–27. [Google Scholar] [CrossRef]
- Rajkumar, P.; Kailappan, R.; Viswanathan, R.; Raghavan, G.S.V. Drying characteristics of foamed alphonso mango pulp in a continuous type foam-mat dryer. J. Food Eng. 2006, 79, 1452–1459. [Google Scholar] [CrossRef]
- Kadam, D.M.; Patil, R.T.; Kaushik, P. Foam mat drying of fruit and vegetable products. In Drying of Foods, Vegetables and Fruits; Jangam, S.V., Law, C.L., Eds.; Central Institute of Post-Harvest Engineering and Technology: Ludhiana, India, 2010; Volume 1, pp. 113–124. [Google Scholar]
- Franco, T.S.; Perussello, C.A.; Ellendersen, L.N.; Masson, L.N. Effect of Foam‒mat Drying on Physicochemical and Microstructural Properties of Yacon Juice Powder. LWT Food Sci. Technol. 2016, 66, 503–513. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Peñas, E.; Zielińska, D.; Gulewicz, P.; Zieliński, H.; Frias, J. Vitamin C, phenolic compounds and antioxidant capacity of broccoli florets grown under different nitrogen treatments combined with selenium. Pol. J. Food Nutr. Sci. 2018, 68, 179–186. [Google Scholar]
- Borowski, J.; Szajdek, A.; Borowska, E.J.; Ciska, E.; Zielinski, H. Content of selected bioactive components and antioxidant properties of broccoli (Brassica Oleracea, L.). Eur. Food Res. Technol. 2008, 226, 459–465. [Google Scholar] [CrossRef]
- Dominguez–Perles, R.; Martinez–Ballesta, M.C.; Carvajal, M.; Garcia–Viguera, C.; Moreno, D.A. Broccoli–derived by–products–a promising source of bioactive ingredients. J. Food Sci. 2010, 75, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Medina, S.; Domínguez–Perles, R.; Moreno, D.A.; García–Viguera, C.; Ferreres, F.; Gil, J.I. The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress–related isoprostanes in healthy humans. Food Chem. 2015, 173, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Congxi, C.; Huiying, M.; Hongmei, Q.; Leishuan, Y.; Bingliang, W.; Qiaomei, W. Effects of industrial pre–freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets. Food Chem. 2016, 210, 451–456. [Google Scholar]
- Mahn, A.; Zamorano, M.; Barrientos, H.; Reyes, A. Optimization of a process to obtain selenium–enriched freeze–dried broccoli with high antioxidant properties. LWT Food Sci. Technol. 2012, 47, 267–273. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Lenart, A.; Karwosińska, J. Effect of quantity of low–methoxyl pectin on physical properties of freeze–dried strawberry jellies. Pol. J. Food Nutr. Sci. 2015, 65, 233–241. [Google Scholar] [CrossRef]
- Gao, Z.; Fang, Y.; Cao, Y.; Liao, H.; Nishinari, K.; Phillips, G.O. Hydrocolloid–food component interactions. Food Hydrocoll. 2017, 68, 149–156. [Google Scholar] [CrossRef]
- Dłużewska, E.; Krygier, K. Hydrocolloids in modern production of food. Przem. Spoż. 2007, 5, 12–16, (In Polish, abstract In English). [Google Scholar]
- Rutkowski, A.; Gwiazda, S.; Dąbrowski, K. Compendium of Food Additives; Hortimex Konin: Konin, Poland, 2003; pp. 164–265. (In Polish) [Google Scholar]
- Mikuš, Ľ.; Valik, Ľ.; Dodok, L. Usage of hydrocolloids in cereal technology. Acta Univ. Agric. Silvic. Mendel. Brun. 2011, 59, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Lootens, D.; Capel, F.; Durand, D.; Nicolai, T.; Boulenguer, P.; Langendorff, V. Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin. Food Hydrocoll. 2003, 17, 237–244. [Google Scholar] [CrossRef]
- Capel, F.; Nicolai, T.; Durand, D.; Boulenguer, P.; Langendorff, V. Calcium and acid induced gelation of (amidated) low methoxyl pectin. Food Hydrocoll. 2006, 20, 901–907. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Szerszeń, J.; Lenart, A. Pectin–a functional component of diet. Int. J. Res. Eng. Technol. 2016, 3, 20–27. [Google Scholar]
- Donati, I.; Paoletti, S. Alginates: Biology and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ahmadi, A.; Milani, E.; Madadlou, A.; Mortazavi, S.A.; Komarram, R.R.; Salarbashi, D. Synbiotic yogurt–ice cream produced via incorporation of microencapsulated lactobacillus acidophilus (la–5) and fructooligosaccharide. J. Food Sci. Technol. 2012, 51, 1568–1574. [Google Scholar] [CrossRef]
- Brownlee, I.A.; Seal, C.J.; Wilcox, M.; Dettmar, P.W.; Pearson, J.P. Applications of alginates in food. In Alginates: Biology and Applications. Microbiology Monographs; Rehm, B.H., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; pp. 211–228. [Google Scholar]
