Uncovering CO2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis
Abstract
:1. Introduction
2. A Brief Literature Review
3. Methodology and Data
3.1. Bottom-Up CO2 Emissions Estimation Approach
3.2. CO2 Emission Changing Decomposition Approach
3.3. Tapio Decoupling Evaluation Model
3.4. Data Sources
4. Results and Discussions
4.1. Trajectory of CO2 Emissions
4.2. Decomposition Analysis of the CO2 Emissions
4.3. Decoupling Analysis of CO2 Emissions and Economic Growth
5. Conclusions
- (1)
- The aggregate CO2 emissions from the China-oriented international marine trade sector showed an escalating trend from 32.93 Mt to 163.4 Mt during the period 2000–2017, following average annual growth of 9.9%. Among the seven vessel types considered, bulk carriers proved to be the largest emitter of CO2 emissions in 2017, and liquid gas tankers reported the fastest growth rate, with a thirteen-fold expansion;
- (2)
- Economic growth proved to be an overwhelming contributor to the increase of CO2 emissions, which accounted for 103.6% of the aggregate emissions over the study period. Population scale and the maritime transportation intensity displayed relatively weaker effects compared with economic growth, with cumulative contributions of 7.6% and 9%, respectively;
- (3)
- Energy intensity and commodity structure played significant roles in inhibiting CO2 emissions. The contributions of both inhibitory effects were approximately equal, with cumulative contributions of approximately 10%, respectively. Generally, the mitigation effect caused by the combined inhibiting factors failed to overcome the increase in CO2 emissions produced by the promoting factors;
- (4)
- The decoupling effect between CO2 emissions in the maritime industry and the economic growth of China underwent three states (expansive negative decoupling, expansive coupling, and weak decoupling), with a shift from negative decoupling to weak decoupling over decades. The energy intensity indicator played a key role in promoting the decoupling relationships, whereas economic growth appeared to be the most negative indicator of the decoupling.
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Conference on Trade and Development (UNCTAD). Review of Maritime Transport 2017; United Nations: Geneva, Switzerland, 2017. [Google Scholar]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO). Second IMO GHG Study 2009; IMO: London, UK, June 2009. [Google Scholar]
- International Maritime Organization (IMO). Third IMO GHG Study 2014; IMO: London, UK, June 2014. [Google Scholar]
- Achour, H.; Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 2016, 52, 64–71. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.W.Y.; Shuai, C.; Shen, L.; Zhang, Y.; Liao, S. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, X.; Li, N.; Shao, S.; Geng, Y. Decoupling economic growth from carbon dioxide emissions in China: A sectoral factor decomposition analysis. J. Clean. Prod. 2017, 142, 3500–3516. [Google Scholar] [CrossRef]
- Gilbert, P.; Bows, A. Exploring the scope for complementary sub-global policy to mitigate CO2 from shipping. Energy Policy 2012, 50, 613–622. [Google Scholar] [CrossRef]
- UN Climate Change News. Available online: https://unfccc.int/news/world-nations-agree-to-at-least-halve-shipping-emissions-by-2050 (accessed on 10 December 2018).
