Geomorphometric Assessment of the Impacts of Dam Construction on River Disconnectivity and Flow Regulation in the Yangtze Basin
Abstract
:1. Introduction
2. Materials and Data Processing
3. Geomorphometric Assessment Methods
3.1. River Connectivity Index (RCI)
3.2. Basin Disconnectivity Index (BDI)
3.3. The Degree of Regulation for Each River Section (DOR)
4. Results
4.1. Preliminary Comparative Assessments
4.2. Quantifying the Cumulative Impact of Dams on River Disconnectivity
4.3. Quantifying the Impact on River Basin Disconnectivity Using BDI
4.4. Calculating Flow Regulation by Small Dams Using DOR
5. Discussion
5.1. Uncertainty Analysis
5.2. Comparison of the Metrics
5.3. The Role of Small Dams
5.4. Past and Future Trends
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2014, 77, 161–170. [Google Scholar] [CrossRef]
- Goodwin, R.A.; Politano, M.; Garvin, J.W.; Nestler, J.M.; Hay, D.; Anderson, J.J.; Weber, L.J.; Dimperio, E.; Smith, D.L.; Timko, M. Fish navigation of large dams emerges from their modulation of flow field experience. Proc. Natl. Acad. Sci. USA 2014, 111, 5277–5282. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Cao, W.; Sofia, G.; Evans, D.; Ellis, E.C. From features to fingerprints: A general diagnostic framework for anthropogenic geomorphology. Prog. Phys. Geogr. Earth Environ. 2019, 43, 95–128. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Peckham, S.D.; Hilberman, R.; Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sediment. Geol. 2003, 162, 5–24. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Voeroesmarty, C.; Fekete, B.; Crouzet, P.; Doell, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Liermann, C.R.; Nilsson, C.; Robertson, J.; Ng, R.Y. Implications of dam obstruction for global freshwater fish diversity. Bioscience 2012, 62, 539–548. [Google Scholar] [CrossRef]
- Andredaki, M.; Georgoulas, A.; Hrissanthou, V.; Kotsovinos, N. Assessment of reservoir sedimentation effect on coastal erosion in the case of Nestos River, Greece. Int. J. Sediment Res. 2014, 29, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.K.; Lu, X.X. Delineation of lakes and reservoirs in large river basins: An example of the Yangtze River Basin, China. Geomorphology 2013, 190, 92–102. [Google Scholar] [CrossRef]
- Wu, J.G.; Huang, J.H.; Han, X.G.; Xie, Z.Q.; Gao, X.M. Three-Gorges Dam—Experiment in habitat fragmentation? Science 2003, 300, 1239–1240. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J. Yangtze finless porpoises in peril. Nature 2012. [Google Scholar] [CrossRef]
- Fu, C.Z.; Wu, J.H.; Chen, J.K.; Qu, Q.H.; Lei, G.C. Freshwater fish biodiversity in the Yangtze River basin of China: Patterns, threats and conservation. Biodivers. Conserv. 2003, 12, 1649–1685. [Google Scholar] [CrossRef]
- Park, Y.S.; Chang, J.B.; Lek, S.; Cao, W.X.; Brosse, S. Conservation strategies for endemic fish species threatened by the Three Gorges Dam. Conserv. Biol. 2003, 17, 1748–1758. [Google Scholar] [CrossRef]
- Sindorf, N.; Wickel, A.J. Connectivity and Fragmentation: Hydrospatial Analysis of Dam Development in the Mekong River Basin; Contract No. CSPFW2011.1; World Wildlife Fund: Washington, DC, USA, 2011. [Google Scholar]
- Liu, X.; Wang, H. Estimation of minimum area requirement of river-connected lakes for fish diversity conservation in the Yangtze River floodplain. Divers. Distrib. 2010, 16, 932–940. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Wang, H. Developing water level regulation strategies for macrophytes restoration of a large river-disconnected lake, China. Ecol. Eng. 2014, 68, 25–31. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological influence of dam construction and river-lake connectivity on migration fish habitat in the Yangtze River basin, China. Procedia Environ. Sci. 2010, 2, 1942–1954. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Wang, Z.; Yang, Z. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River. J. Hydrol. 2010, 387, 283–291. [Google Scholar] [CrossRef]
