Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design
Abstract
:1. Introduction
2. Background
2.1. Components of a BIPV System
2.2. Related Literature
3. Materials and Methods
3.1. Performance Parameters and Design Factors
3.2. Evaluation Method
3.3. Decision Visualization Aid
4. Linking Framework Components
- System, climate data, and grid: For system, this involves recognizing the type of building design (basically the design of the final roof and elevations); for climate, this is related to obtaining the climate data associated with each region analysed, and identifying the exact location where the PV modules are to be installed, in order to determine the latitude, longitude, annual sum of global irradiation, and annual average temperature; and for grid, this involves determining the usage voltages and phase system of electricity.
- PV modules: This refers to defining the model of the examined PV module, the number of PV modules, installation type, inclination, orientation, shading, and degradation of the module.
- Inverters: This refers to selecting the configurations, determining the values of the configuration module, and the number of inverters.
- Cables: This is associated with calculating the loss of energy in cables, based on their length and thickness, through consideration of the distances between the various components of the BIPV system.
5. Case Example: Installation of PV Modules in a Complete BIPV System
5.1. Size of the Case Study
5.2. Inventory of Database
5.3. Assessment of Design Factors
5.4. Evaluation of Results
5.5. Additional Roof Mounted Analysis
- (a)
- In Rio de Janeiro, the best inclination is 19°. The EO equals 13,929 kWh/year and 13,858 kWh/year for poly-crystalline and mono-crystalline, respectively, with a proportion of around 86%. The installation of PV modules within 10° or 30° will cause an annual energy waste of 195 and 145 kWh, respectively, using poly-crystalline modules, and 203 and 146 kWh, respectively, using mono-crystalline modules.
- (b)
- In Riyadh, the best inclination is 21°. The EO equals 18,395 kWh/year and 18,488 kWh/year for poly-crystalline and mono-crystalline, respectively, with a proportion of 87%. The installation of PV modules within 10° or 30° will cause an annual energy waste of 442 and 127 kWh, respectively, using poly-crystalline modules, and 460 and 130 kWh, respectively, using mono-crystalline modules.
- (c)
- In London, the best inclination is 43°. The EO equals 9066 kWh/year and 8920 kWh/year for poly-crystalline and mono-crystalline, respectively, with a proportion of 84%. The installation of PV modules within 30° or 50° will cause an annual energy waste of 228 and 634 kWh, respectively, using poly-crystalline modules, and 224 and 629 kWh, respectively, using mono-crystalline modules.
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akbarnezhad, A.; Xiao, J. Estimation and minimization of embodied carbon of buildings: A review. Buildings 2017, 7, 5. [Google Scholar] [CrossRef]
- UNEP. Towards Zero-EmissionEfficient and Resilient Buildings; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- You, H.; Fang, H.; Wang, X.; Fang, S. Environmental efficiency of photovoltaic power plants in China—A comparative study of different economic zones and plant types. Sustainability 2018, 10, 2551. [Google Scholar] [CrossRef]
- UNEP. Buildings and Climate Change. Summary for Decision-Makers; United Nations Environment Programme: Nairobi, Kenya, 2009. [Google Scholar]
- The World Bank. Access to Electricity. 2014. Available online: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS (accessed on 27 April 2019).
- Najjar, M.K.; Tam, V.W.Y.; Torres, L.; Gregorio, D.; Catarina, A.; Evangelista, J.; Hammad, A.W.A.; Haddad, A. Integrating parametric analysis with building information modeling to improve energy performance of construction projects. Energies 2019, 12, 1515. [Google Scholar] [CrossRef]
- Konneh, D.A.; Or, H.; Howlader, R.; Shigenobu, R. A multi-criteria decision maker for grid-connected hybrid renewable energy systems selection using multi-objective particle swarm optimization. Sustainability 2019, 11, 1188. [Google Scholar] [CrossRef]
- Shouman, E.R. International and national renewable energy for electricity with optimal cost effective for electricity in Egypt. Renew. Sustain. Energy Rev. 2017, 77, 916–923. [Google Scholar] [CrossRef]
- Short-Term Energy Outlook (STEO); U.S. Energy Information Administration: Washington, DC, USA, 2017.