- Chen, B.; Yang, Q.; Li, J.S.; Chen, G.Q. Decoupling analysis on energy consumption, embodied GHG emissions and economic growth—The case study of Macao. Renew. Sustain. Energy Rev. 2017, 67, 662–672. [Google Scholar] [CrossRef]
- Zhang, Z. Decoupling China’s Carbon Emissions Increase from Economic Growth: An Economic Analysis and Policy Implications. World Dev. 2000, 28, 739–752. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). Decoupling: A Conceptual Overview. OECD Pap. 2001, 5, 1–31. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Ma, M.; Cai, W. Do commercial building sector-derived carbon emissions decouple from the economic growth in tertiary industry? a case study of four municipalities in china. Sci. Total Environ. 2019, 650, 822–834. [Google Scholar] [CrossRef]
- Xu, S.; He, Z.; Long, R.; Chen, H.; Zhang, W. Comparative analysis of the regional contributions to carbon emissions in China. J. Clean. Prod. 2016, 127, 406–417. [Google Scholar] [CrossRef]
- Boqiang, L.; Liu, K. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry. Sustainability 2017, 9, 1198. [Google Scholar] [CrossRef]
- Wang, Q.; Hang, Y.; Zhou, P.; Wang, Y. Decoupling and attribution analysis of industrial carbon emissions in Taiwan. Energy 2016, 113, 728–738. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Zhang, M. Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China. Energy 2017, 128, 11–18. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Dong, B.; Gu, G.; Chen, R.; Li, Y.; Zou, H.; Zhang, W.; Li, Q. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, Q.; Geng, Y. An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry. Energy Policy 2013, 56, 352–361. [Google Scholar] [CrossRef]
- Yan, X.; Fang, Y. CO2 emissions and mitigation potential of the Chinese manufacturing industry. J. Clean. Prod. 2015, 103, 759–773. [Google Scholar] [CrossRef]
- Lin, B.; Long, H. Emissions reduction in China’s chemical industry—Based on LMDI. Renew. Sustain. Energy Rev. 2016, 53, 1348–1355. [Google Scholar] [CrossRef]
- Xie, X.; Shao, S.; Lin, B. Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031. Appl. Energy 2016, 184, 1004–1015. [Google Scholar] [CrossRef]
- Ma, M.; Cai, W. What drives the carbon mitigation in Chinese commercial building sector? evidence from decomposing an extended Kaya identity. Sci. Total Environ. 2018, 634, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Yang, W.; Cao, D.; Liu, L.; Zhou, Y.; Zhang, Z. Estimates of China’s national and regional transport sector CO2 emissions in 2007. Energy Policy 2012, 41, 474–483. [Google Scholar] [CrossRef]
- Guo, B.; Geng, Y.; Franke, B.; Hao, H.; Liu, Y.; Chiu, A. Uncovering China’s transport CO2 emission patterns at the regional level. Energy Policy 2014, 74, 134–146. [Google Scholar] [CrossRef]
- Ratanavaraha, V.; Jomnonkwao, S. Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation. Transp. Policy 2015, 41, 136–146. [Google Scholar] [CrossRef]
- Fan, F.; Lei, Y. Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transp. Res. D Transp. Environ. 2016, 42, 135–145. [Google Scholar] [CrossRef] [Green Version]
- M’Raihi, R.; Mraihi, T.; Harizi, R.; Taoufik Bouzidi, M. Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia. Transp. Policy 2005, 42, 121–129. [Google Scholar] [CrossRef]
- Gambhir, A.; Tse, L.K.C.; Tong, D.; Martinez-Botas, R. Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis. Appl. Energy 2015, 157, 905–917. [Google Scholar] [CrossRef]
- Dennehy, E.R.; Ó Gallachóir, B.P. Ex-post decomposition analysis of passenger car energy demand and associated CO2 emissions. Transp. Res. D Transp. Environ. 2018, 59, 400–416. [Google Scholar] [CrossRef]
