Relationships between Riparian Vegetation Pattern and the Hydraulic Characteristics of Upslope Runoff
Abstract
:1. Introduction
- (1)
- the runoff coefficient under different slope gradients and vegetation cover,
- (2)
- regime, resistance, and shear stress of slope overland flow under different slope gradients and vegetation cover, and
- (3)
- the relationship between hydraulic parameters of overland flow and riparian vegetation patterns, in the lower reaches of the Yellow River.
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Data Measurements and Parameter Calculation
3. Results
3.1. Runoff Coefficient on Different Riparian Slopes
3.2. Hydraulic Characteristics on Different Riparian Slopes
3.2.1. Flow Regime
3.2.2. Flow Resistance
3.2.3. Flow Shear Stress
3.3. Relationship between Riparian Vegetation Pattern and Hydraulic Characteristics
4. Discussion
4.1. Effects of Vegetation Cover and Slope Gradient on Runoff Hydraulic Characteristics
4.2. Relationship between Vegetation Pattern and Runoff Hydraulic Characteristics
4.3. Implications for Sustainable Management of Riparian Ecosystems
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Fan, W.; Li, Y.; Yi, Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 2017, 574, 34–45. [Google Scholar] [CrossRef]
- Márquez, C.O.; García, V.J.; Schultz, R.C.; Isenhart, T.M. Assessment of soil degradation through soil aggregation and particulate organic matter following conversion of riparian buffer to continuous cultivation. Eur. J. Soil Sci. 2017, 68, 295–304. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Zhang, Q.; Shen, N. Distinguishing transport-limited and detachment-limited processes of interrill erosion on steep slopes in the Chinese loessial region. Soil Tillage Res. 2018, 177, 88–96. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.; Li, F.; Zhang, J.; Lei, T.; Li, J.; Chen, P.; Wang, X. Velocity of water flow along saturated loess slopes under erosion effects. J. Hydrol. 2018, 561, 304–311. [Google Scholar] [CrossRef]
- Xing, H.; Huang, Y.-H.; Chen, X.-Y.; Luo, B.-L.; Mi, H.-X. Comparative study of soil erodibility and critical shear stress between loess and purple soils. J. Hydrol. 2018, 558, 625–631. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.-H.; Yang, Y.-F.; Li, P.-P.; Liu, J.-X. The effects of varied soil properties induced by natural grassland succession on the process of soil detachment. CATENA 2018, 166, 192–199. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S. Deriving and evaluating hydraulics and detachment models of rill erosion for some calcareous soils. CATENA 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, G.; Liu, P.; Zheng, F.; Zhang, J.; Hu, F. Response of soil detachment rate to the hydraulic parameters of concentrated flow on steep loessial slopes on the Loess Plateau of China. Hydrol. Process. 2017, 31, 2613–2621. [Google Scholar] [CrossRef]
- An, J.; Zheng, F.; Lu, J.; Li, G. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions. Soil Sci. 2012, 177, 517–526. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, J.E.; Huang, Y.; Wang, G.; Zhang, M. Effects of vegetation stems on hydraulics of overland flow under varying water discharges. Land Degrad. Dev. 2016, 27, 748–757. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Hu, J.-M.; Wang, T.-W.; Cai, C.-F.; Li, Z.-X.; Zhang, Y. Effects of vegetation cover and road-concentrated flow on hillslope erosion in rainfall and scouring simulation tests in the Three Gorges Reservoir Area, China. CATENA 2016, 136, 108–117. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Li, Z.B.; Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhang, X.C.; Li, L.I.; Huang, X.H.; Can, X.U. Effects of vegetation patterns on soil and water loss in purple soil slopeland. J. Soil Water Conserv. 2014, 28, 1–6. [Google Scholar]