- Giannini, M.; Farias, C.; Aurélio, M.; Freitas, V.; Fidelis, N. The renewable energy market in Brazil: Current status and potential. Renew. Sustain. Energy Rev. 2012, 16, 3786–3802. [Google Scholar] [CrossRef]
- Kim, S.; Song, Y.; Sung, Y.; Seo, D. Development of a consecutive occupancy estimation framework for improving the energy demand prediction performance of building energy. Energies 2019, 12, 433. [Google Scholar] [CrossRef]
- Alsafasfeh, Q.; Saraereh, O.A.; Khan, I. Solar PV grid power flow analysis. Sustainability 2019, 11, 1744. [Google Scholar] [CrossRef]
- Yu, C.; Khoo, Y.S.; Chai, J.; Han, S.; Yao, J. Optimal orientation and tilt angle for maximizing in-plane solar irradiation for PV applications in Japan. Sustainability 2019, 11, 2016. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST SEMATECH). e-Handbook of Statistical Methods. 2006. Available online: https://www.itl.nist.gov/div898/handbook/ (accessed on 27 April 2019).
- Valentin Software. PV*SOL Premium. 2015. Available online: https://www.valentin-software.com/en/products/photovoltaics/57/pvsol-premium (accessed on 27 April 2019).
- Pagliaro, M.; Ciriminna, R.; Palmisano, G. BIPV: Merging the photovoltaic with the construction industry. Prog. Photovolt. Res. Appl. 2010, 18, 61–72. [Google Scholar] [CrossRef]
- Hagemann, I.B. New perspectives for BIPV with dye solar cells (DSC). In Proceedings of the 2nd DSC Industrialization Conference, St Gallen, Switzerland, 11–13 September 2007. [Google Scholar]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Energy Technologies: Cost Analysis Series; International Renewable Energy Agency: Bonn, Germany, 2012; Volume 1. [Google Scholar]
- Strong, S. Building Integrated Photovoltaics (BIPV). Whole Building Design Guide (WBDG). 2016. Available online: http://www.wbdg.org/resources/building-integrated-photovoltaics-bipv (accessed on 24 April 2019).
- Bhandari, K.P.; Collier, J.M.; Ellingson, R.J.; Apul, D.S. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2015, 47, 133–141. [Google Scholar] [CrossRef]
- European Commission. Strategic Energy Technologies Information System. Available online: https://setis.ec.europa.eu/technologies/photovoltaics (accessed on 27 April 2019).
- Green Match. Types of Solar Panels. Available online: https://www.greenmatch.co.uk/blog/2015/09/types-of-solar-panels (accessed on 21 April 2019).
- Ranabhat, K.; Patrikeev, L.; Revina, A.A.; Andrianov, K.; Lapshinsky, V.; Sofronova, E. An introduction to solar cell technology. J. Appl. Eng. Sci. 2016, 14, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Fthenakis, V. Third Generation Photovoltaics; InTech Open: Rijeka, Croatia, 2012. [Google Scholar]
- Gulkowski, S.; Zdyb, A.; Dragan, P. Experimental efficiency analysis of a photovoltaic system with different module technologies under temperate climate conditions. Appl. Sci. 2019, 9, 141. [Google Scholar] [CrossRef]
- Dai, Q.; Liu, J.; Wei, Q. Optimal photovoltaic/battery energy storage/electric vehicle charging station design based on multi-agent particle swarm optimization algorithm. Sustainability 2019, 11, 1973. [Google Scholar] [CrossRef]
- Whitaker, C.; Newmiller, J.; Ropp, M.; Norris, B. Renewable Systems Interconnection Study: Distributed Photovoltaic Systems Design and Technology Requirements; Sandia National Laboratories: Livermore, CA, USA, 2008. [Google Scholar]
- Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renew. Sustain. Energy Rev. 2010, 14, 112–129. [Google Scholar] [CrossRef]
- Scognamiglio, A. Building-Integrated Photovoltaics (BIPV) for cost-effective energy-efficient retrofitting. In Cost-Effective Energy Efficient Building Retrofitting: Materials, Technologies, Optimization and Case Studies; Pacheco-Torgal, F., Granqvist, C., Jelle, B., Vanoli, G., Bianco, N., Kurnitski, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- American Physical Society Panel on Public Affairs. Integrating Renewable Electricity on the Grid; American Physical Society Panel on Public Affairs: College Park, MD, USA, 2010. [Google Scholar]