- Arocas, A.; Sanz, T.; Fiszman, S.M. Improving effect of xanthan and locust bean gums on the freeze-thaw stability of white sauces made with different native starches. Food Hydrocoll. 2009, 23, 2478–2487. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Pisarska, A.; Olsiński, I.; Panfiluk, A.M.; Ostap, M.S.; Lenart, A. Effect of composition changes and aeration time on the structure and rehydration of innovative freeze-dried gels. Int. Agroph. 2018, 32, 429–435. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Marzec, A.; Mieszkowska, A.; Lenart, A. Structure influence on mechanical and acoustic properties of freeze–dried gels obtained with the use of hydrocolloids. J. Texture Stud. 2017, 48, 131–142. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Mieszkowska, A.; Olsiński, I.; Lenart, A. The effect of composition and aeration on selected physical and sensory properties of freeze–dried hydrocolloid gels. Food Hydrocoll. 2017, 67, 94–103. [Google Scholar] [CrossRef]
- Yousefi, M.; Jafari, S.M. Recent advances in application of different hydrocolloids in dairy products to improve their techno-functional properties. Trends Food Sci. Technol. 2019, 88, 468–483. [Google Scholar] [CrossRef]
- Campbell, G.M.; Mougeot, E. Creation and characterization of aerated food products. Trends Food Sci. Technol. 1999, 10, 283–296. [Google Scholar] [CrossRef]
- Zuniga, R.N.; Aguilera, J.M. Aerated Food Gels: Fabrication and Potential Applications. Trends Food Sci. Technol. 2008, 19, 176–187. [Google Scholar] [CrossRef]
- Norton, I.; Frith, W.J.; Ablett, S. Fluid gels, mixed fluid gels and satiety. Food Hydrocoll. 2006, 20, 229–239. [Google Scholar] [CrossRef]
- Rahman, M.S. Toward prediction of porosity in foods during drying: A brief review. Dry Technol. 2001, 19, 1–13. [Google Scholar] [CrossRef]
- Rahman, M.S. A theoretical model to predict the formation of pores in foods during drying. Int. J. Food Prop. 2003, 6, 61–72. [Google Scholar] [CrossRef]
- Madiouli, J.; Sghaier, J.; Lecomte, D.; Sammouda, H. Determination of porosity change from shrinkage curves during drying of food material. Food Bioprod. Process. 2012, 90, 43–51. [Google Scholar] [CrossRef]
- Singh, F.; Katiyar, V.K.; Singh, B.P. Mathematical modeling to study influence of porosity on apple and potato during dehydration. J. Food Sci. Technol. 2015, 52, 5442–5455. [Google Scholar] [CrossRef]
- Ostap, M.S. The structure influence on the properties of freeze–dried strawberry gels received on the basis of hydrocolloids. Master’s Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2017. (In Polish, abstract In English). [Google Scholar]
- Nussinovitch, A.; Jaffe, N.; Gillilov, M. Fractal pore–size distribution on freeze–dried agar–texturized fruit surfaces. Food Hydrocoll. 2004, 18, 825–835. [Google Scholar] [CrossRef]
- Meda, L.; Ratti, C. Rehydration of freeze-dried strawberries at varying temperatures. J. Food Process. Eng. 2005, 28, 233–246. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, A.; Joosten, H.M.; Ter Kuile, B.H. Low-water activity foods: Increased concern as vehicles of foodborne pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- Katz, E.E.; Labuza, T.P. Effect of water activity on the sensory crispness and mechanical deformation of snack food products. J. Food Sci. 1981, 46, 403–409. [Google Scholar] [CrossRef]
- Lewicki, P.P.; Jakubczyk, E.; Marzec, A.; do Carmo Cabral, M.; Pereira, P.M. Effect of water activity on mechanical properties of dry cereal products. Acta Agroph. 2004, 4, 381–391. [Google Scholar]
- Gabas, A.L.; Menegalli, F.C.; Ferrari, F.; Telis–Romero, J. Influence of drying conditions on the rheological properties of prunes. Dry Technol. 2002, 20, 1485–1502. [Google Scholar] [CrossRef]
- Jakubczyk, E. A Study on the Effect of Agar Gel Preparation Technology and Drying Method on Physical Properties of Dried Material; Warsaw University of Life Sciences: Warsaw, Poland, 2012; (In Polish, abstract In English). [Google Scholar]
- Hoefler, A.C. Hydrocolloids; Egan Press Handbook; AACC International: St Paul, MN, USA, 2004. [Google Scholar]
- Jakubczyk, E.; Gondek, E.; Żelazny, A. Characteristics of mechanical properties of agar gel with different addition of sweeteners. Zeszyty Problemowe Postępów Nauk Rolniczych 2013, 572, 23–32, (In Polish, abstract In English). [Google Scholar]