- Zhu, X.; Li, R. An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China. Sustainability 2017, 9, 722. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, T.; Yang, S. Carbon emission and its decoupling research of transportation in Jiangsu Province. J. Clean. Prod. 2017, 142, 907–914. [Google Scholar] [CrossRef]
- Halim, R.A.; Kirstein, L.; Merk, O.; Martinez, L.M. Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment. Sustainability 2018, 10, 2243. [Google Scholar] [CrossRef]
- Bows-Larkin, A.; Anderson, K.; Mander, S.; Traut, M.; Walsh, C. Shipping charts a high carbon course. Nat. Clim. Chang. 2015, 5, 293. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energ. Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Walsh, C.; Bows, A.; Gilbert, P.; Mander, S.; Trant, M. A new method for estimating national-scale CO2 from shipping: Preliminary results from a UK study. In Proceedings of the Low Carbon Shipping Conference, London, UK, 28–29 February 2012. [Google Scholar]
- Lee, T.; Lam, J.S.L.; Lee, P.T. Asian economic integration and maritime CO2 emissions. Transp. Res. D Transp. Environ. 2016, 43, 226–237. [Google Scholar] [CrossRef]
- Hao, H.; Geng, Y.; Ou, X. Estimating CO2 emissions from water transportation of freight in China. Int. J. Shipp. Transp. Logist. 2015, 7, 676–694. [Google Scholar] [CrossRef]
- Yang, H.; Ma, X.; Xing, Y. Trends in CO2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications. Energies 2017, 10, 980. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Hayama, Japan, 2006. [Google Scholar]
- Song, S.; Shon, Z. Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea. Environ. Sci. Pollut. Res. Int. 2014, 21, 6612–6622. [Google Scholar] [CrossRef] [PubMed]
- Psaraftis, H.N.; Kontovas, C.A. CO2 emission statistics for the world commercial fleet. WMU J. Marit. Aff. 2009, 8, 1–25. [Google Scholar] [CrossRef]
- Walsh, C.; Bows, A. Size matters: Exploring the importance of vessel characteristics to inform estimates of shipping emissions. Appl. Energy 2012, 98, 128–137. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 2011, 36, 5909–5915. [Google Scholar] [CrossRef]
- Yu, J.; Da, Y.; Ouyang, B. Analysis of carbon emission changes in China’s transportation industry based on LMDI decomposition method. China J. Highw. Transp. 2015, 28, 112–119. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Clarksons Research. June 2006 China Intelligence Monthly; Clarksons Research: London, UK, 2006. [Google Scholar]
- Clarksons Research. June 2009 China Intelligence Monthly; Clarksons Research: London, UK, 2009. [Google Scholar]
- Clarksons Research. September 2013 China Intelligence Monthly; Clarksons Research: London, UK, 2013. [Google Scholar]
- Clarksons Research. June 2018 China Intelligence Monthly; Clarksons Research: London, UK, 2018. [Google Scholar]
- Clarksons Research. Shipping Intelligence Network Time Series; Clarksons Research: London, UK, 2017. [Google Scholar]
- Stopford, M. Maritime Economics, 3rd ed.; Routledge: Abingdon, UK, 2009. [Google Scholar]
- Huang, Q.H. China’s Industrialization Process; Springer: Singapore, 2018. [Google Scholar]
- Liu, Z.; Li, L.; Zhang, Y.J. Investigating the CO2 emission differences among China’s transport sectors and their influencing factors. Nat. Hazards 2015, 77, 1323–1343. [Google Scholar] [CrossRef]
- Chai, J.; Lu, Q.; Wang, S.; Lai, K. Analysis of road transportation energy consumption demand in China. Transp. Res. D Transp. Environ. 2016, 48, 112–124. [Google Scholar] [CrossRef]
- China Xinhua News. The 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China. Available online: http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm. (accessed on 10 September 2018).
- United Nations Conference on Trade and Development (UNCTAD). Review of Maritime Transport 2010; United Nations: Geneva, Switzerland, 2010. [Google Scholar]