- Murphy, F.; McDonnell, K. A feasibility assessment of photovoltaic power systems in Ireland; A case study for the Dublin region. Sustainability (Switzerland) 2017, 9, 302. [Google Scholar] [CrossRef]
- Couture, T.; Gagnon, Y. An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy 2010, 38, 955–965. [Google Scholar] [CrossRef]
- Fouad, M.M.; Shihata, L.A.; Morgan, E.I. An integrated review of factors influencing the performance of photovoltaic panels. Renew. Sustain. Energy Rev. 2017, 80, 1499–1511. [Google Scholar] [CrossRef]
- D’Adamo, I. The profitability of residential photovoltaic systems. A new scheme of subsidies based on the price of CO2 in a developed PV market. Soc. Sci. 2018, 7, 148. [Google Scholar] [CrossRef]
- Ferreira, A.; Kunh, S.S.; Fagnani, K.C.; De Souza, T.A.; Tonezer, C.; Dos Santos, G.R.; Coimbra-Araújo, C.H. Economic overview of the use and production of photovoltaic solar energy in Brazil. Renew. Sustain. Energy Rev. 2018, 81, 181–191. [Google Scholar] [CrossRef]
- Khan, J.; Arsalan, M.H. Solar power technologies for sustainable electricity generation—A review. Renew. Sustain. Energy Rev. 2016, 55, 414–425. [Google Scholar] [CrossRef]
- Stropnik, R.; Stritih, U. Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 2016, 97, 671–679. [Google Scholar] [CrossRef]
- Traverso, M.; Asdrubali, F.; Francia, A.; Finkbeiner, M. Towards life cycle sustainability assessment: An implementation to photovoltaic modules. Int. J. Life Cycle Assess. 2012, 17, 1068–1079. [Google Scholar] [CrossRef]
- Nayak, S.; Tiwari, G.N. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India. Appl. Energy 2010, 87, 2984–2993. [Google Scholar] [CrossRef]
- Carstens, D.D.; dos Santos Carstens, D.D.; da Cunha, S.K. Challenges and opportunities for the growth of solar photovoltaic energy in Brazil. Energy Policy 2019, 125, 396–404. [Google Scholar] [CrossRef]
- Xu, R.; Ni, K.; Hu, Y.; Si, J.; Wen, H.; Yu, D. Analysis of the optimum tilt angle for a soiled PV panel. Energy Convers. Manag. 2017, 148, 100–109. [Google Scholar] [CrossRef]
- Kaddoura, T.O.; Ramli, M.A.M.; Al-turki, Y.A. On the estimation of the optimum tilt angle of PV panel in Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 65, 626–634. [Google Scholar] [CrossRef]
- Han, S.; Kim, J. An optimization model to design and analysis of renewable energy supply strategies for residential sector. Renew. Energy 2017, 112, 222–234. [Google Scholar] [CrossRef]
- Gunerhan, H.; Hepbasli, A. Determination of the optimum tilt angle of solar collectors for building applications. Build. Environ. 2007, 42, 779–783. [Google Scholar] [CrossRef]
- Benghanem, M. Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia. Appl. Energy 2011, 88, 1427–1433. [Google Scholar] [CrossRef]
- Landau, C.R. Optimum Tilt of Solar Panels. 2015. Available online: http://www.solarpaneltilt.com/#other (accessed on 27 April 2019).
- Bellos, E.; Tzivanidis, C. Yearly performance of a hybrid PV operating with nanofluid. Renew. Energy 2017, 113, 867–884. [Google Scholar] [CrossRef]
- Hasan, A.; Sarwar, J.; Alnoman, H.; Abdelbaqi, S. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Sol. Energy 2017, 146, 417–429. [Google Scholar] [CrossRef]
- Pillai, G.; Putrus, G.; Pearsall, N.; Georgitsioti, T. The effect of distribution network on the annual energy yield and economic performance of residential PV systems under high penetration. Renew. Energy 2017, 108, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Lim, H.C. Effect of island topography and surface roughness on the estimation of annual energy production of offshore wind farms. Renew. Energy 2017, 103, 106–114. [Google Scholar] [CrossRef]
- Han, W.; Kim, J.; Kim, B. Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renew. Energy 2018, 115, 817–823. [Google Scholar] [CrossRef]
- Autodesk Knowledge Network. Energy Use Intensity. Available online: https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/Revit-Analyze/files/GUID-DC115EA5-B157-4C00-82EC-72F6E947E69E-htm.html (accessed on 27 April 2019).