- Su, Y.; Peng, L.; Li, Z.; Ren, Z.; Xiao, L.; Li, C.; Tang, S.; Wang, T.; Zhang, Y. Effects of slope vegetation patterns on energy regulation and water-sediment response relations in slope-gully system. J. Soil Water Conserv. 2017, 31, 32–39. [Google Scholar]
- Ren, K.M.; Wei, W.; Zhao, X.N.; Feng, T.J.; Chen, D.; Yu, Y. Simulation of the effect of slope vegetation cover and allocation pattern on water erosion in the loess hilly region. Acta Ecol. Sin. 2018, 8, 8031–8039. [Google Scholar]
- Yang, P.; Zhang, H.; Wang, Y.; Chao, M.A.; Zhang, X. Effects of vegetation coverage and spatial distribution pattern on hydrodynamic characteristics of overland flow. J. Soil Water Conserv. 2016, 30, 26–33. [Google Scholar]
- Zhang, G.; Hu, J. Effects of patchy distributed Artemisia capillaris on overland flow hydrodynamic characteristics. Int. Soil Water Conserv. Res. 2019, 7, 81–88. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Wu, B.; Shen, N.; Liu, J.E. Identifying sediment transport capacity of raindrop-impacted overland flow within transport-limited system of interrill erosion processes on steep loess hillslopes of China. Soil Tillage Res. 2018, 184, 109–117. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Bastin, G.N.; Chewings, V.H.; Eager, R.W.; Liedloff, A.C. Leakiness: A new index for monitoring the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data. Ecol. Indic. 2007, 7, 442–454. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. CATENA 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; van Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Lv, Y.; Feng, X.; Fu, B. Landscape pattern analysis in landscape ecology: Current, challenges and future. Acta Ecol. Sin. 2008, 28, 5521–5531. [Google Scholar]
- Liu, Y. Effectiveness of landscape metrics in coupling soil erosion with landscape pattern. Acta Ecol. Sin. 2017, 37, 4923–4935. [Google Scholar]
- Chen, L.; Fu, B.; Xu, J.; Jie, G. Location-weighted landscape contrast index: A scale independent approach for landscape pattern evaluation based on Source-Sink ecological processes. Acta Ecol. Sin. 2003, 23, 2406–2413. [Google Scholar]
- Mayor, Á.G.; Bautista, S.; Small, E.E.; Dixon, M.; Bellot, J. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: A tool for assessing potential water and soil losses in drylands. Water Resour. Res. 2008, 44, W10423. [Google Scholar] [CrossRef]
- Hould-Gosselin, G.; Rousseau, A.N.; Gumiere, S.J.; Hallema, D.W.; Ratté-Fortin, C.; Thériault, G.; van Bochove, E. Modeling the sediment yield and the impact of vegetated filters using an event-based soil erosion model—A case study of a small Canadian watershed. Hydrol. Process. 2016, 30, 2835–2850. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, Q.; Ding, S.; Zhang, Y.; Liu, P.; Wu, C.; Bian, Z. Effect of slope gradient and vegetation cover on sediment yielding characteristics of the riparian slope. J. Nat. Resour. 2017, 32, 1892–1904. [Google Scholar]
- Stella, J.C.; Rodríguez-González, P.M.; Dufour, S.; Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Méndez-Toribio, M.; Zermeño-Hernández, I.; Ibarra-Manríquez, G. Effect of land use on the structure and diversity of riparian vegetation in the Duero river watershed in Michoacán, Mexico. Plant Ecol. 2014, 215, 285–296. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Q.; Ma, L.J.; Ding, S.; Lu, X.L.; Zhang, Y.; Cao, Z. Spatial-temporal dynamics of vegetation pattern in a typical riparian buffer zone of the middle and lower reaches of Yellow River. Chin. J. Ecol. 2017, 36, 2127–2137. [Google Scholar]
- Cao, Z.; Zhao, Q.; Xianyu, Z.; Ding, S.; Zhang, Y.; Xu, S.; Wu, D. Optimizing vegetation pattern for the riparian buffer zone along the lower Yellow River based on slope hydrological connectivity. Chin. J. Appl. Ecol. 2018, 29, 739–747. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 8 August 2015).