- United Nations Conference on Trade and Development (UNCTAD). Review of Maritime Transport 2011; United Nations: Geneva, Switzerland, 2011. [Google Scholar]
- United Nations Conference on Trade and Development (UNCTAD). Review of Maritime Transport 2012; United Nations: Geneva, Switzerland, 2012. [Google Scholar]
- United Nations Conference on Trade and Development (UNCTAD). Review of Maritime Transport 2015; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
Ship Type | Carrying Cargoes | Mainly Export/Import |
---|---|---|
crude oil carriers | crude oil | Import |
oil product carriers | oil products | Import |
chemical tankers | chemicals | Import |
liquid gas tankers | gas liquids | Import |
containerships | containerizable | Import/Export |
reefer cargos | reefer trades | Import/Export |
dry bulk carriers | coal | Import |
grains | Import | |
agribulks | Import | |
iron ore | Import | |
steel products | Export | |
minerals | Export | |
metals | Import | |
forest products | Import | |
fertilizers | Import/Export |
Time Period | ||||||||
---|---|---|---|---|---|---|---|---|
2000–2001 | −0.15 | −1.39 | 0.00 | 0.19 | −0.03 | 0.91 | 0.08 | 0.09 |
2001–2002 | 0.44 | −0.11 | −0.26 | 0.22 | 0.04 | −0.12 | 0.78 | −0.11 |
2002–2003 | 0.93 | 0.28 | 0.44 | −0.02 | −0.06 | −0.50 | 0.80 | −0.01 |
2003–2004 | 0.59 | 0.51 | −0.07 | −0.18 | −0.05 | −0.49 | 0.92 | −0.05 |
2004–2005 | −0.40 | −0.62 | −0.81 | −0.09 | −0.08 | 0.58 | 0.73 | −0.10 |
2005–2006 | −0.66 | −0.18 | −0.48 | −0.35 | −0.03 | 0.41 | −0.05 | 0.03 |
2006–2007 | −0.79 | −0.35 | −0.50 | −0.27 | 0.05 | 0.56 | −0.14 | −0.15 |
2007–2008 | 0.32 | 0.72 | 0.31 | −0.09 | −0.03 | −0.51 | 0.18 | −0.27 |
2008–2009 | −5.49 | −0.62 | −0.06 | −0.04 | 0.15 | 2.36 | −7.45 | 0.17 |
2009–2010 | −0.14 | 0.81 | −0.49 | −0.31 | 0.18 | −0.43 | 0.24 | −0.13 |
2010–2011 | −1.59 | −0.54 | −0.62 | −0.40 | 0.23 | 0.94 | −1.12 | −0.06 |
2011–2012 | −2.09 | −0.06 | −0.59 | −0.37 | 0.08 | 0.85 | −1.91 | −0.09 |
2012–2013 | −1.84 | −0.60 | −0.26 | −0.37 | 0.15 | 1.09 | −1.78 | −0.07 |
2013–2014 | −1.57 | 0.54 | −0.95 | −0.25 | 0.20 | 0.22 | −1.32 | −0.01 |
2014–2015 | 0.86 | 0.95 | 0.40 | 0.08 | 0.29 | −0.99 | 0.09 | 0.03 |
2015–2016 | −1.13 | 1.76 | 0.56 | −0.05 | 0.34 | −0.74 | −2.88 | −0.13 |
2016–2017 | −0.65 | 1.06 | 0.03 | 0.02 | 0.82 | −0.59 | −1.95 | −0.04 |
2000–2017 | −13.35 | 2.17 | −3.36 | −2.27 | 2.24 | 3.55 | −14.77 | −0.90 |
Year | Decoupling State | |||
---|---|---|---|---|
2000–2001 | 0.164 | 0.083 | 1.972 | END |
2001–2002 | 0.145 | 0.091 | 1.598 | END |
2002–2003 | 0.212 | 0.100 | 2.115 | END |
2003–2004 | 0.187 | 0.101 | 1.849 | END |
2004–2005 | 0.142 | 0.114 | 1.245 | END |
2005–2006 | 0.155 | 0.127 | 1.217 | END |
2006–2007 | 0.112 | 0.142 | 0.787 | WD |
2007–2008 | 0.020 | 0.097 | 0.211 | WD |
2008–2009 | 0.071 | 0.094 | 0.759 | WD |
2009–2010 | 0.125 | 0.106 | 1.128 | EC |
2010–2011 | 0.098 | 0.095 | 1.030 | EC |
2011–2012 | 0.067 | 0.079 | 0.852 | EC |
2012–2013 | 0.070 | 0.078 | 0.903 | EC |
2013–2014 | 0.049 | 0.073 | 0.677 | WD |
2014–2015 | 0.005 | 0.069 | 0.067 | WD |
2015–2016 | 0.039 | 0.067 | 0.589 | WD |
2016–2017 | 0.050 | 0.069 | 0.724 | WD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Ma, X. Uncovering CO2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis. Sustainability 2019, 11, 2826. https://doi.org/10.3390/su11102826
Yang H, Ma X. Uncovering CO2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis. Sustainability. 2019; 11(10):2826. https://doi.org/10.3390/su11102826
Chicago/Turabian StyleYang, Hualong, and Xuefei Ma. 2019. "Uncovering CO2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis" Sustainability 11, no. 10: 2826. https://doi.org/10.3390/su11102826
APA StyleYang, H., & Ma, X. (2019). Uncovering CO2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis. Sustainability, 11(10), 2826. https://doi.org/10.3390/su11102826