- Autodesk. PV Building Energy Offsets with Insight 360 Solar Analysis. Available online: http://blogs.autodesk.com/insight/pv-building-energy-offsets-with-insight-360-solar-analysis-2/ (accessed on 27 April 2019).
- Hazyuk, I.; Ghiaus, C.; Penhouet, D. Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part I e Building modeling. Build. Environ. 2012, 51, 379–387. [Google Scholar] [CrossRef]
- Yuan, J.; Nian, V.; Su, B.; Meng, Q. A simultaneous calibration and parameter ranking method for building energy models. Appl. Energy 2017, 206, 657–666. [Google Scholar] [CrossRef]
- Perrone, D.; Filiatrault, A. Automation in Construction Automated seismic design of non-structural elements with building information modelling. Autom. Constr. 2017, 84, 166–175. [Google Scholar] [CrossRef]
- Cao, J.; Li, M.; Wang, M.; Xiong, M.; Meng, F. Effects of climate change on outdoor meteorological parameters for building energy-saving design in the different climate zones of China. Energy Build. 2017, 146, 65–72. [Google Scholar] [CrossRef]
- Nik, V.M. Application of typical and extreme weather data sets in the hygrothermal simulation of building components for future climate—A case study for a wooden frame wall. Energy Build. 2017, 154, 30–45. [Google Scholar] [CrossRef]
- Chilkoti, V.; Bolisetti, T.; Balachandar, R. Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renew. Energy 2017, 109, 510–517. [Google Scholar] [CrossRef]
- Kaplani, E.; Kaplanis, S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Sol. Energy 2014, 107, 443–460. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.B.M.A.; Worrell, E.; Van Sark, W.G.J.H.M. Influence of demand patterns on the optimal orientation of photovoltaic systems. Sol. Energy 2017, 155, 1002–1014. [Google Scholar] [CrossRef] [Green Version]
- Haghdadi, N.; Copper, J.; Bruce, A.; Macgill, I. A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data. Renew. Energy 2017, 108, 390–400. [Google Scholar] [CrossRef]
- Hu, M.; Zheng, R.; Pei, G.; Wang, Y.; Li, J.; Ji, J. Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe. Appl. Therm. Eng. 2016, 106, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Notton, G.; Lazarov, V.; Stoyanov, L. Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renew. Energy 2010, 35, 541–554. [Google Scholar] [CrossRef]
- Kacira, M.; Simsek, M.; Babur, Y. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew. Energy 2004, 29, 1265–1275. [Google Scholar] [CrossRef]
- United Nations. Indicators of Sustainable Development: Guidelines and Methodologies; United Nations: New York, NY, USA, 2007. [Google Scholar]
- Callao, M.P. Trends in analytical chemistry multivariate experimental design in environmental analysis. Trends Anal. Chem. 2014, 62, 86–92. [Google Scholar] [CrossRef]
- Mondoc, B.; Pop, F. Factors influencing the performance of a photovoltaic power plant. In Proceedings of the 3rd International conference Modern Power System MPS 2010, Cluj-Napoca, Romania, 18–21 May 2010; pp. 18–21. [Google Scholar]
- Kanters, J.; Horvat, M.; Dubois, M.C. Tools and methods used by architects for solar design. Energy Build. 2014, 68, 721–731. [Google Scholar] [CrossRef]
- Kovács, A.; Bátai, R.; Csáji, B.C.; Dudás, P.; Háy, B.; Pedone, G.; Révész, T.; Váncza, J. Intelligent control for energy-positive street lighting. Energy 2016, 114, 40–51. [Google Scholar] [CrossRef] [Green Version]
- The Minitab Blog. Regression Analysis Tutorial and Examples. Minitab 18. 2013. Available online: http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-tutorial-and-examples (accessed on 27 April 2019).