- Sankat, C.K.; Castaigne, F. Foaming and drying behaviour of ripe bananas. LWT Food Sci. Technol. 2004, 37, 517–525. [Google Scholar] [CrossRef]
- Grabowska, A.; Kunicki, E.; Libik, A. The effects of different methods of cultivation and plant spacing on the chemical composition of broccoli heads. Folia Hortic. 2009, 21, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, F.; Rosskopf, E.N.; Leonardi, C.; Giuffrida, F. Effects of application timing of saline irrigation water on broccoli production and quality. Agric. Water Manag. 2018, 203, 97–104. [Google Scholar] [CrossRef]
- Cieśluk, P.; Wiktor, A. The impact of once and double freezing and thawing cycle on electrical and thermal properties of selected food products. Zeszyty Problemowe Postępów Nauka Rolniczych 2017, 589, 3–13, (In Polish, abstract In English). [Google Scholar]
- Jakubczyk, E.; Kamińska, A. Mechanical properties of porous agar gels. Agric. Eng. 2007, 5, 195–203, (In Polish, abstract In English). [Google Scholar]
- Çalişkan, G.; Ergun, K.; Çalışkan Koç, G. Freeze Drying of Kiwi (Actinidia deliciosa) Puree and the Powder Properties. Ital. J. Food Sci. 2015, 27, 385–396. [Google Scholar]
- Salvador, A.; Varela, P.; Sanz, T.; Fiszman, S.M. Understanding potato chips crispy texture by simultaneous fracture and acoustic measurements, and sensory analysis. LWT Food Sci. Technol. 2009, 42, 763–767. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, M.; Mujumdar, A.S.; Lim, R. Comparison of four drying methods for re-structured mixed potato with apple chips. J. Food Eng. 2011, 103, 279–284. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Juliano, P. Food Engineering. In Food and Agricultural Science, Engineering and Technology Resource; Barbbsa-Cánovas, G.V., Ed.; UNESCO: Paris, France, 2009; Volume II, Available online: https://www.eolss.net/ebooklib/bookinfo/food-engineering.aspx (accessed on 15 May 2019).
- Saeleaw, M.; Schleining, G. A review. Crispness in dry foods and quality measurements based on acoustic-mechanical destructive techniques. J. Food Eng. 2011, 105, 387–399. [Google Scholar] [CrossRef]
- Marzec, A.; Kowalska, H.; Ołdak, B. Effect of sour cherries drying technique on textural properties of dried fruit assessed using acoustic and mechanical methods. Zywn. Nauka Technol. Jakosc 2014, 4, 210–221, (In Polish, abstract In English). [Google Scholar]
Origin | Examples | ||
---|---|---|---|
Natural | Animal origin | Gelatin | |
Kasein | |||
From land plants | Plant secretions | Gum arabicus | |
Guma Karaya | |||
Extracts from seeds or tubers | Locust bean gum | ||
Pectins | |||
Tara gum | |||
Konjac gum | |||
Guar gum | |||
Seaweed extracts | Agar | ||
Carrageenans | |||
Alginians | |||
Microbiological origin | Xanthan gum | ||
Gellan gum | |||
Modified | Chemical | Modified starches | |
Physical | Cellulose derivatives | ||
Synthetic | Through chemical synthesis | Polymers of ethylene oxide |
Sample | Porosity (%) | Water Activity (aw) | Water Content (%) |
---|---|---|---|
Gel before freeze-drying | - | 0.938 ± 0.005 | 92.16 ± 0.15 |
Freeze-dried gel | 95.83 ± 0.22 | 0.073 ± 0.007 | 2.07 ± 0.27 |
Freeze-dried gel after rehydration | - | - | 92.66 ± 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurzyńska, A.; Cieśluk, P.; Barwińska, M.; Marczak, W.; Ordyniak, A.; Lenart, A.; Janowicz, M. Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy” Snacks. Sustainability 2019, 11, 2800. https://doi.org/10.3390/su11102800
Ciurzyńska A, Cieśluk P, Barwińska M, Marczak W, Ordyniak A, Lenart A, Janowicz M. Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy” Snacks. Sustainability. 2019; 11(10):2800. https://doi.org/10.3390/su11102800
Chicago/Turabian StyleCiurzyńska, Agnieszka, Piotr Cieśluk, Magdalena Barwińska, Weronika Marczak, Agnieszka Ordyniak, Andrzej Lenart, and Monika Janowicz. 2019. "Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy” Snacks" Sustainability 11, no. 10: 2800. https://doi.org/10.3390/su11102800
APA StyleCiurzyńska, A., Cieśluk, P., Barwińska, M., Marczak, W., Ordyniak, A., Lenart, A., & Janowicz, M. (2019). Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy” Snacks. Sustainability, 11(10), 2800. https://doi.org/10.3390/su11102800