- Zhao, Q.; Li, D.; Zhuo, M.; Guo, T.; Liao, Y.; Xie, Z.J.S.E.R.; Assessment, R. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope. Stoch. Environ. Res. Risk Assess. 2015, 29, 609–621. [Google Scholar] [CrossRef]
- Xu, X.; Ma, K.; Fu, B.; Liu, X.; Huang, Y.; Qi, J. Research review of the relationship between vegetation and soil loss. Acta Ecol. Sin. 2006, 26, 3137–3143. [Google Scholar]
- Qin, W.; Cao, W.; Zuo, C. Review on the coupling influences of vegetation and topography to soil erosion and sediment yield. J. Sediment Res. 2015, 40, 74–80. [Google Scholar]
- Zhao, Q.; Ji, X.; Xu, S.; Wu, C. Inhibiting effect of riparian vegetation on erosion and sediment yield of slope runoff. Trans. Chin. Soc. Agric. Eng. 2018, 34, 170–178. [Google Scholar]
- Ding, W.; Li, M. Effects of grass coverage and distribution patterns on erosion and overland flow hydraulic characteristics. Environ. Earth Sci. 2016, 75, 477. [Google Scholar] [CrossRef]
- Shen, H.; Zheng, F.; Wen, L.; Han, Y.; Hu, W. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil Tillage Res. 2016, 155, 429–436. [Google Scholar] [CrossRef]
- Pan, C.; Shangguan, Z. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. J. Hydrol. 2006, 331, 178–185. [Google Scholar] [CrossRef]
- Li, M.; Yao, W.; Yang, J.; Chen, J.; Ding, W.; Li, L.; Yang, C. Experimental study on the effect of grass cover on the overland flow pattern in the hillslope-gully side erosion system. J. Basic Sci. Eng. 2009, 17, 513–523. [Google Scholar]
- Xu, X.; Zheng, F.; Qin, C.; Wu, H.; Wilson, G.V. Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding. CATENA 2017, 149, 417–425. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, Z.; Xie, Z.; Zhuo, M.; Liao, Y.; Guo, T.; Li, D. Mechanisms of grass in slope erosion control in red soil region of southern China. J. Soil Water Conserv. 2016, 30, 1–5. [Google Scholar]
- Yang, C.; Wang, D.; Wang, L. Influence of grass cover degree to hydrodynamic parameters of slope water. Soil Water Conserv. China 2008, 9, 36–38. [Google Scholar]
- Li, P.; Cai, W.; Zheng, L.; Ru, H. Effects of vegetative cover on runoff hydraulic characteristics and erosion. Sci. Soil Water Conserv. 2006, 4, 55–59. [Google Scholar]
- Wang, L.; Shi, Z.H. Size selectivity of eroded sediment associated with soil texture on steep slopes. Soil Sci. Soc. Am. J. 2015, 79, 917–929. [Google Scholar] [CrossRef]
- Lu, R.; Liu, Y.-F.; Jia, C.; Huang, Z.; Liu, Y.; He, H.; Liu, B.-R.; Wang, Z.-J.; Zheng, J.; Wu, G.-L. Effects of mosaic-pattern shrub patches on runoff and sediment yield in a wind-water erosion crisscross region. CATENA 2019, 174, 199–205. [Google Scholar] [CrossRef]