- Fegade, S.L.; Tande, B.M.; Cho, H.; Seames, W.S.; Inna Sakodynskaya, D.S.M.; Kozliak, E.I. Aromatization of propylene over HZSM-5: A Design of Experiments (DOE) Approach. Chem. Eng. Commun. 2013, 200, 1039–1056. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; Arizona State University, John Wiley & Sons: Phoenix, AZ, USA, 2009. [Google Scholar]
- Taylor, J.R. Experimental Errors and Uncertainty. Measurement; University Science Books: Sausalito, CA, USA, 2002; pp. 2000–2002. [Google Scholar]
- Sharma, D.K.; Verma, V.; Singh, A.P. Review and analysis of solar photovoltaic softwares. Int. J. Curr. Eng. Technol. 2014, 4, 725–731. [Google Scholar]
- Valentin EnergieSoftware GmbH. Design and Simulation of Photovoltaic Systems; Wagner & Co Solartechnik GmbH: Berlin, Germany, 2010. [Google Scholar]
- Chen, D.; Chen, H.W. Using the Köppen classi fi cation to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- John Arnfield, A. Köppen climate classification. Encyclopaedia Britannica. 2017. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 27 April 2019).
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Koppen-Geiger climate classif cation World Map of Köppen—Geiger Climate Classification. Meteorologische Zeitschrift 2010, 19, 135–141. [Google Scholar] [CrossRef]
- Collins, L.M.; Dziak, J.J.; Li, R. Resource Management perspective on complete and reduced. Psychol. Methods 2009, 14, 202–224. [Google Scholar] [CrossRef] [PubMed]
- Lacchini, C.; Antoniolli, A.F.; Rüther, R. The influence of different irradiation databases on the assessment of the return of capital invested in residential PV systems installed in different locations of the Brazilian territory. Sol. Energy 2017, 155, 893–901. [Google Scholar] [CrossRef]
- Sivakumar, P.; Arutchelvi, M. Maximum power extractions in a single stage PV sourced grid connected inverter during low irradiations and nonlinear loads. Renew. Energy 2017, 107, 262–270. [Google Scholar] [CrossRef]
City | Optimum PV Module Inclination | Proportion of the Best Inclination Compared to the Latitude | City | Optimum PV Module Inclination | Proportion of the Best Inclination Compared to the Latitude |
---|---|---|---|---|---|
Winnipeg | 41.1 | 82% | Houston | 25.9 | 86% |
Prague | 41.1 | 82% | Cairo | 25.9 | 86% |
Minneapolis | 37.3 | 83% | Dakar | 13.1 | 87% |
Milano | 37.3 | 83% | Caracas | 8.7 | 87% |
Madrid | 33.5 | 84% | Mérida | 17.4 | 87% |
Denver | 33.5 | 84% | Bogotá | 4.4 | 88% |
Albuquerque | 29.7 | 85% | Key West | 22.1 | 88% |
Tokyo | 29.7 | 85% | Taipei | 22.1 | 88% |
PVT | PVO | PVIA | PVIB |
---|---|---|---|
p-Si 100 W (1) | North (1) | 0° (1) | 0° (1) |
mono-Si 100 W (2) | South (2) | 10° (2) | 10° (2) |
East (3) | 20° (3) | 20° (3) | |