- Boer, M.; Puigdefábregas, J. Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: A simulation study. Earth Surf. Process. Landf. 2010, 30, 149–167. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, G.B.; Liang, Y.I. Effects of vegetation patterns on overland flow resistance. J. Soil Water Conserv. 2014, 28, 55–59, 109. [Google Scholar]
- Qin, W.; Cao, W.; Guo, Q.; Yu, Y.; Yin, Z. Review of the effects of vegetation patterns on soil erosion and sediment yield. Acta Ecol. Sin. 2017, 37, 4905–4912. [Google Scholar]
- Wang, J.; Yang, L.; Wei, W.; Chen, L.; Huang, Z. Effects of landscape patterns on soil and water loss in the hilly area of loess plateau in China: Landscape-level and comparison at multiscale. Acta Ecol. Sin. 2011, 31, 5531–5541. [Google Scholar]
- Tischendorf, L. Can landscape indices predict ecological processes consistently? Landsc. Ecol. 2001, 16, 235–254. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Wei, W.; Chen, L.; Huang, Z. Effects of landscape pattern on watershed soil erosion and sediment delivery in hilly and gully region of the Loess Plateau of China: Patch class-level. Acta Ecol. Sin. 2011, 31, 5739–5748. [Google Scholar]
- Monteiro, J.A.F.; Kamali, B.; Srinivasan, R.; Abbaspour, K.; Gücker, B. Modelling the effect of riparian vegetation restoration on sediment transport in a human-impacted Brazilian catchment. Ecohydrology 2016, 9, 1289–1303. [Google Scholar] [CrossRef]
- Mander, Ü.; Tournebize, J.; Sauvage, S.; Sánchez-Perez, J.M. Wetlands and buffer zones in watershed management. Ecol. Eng. 2017, 103, 289–295. [Google Scholar] [CrossRef]
- Keeton, W.S.; Copeland, E.M.; Sullivan, S.M.P.; Watzin, M.C. Riparian forest structure and stream geomorphic condition: Implications for flood resilience. Can. J. For. Res. 2017, 47, 476–487. [Google Scholar] [CrossRef]
- Feld, C.K.; Fernandes, M.R.; Ferreira, M.T.; Hering, D.; Ormerod, S.J.; Venohr, M.; Gutiérrez-Cánovas, C. Evaluating riparian solutions to multiple stressor problems in river ecosystems—A conceptual study. Water Res. 2018, 139, 381–394. [Google Scholar] [CrossRef]
Slope Gradients (°) | Initial Soil Moisture (%) | Soil Bulk Density (g/cm³) | Soil Capillary Porosity (%) | Clay Content (%) | Silt Content (%) | Sand Content (%) | Vegetation Type (Plant) |
---|---|---|---|---|---|---|---|
5 | 22.00 | 1.60 | 32.92 | 0.34 | 46.80 | 52.87 | Grass (Setaria viridis (L.) Beauv.) |
10 | 18.00 | 1.57 | 34.38 | 0.56 | 51.39 | 48.06 | Grass (Setaria viridis (L.) Beauv.) |
15 | 19.00 | 1.55 | 36.89 | 0.45 | 60.63 | 38.93 | Grass (Setaria viridis (L.) Beauv.) |
20 | 20.00 | 1.59 | 38.81 | 0.61 | 64.32 | 35.07 | Grass (Setaria viridis (L.) Beauv.) |
VC | SG | PD | FRAC-MN | PARA-MN | CONNECT | MESH | SPLIT | AI | |
---|---|---|---|---|---|---|---|---|---|
Landscape level | 15% | 5° | 651.04 | 1.11 | 4158.07 | 12.50 | 1.91 | 1.45 | 72.80 |
10° | 809.40 | 1.08 | 4179.78 | 9.09 | 1.84 | 1.54 | 71.76 | ||