West (4) | 30° (4) | 30° (4) | |
40° (5) | 40° (5) | ||
50° (6) | 50° (6) | ||
60° (7) | 60° (7) | ||
90° (8) |
Run Sequence | Factorial Designs | EO (kWh/Year) | |||||
---|---|---|---|---|---|---|---|
PVT | PVO | PVIA | Rio de Janeiro/Brazil | Riyadh/Saudi Arabia | London/United Kingdom | Quito/Ecuador | |
1 | 1 | 1 | 1 | 13,221 | 17,060 | 7758 | 17,062 |
2 | 2 | 1 | 1 | 13,129 | 17,102 | 7601 | 16,904 |
3 | 1 | 2 | 1 | 13,221 | 17,060 | 7758 | 17,062 |
4 | 2 | 2 | 1 | 13,129 | 17,102 | 7601 | 16,904 |
5 | 1 | 3 | 1 | 13,221 | 17,060 | 7758 | 17,062 |
6 | 2 | 3 | 1 | 13,129 | 17,102 | 7601 | 16,904 |
7 | 1 | 4 | 1 | 13,221 | 17,060 | 7758 | 17,062 |
8 | 2 | 4 | 1 | 13,129 | 17,102 | 7601 | 16,904 |
9 | 1 | 1 | 2 | 13,734 | 15,699 | 6973 | 16,891 |
10 | 2 | 1 | 2 | 13,655 | 15,702 | 6825 | 16,733 |
11 | 1 | 2 | 2 | 12,386 | 17,953 | 8381 | 16,817 |
12 | 2 | 2 | 2 | 12,280 | 18,028 | 8223 | 16,640 |
13 | 1 | 3 | 2 | 13,126 | 16,881 | 7690 | 16,963 |
14 | 2 | 3 | 2 | 13,036 | 16,919 | 7535 | 16,802 |
15 | 1 | 4 | 2 | 13,034 | 16,847 | 7716 | 16,806 |
16 | 2 | 4 | 2 | 12,944 | 16,894 | 7564 | 16,651 |
17 | 1 | 1 | 3 | 13,921 | 13,931 | 6163 | 16,324 |
18 | 2 | 1 | 3 | 13,850 | 13,901 | 6027 | 16,151 |
19 | 1 | 2 | 3 | 11,282 | 18,354 | 8801 | 16,180 |
20 | 2 | 2 | 3 | 11,164 | 18,447 | 8647 | 15,983 |
21 | 1 | 3 | 3 | 12,824 | 16,400 | 7551 | 16,585 |
22 | 2 | 3 | 3 | 12,737 | 16,435 | 7403 | 16,424 |
23 | 1 | 4 | 3 | 12,644 | 16,329 | 7594 | 16,299 |
24 | 2 | 4 | 3 | 12,556 | 16,381 | 7449 | 16,147 |
25 | 1 | 1 | 4 | 13,784 | 11,841 | 3896 | 15,371 |
26 | 2 | 1 | 4 | 13,712 | 11,794 | 3822 | 15,188 |
27 | 1 | 2 | 4 | 9949 | 18,268 | 8838 | 15,180 |
28 | 2 | 2 | 4 | 9830 | 18,358 | 8696 | 14,979 |
29 | 1 | 3 | 4 | 12,357 | 15,696 | 6781 | 16,030 |
30 | 2 | 3 | 4 | 12,273 | 15,724 | 6658 | 15,862 |
31 | 1 | 4 | 4 | 12,091 | 15,605 | 6846 | 15,562 |
32 | 2 | 4 | 4 | 12,005 | 15,656 | 6730 | 15,421 |
33 | 1 | 1 | 5 | 13,339 | 9731 | 4592 | 14,067 |
34 | 2 | 1 | 5 | 13,256 | 9681 | 4492 | 13,867 |
35 | 1 | 2 | 5 | 8544 | 17,730 | 9041 | 13,846 |
36 | 2 | 2 | 5 | 8433 | 17,795 | 8896 | 13,646 |
37 | 1 | 3 | 5 | 11,734 | 14,821 | 7107 | 15,252 |
38 | 2 | 3 | 5 | 11,650 | 14,835 | 6974 | 15,098 |
39 | 1 | 4 | 5 | 11,411 | 14,691 | 7165 | 14,715 |
40 | 2 | 4 | 5 | 11,327 | 14,734 | 7040 | 14,581 |
41 | 1 | 1 | 6 | 12,587 | 7952 | 5351 | 12,454 |
42 | 2 | 1 | 6 | 12,489 | 7895 | 5231 | 12,242 |
43 | 1 | 2 | 6 | 7365 | 16,731 | 9027 | 12,215 |
44 | 2 | 2 | 6 | 7260 | 16,754 | 8877 | 12,014 |
45 | 1 | 3 | 6 | 10,997 | 13,783 | 7359 | 14,318 |
46 | 2 | 3 | 6 | 10,910 | 13,778 | 7219 | 14,177 |
47 | 1 | 4 | 6 | 10,653 | 13,652 | 7411 | 13,740 |
48 | 2 | 4 | 6 | 10,567 | 13,680 | 7276 | 13,612 |
49 | 1 | 1 | 7 | 11,554 | 6378 | 3398 | 10,659 |
50 | 2 | 1 | 7 | 11,440 | 6324 | 3345 | 10,445 |
51 | 1 | 2 | 7 | 6310 | 15,283 | 8432 | 10,414 |
52 | 2 | 2 | 7 | 6213 | 15,258 | 8291 | 10,215 |
53 | 1 | 3 | 7 | 10,160 | 12,656 | 6389 | 13,292 |
54 | 2 | 3 | 7 | 10,068 | 12,627 | 6273 | 13,162 |
55 | 1 | 4 | 7 | 9799 | 12,535 | 6453 | 12,646 |
56 | 2 | 4 | 7 | 9711 | 12,543 | 6346 | 12,525 |
Run Sequence | Factorial Designs | EO (kWh/Year) | |||||
---|---|---|---|---|---|---|---|
PVT | PVO | PVIB | Rio de Janeiro/Brazil | Riyadh/Saudi Arabia | London/United Kingdom | Quito/Ecuador | |
1 | 1 | 1 | 1 | 13,186 | 16,684 | 7744 | 16,709 |
2 | 2 | 1 | 1 | 13,099 | 16,717 | 7590 | 16,563 |
3 | 1 | 2 | 1 | 13,186 | 16,684 | 7744 | 16,709 |
4 | 2 | 2 | 1 | 13,099 | 16,717 | 7590 | 16,563 |
5 | 1 | 3 | 1 | 13,186 | 16,684 | 7744 | 16,709 |
6 | 2 | 3 | 1 | 13,099 | 16,717 | 7590 | 16,563 |
7 | 1 | 4 | 1 | 13,186 | 16,684 | 7744 | 16,709 |
8 | 2 | 4 | 1 | 13,099 | 16,717 | 7590 | 16,563 |
9 | 1 | 1 | 2 | 13,696 | 15,352 | 6961 | 16,538 |
10 | 2 | 1 | 2 | 13,623 | 15,348 | 6816 | 16,390 |
11 | 1 | 2 | 2 | 12,355 | 17,558 | 8364 | 16,468 |
12 | 2 | 2 | 2 | 12,254 | 17,621 | 8209 | 16,309 |
13 | 1 | 3 | 2 | 13,091 | 16,509 | 7675 | 16,616 |
14 | 2 | 3 | 2 | 13,006 | 16,538 | 7524 | 16,473 |
15 | 1 | 4 | 2 | 13,000 | 16,475 | 7702 | 16,455 |
16 | 2 | 4 | 2 | 12,915 | 16,513 | 7552 | 16,313 |
17 | 1 | 1 | 3 | 13,882 | 13,622 | 6154 | 15,979 |
18 | 2 | 1 | 3 | 13,817 | 13,589 | 6019 | 15,820 |
19 | 1 | 2 | 3 | 11,256 | 17,951 | 8782 | 15,845 |
20 | 2 | 2 | 3 | 11,142 | 18,031 | 8632 | 15,668 |
21 | 1 | 3 | 3 | 12,790 | 16,038 | 7537 | 16,250 |
22 | 2 | 3 | 3 | 12,709 | 16,064 | 7392 | 16,106 |
23 | 1 | 4 | 3 | 12,611 | 15,968 | 7580 | 15,957 |
24 | 2 | 4 | 3 | 12,528 | 16,011 | 7438 | 15,817 |
25 | 1 | 1 | 4 | 13,746 | 11,810 | 3893 | 15,329 |
26 | 2 | 1 | 4 | 13,679 | 11,768 | 3820 | 15,154 |
27 | 1 | 2 | 4 | 9928 | 18,205 | 8818 | 15,140 |
28 | 2 | 2 | 4 | 9813 | 18,303 | 8680 | 14,948 |
29 | 1 | 3 | 4 | 12,325 | 15,646 | 6769 | 15,988 |
30 | 2 | 3 | 4 | 12,246 | 15,680 | 6648 | 15,830 |
31 | 1 | 4 | 4 | 12,060 | 15,555 | 6833 | 15,518 |
32 | 2 | 4 | 4 | 11,979 | 15,612 | 6719 | 15,386 |
33 | 1 | 1 | 5 | 13,303 | 9513 | 4587 | 13,761 |
34 | 2 | 1 | 5 | 13,226 | 9463 | 4489 | 13,563 |
35 | 1 | 2 | 5 | 8527 | 17,340 | 9020 | 13,549 |
36 | 2 | 2 | 5 | 8419 | 17,394 | 8879 | 13,355 |
37 | 1 | 3 | 5 | 11,704 | 14,493 | 7093 | 14,946 |
38 | 2 | 3 | 5 | 11,625 | 14,500 | 6964 | 14,800 |
39 | 1 | 4 | 5 | 11,383 | 14,365 | 7152 | 14,400 |
40 | 2 | 4 | 5 | 11,302 | 14,401 | 7029 | 14,273 |
41 | 1 | 1 | 6 | 12,554 | 7772 | 5344 | 12,180 |
42 | 2 | 1 | 6 | 12,461 | 7717 | 5225 | 11,970 |