15° | 879.79 | 1.09 | 4105.54 | 10.14 | 1.83 | 1.55 | 70.64 | ||
20° | 879.79 | 1.10 | 3986.45 | 13.04 | 1.82 | 1.56 | 71.16 | ||
30% | 5° | 457.49 | 1.15 | 3685.97 | 29.17 | 1.28 | 2.22 | 57.38 | |
10° | 674.72 | 1.10 | 3981.02 | 15.69 | 1.53 | 1.84 | 64.15 | ||
15° | 703.83 | 1.12 | 3954.34 | 13.04 | 1.37 | 2.08 | 66.48 | ||
20° | 387.11 | 1.13 | 3612.66 | 35.14 | 1.41 | 2.01 | 67.41 | ||
Class level | 15% | 5° | 614.87 | 1.09 | 4338.58 | 12.50 | 0.01 | 272.84 | 25.38 |
10° | 774.21 | 1.07 | 4317.10 | 9.09 | 0.02 | 157.71 | 33.76 | ||
15° | 844.59 | 1.09 | 4228.48 | 10.14 | 0.01 | 196.16 | 28.30 | ||
20° | 844.59 | 1.09 | 4104.00 | 13.04 | 0.01 | 282.43 | 32.30 | ||
30% | 5° | 351.91 | 1.15 | 3973.62 | 26.67 | 0.18 | 16.15 | 44.26 | |
10° | 639.20 | 1.09 | 4118.33 | 15.69 | 0.06 | 48.77 | 38.46 | ||
15° | 702.07 | 1.10 | 3994.95 | 13.04 | 0.14 | 50.88 | 35.95 | ||
20° | 316.72 | 1.12 | 3694.54 | 33.33 | 0.08 | 34.46 | 52.36 |
PD | FRAC-MN | PARA-MN | CONNECT | MESH | SPLIT | AI | ||
---|---|---|---|---|---|---|---|---|
Landscape level | Re | −0.131 | 0.052 | 0.123 | −0.017 | 0.139 | −0.125 | 0.160 |
Fr | 0.537 * | −0.458 * | 0.128 | −0.218 | 0.406 | −0.406 | 0.571 * | |
n | −0.706 ** | 0.715 ** | −0.557 * | 0.556 * | −0.725 ** | 0.710 ** | −0.855 ** | |
f | −0.640 ** | 0.733 ** | −0.576 ** | 0.521 * | −0.820 ** | 0.819 ** | −0.919 ** | |
τ | −0.134 | 0.134 | −0.361 | 0.266 | −0.306 | 0.2 87 | 0.061 | |
Class level | Re | −0.120 | 0.049 | 0.165 | −0.021 | −0. 400 | 0.145 | −0.152 |
Fr | 0.530 * | −0.445 * | −0.077 | −0.201 | −0.518 * | 0.462 * | −0.119 | |
n | −0.710 ** | 0.699 ** | −0.368 | 0.546 * | 0.708 ** | −0.676 ** | 0.489 * | |
f | −0.645 ** | 0.702 ** | −0.411 | 0.505 * | 0.838 ** | −0.779 ** | 0.526 * | |
τ | −0.089 | 0.005 | −0.587 ** | 0.289 | 0.153 | −0.275 | 0.413 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Zhang, Y.; Xu, S.; Ji, X.; Wang, S.; Ding, S. Relationships between Riparian Vegetation Pattern and the Hydraulic Characteristics of Upslope Runoff. Sustainability 2019, 11, 2966. https://doi.org/10.3390/su11102966
Zhao Q, Zhang Y, Xu S, Ji X, Wang S, Ding S. Relationships between Riparian Vegetation Pattern and the Hydraulic Characteristics of Upslope Runoff. Sustainability. 2019; 11(10):2966. https://doi.org/10.3390/su11102966
Chicago/Turabian StyleZhao, Qinghe, Yifan Zhang, Shanshan Xu, Xiaoyu Ji, Shuoqian Wang, and Shengyan Ding. 2019. "Relationships between Riparian Vegetation Pattern and the Hydraulic Characteristics of Upslope Runoff" Sustainability 11, no. 10: 2966. https://doi.org/10.3390/su11102966
APA StyleZhao, Q., Zhang, Y., Xu, S., Ji, X., Wang, S., & Ding, S. (2019). Relationships between Riparian Vegetation Pattern and the Hydraulic Characteristics of Upslope Runoff. Sustainability, 11(10), 2966. https://doi.org/10.3390/su11102966