43 | 1 | 2 | 6 | 7353 | 16,362 | 9007 | 11,946 |
44 | 2 | 2 | 6 | 7250 | 16,377 | 8861 | 11,749 |
45 | 1 | 3 | 6 | 10,970 | 13,477 | 7345 | 14,025 |
46 | 2 | 3 | 6 | 10,887 | 13,467 | 7207 | 13,891 |
47 | 1 | 4 | 6 | 10,627 | 13,348 | 7397 | 13,445 |
48 | 2 | 4 | 6 | 10,545 | 13,372 | 7265 | 13,323 |
49 | 1 | 1 | 7 | 11,527 | 6369 | 3395 | 10,637 |
50 | 2 | 1 | 7 | 11,417 | 6316 | 3343 | 10,427 |
51 | 1 | 2 | 7 | 6301 | 15,238 | 8414 | 10,392 |
52 | 2 | 2 | 7 | 6206 | 15,219 | 8277 | 10,197 |
53 | 1 | 3 | 7 | 10,137 | 12,620 | 6377 | 13,257 |
54 | 2 | 3 | 7 | 10,048 | 12,597 | 6264 | 13,134 |
55 | 1 | 4 | 7 | 9777 | 12,499 | 6441 | 12,612 |
56 | 2 | 4 | 7 | 9693 | 12,512 | 6337 | 12,497 |
57 | 1 | 1 | 8 | 7411 | 3515 | 2572 | 6134 |
58 | 2 | 1 | 8 | 7297 | 3509 | 2556 | 5975 |
59 | 1 | 2 | 8 | 3972 | 9269 | 6178 | 5994 |
60 | 2 | 2 | 8 | 3933 | 9160 | 6052 | 5844 |
61 | 1 | 3 | 8 | 7241 | 8880 | 4812 | 9544 |
62 | 2 | 3 | 8 | 7145 | 8792 | 4725 | 9398 |
63 | 1 | 4 | 8 | 7030 | 8843 | 4881 | 9182 |
64 | 2 | 4 | 8 | 6944 | 8789 | 4804 | 9045 |
Basic Notifications | Rio de Janeiro/Brazil | Riyadh/Saudi Arabia | London/United Kingdom | Quito/Ecuador |
---|---|---|---|---|
The best geographic orientation of PV modules mounted on roof | North | South | South | East and West |
The worst geographic orientation of PV modules mounted on roof | South | North | North | North and South |
Range of preferable inclination of PV module | 10°–30° | 10°–30° | 30°–50° | 0° |
The worst inclination of PV modules on elevations | 90° | 90° | 90° | 90° |
Best elevation to install PV modules | North | South | South | East and West |
Second/Third preferable elevation to install PV modules | East/West | East/West | West/East | North/South |
Worst elevation to install PV modules | South | North | North | N/A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najjar, M.K.; Qualharini, E.L.; Hammad, A.W.A.; Boer, D.; Haddad, A. Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design. Sustainability 2019, 11, 2992. https://doi.org/10.3390/su11102992
Najjar MK, Qualharini EL, Hammad AWA, Boer D, Haddad A. Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design. Sustainability. 2019; 11(10):2992. https://doi.org/10.3390/su11102992
Chicago/Turabian StyleNajjar, Mohammad K., Eduardo Linhares Qualharini, Ahmed W. A. Hammad, Dieter Boer, and Assed Haddad. 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design" Sustainability 11, no. 10: 2992. https://doi.org/10.3390/su11102992
APA StyleNajjar, M. K., Qualharini, E. L., Hammad, A. W. A., Boer, D., & Haddad, A. (2019). Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design. Sustainability, 11(10), 2992. https://doi.org/10.3390/su11102992