- Wang, Y.; Rhoads, B.L.; Wang, D. Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction: Potential ecological implications. Hydrol. Process. 2016, 30, 3949–3966. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Ward, J.V.; Stanford, J.A. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul. River. 1995, 11, 105–119. [Google Scholar] [CrossRef]
- Finer, M.; Jenkins, C.N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 2012, 7, e35126. [Google Scholar] [CrossRef] [PubMed]
- Cote, D.; Kehler, D.G.; Bourne, C.; Wiersma, Y.F. A new measure of longitudinal connectivity for stream networks. Landsc. Ecol. 2009, 24, 101–113. [Google Scholar] [CrossRef]
- Hoef, J.M.; Peterson, E.; Theobald, D. Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 2006, 13, 449–464. [Google Scholar] [CrossRef]
- Peterson, E.E.; Theobald, D.M.; ver Hoef, J.M. Geostatistical modelling on stream networks: Developing valid covariance matrices based on hydrologic distance and stream flow. Freshw. Biol. 2007, 52, 267–279. [Google Scholar] [CrossRef]
- McKay, S.K.; Schramski, J.R.; Conyngham, J.N.; Fischenich, J.C. Assessing upstream fish passage connectivity with network analysis. Ecol. Appl. 2013, 23, 1396–1409. [Google Scholar] [CrossRef]
- Crook, K.E.; Pringle, C.M.; Freeman, M.C. A method to assess longitudinal riverine connectivity in tropical streams dominated by migratory biota. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 714–723. [Google Scholar] [CrossRef]
- Erős, T.; Olden, J.D.; Schick, R.S.; Schmera, D.; Fortin, M.-J. Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 2012, 27, 303–317. [Google Scholar] [CrossRef]
- Grill, G.; Ouellet Dallaire, C.; Fluet Chouinard, E.; Sindorf, N.; Lehner, B. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: A case study for the Mekong River Basin. Ecol. Indic. 2014, 45, 148–159. [Google Scholar] [CrossRef]
- Wang, H.; Saito, Y.; Zhang, Y.; Bi, N.; Sun, X.; Yang, Z. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Sci. Rev. 2011, 108, 80–100. [Google Scholar] [CrossRef]
- Jansson, R.; Nilsson, C.; Malmqvist, B. Restoring freshwater ecosystems in riverine landscapes: The roles of connectivity and recovery processes. Freshw. Biol. 2007, 52, 589–596. [Google Scholar] [CrossRef]
- Hancock, P.J. Human impacts on the stream–groundwater exchange zone. Environ. Manag. 2002, 29, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Vanacker, V.; Molina, A.; Govers, G.; Poesen, J.; Dercon, G.; Deckers, S. River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems. Geomorphology 2005, 72, 340–353. [Google Scholar] [CrossRef]
- Yang, X.K.; Lu, X.X. Drastic change in China’s lakes and reservoirs over the past decades. Sci. Rep. 2014, 4, 6041. [Google Scholar] [CrossRef] [PubMed]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Gleick, P.H. The World’s Water: The Biennial Report on Freshwater Resources 1998–1999; Pacific Institute for Studies in Development, Environment, and Security: Washington, DC, USA; Covelo, CA, USA, 1998. [Google Scholar]
- Gleick, P.H. Environmental consequences of hydroelectric development: The role of facility size and type. Energy 1992, 17, 735–747. [Google Scholar] [CrossRef]
- Anderson, E.P.; Freeman, M.C.; Pringle, C.M. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages. River Res. Appl. 2006, 22, 397–411. [Google Scholar] [CrossRef]
- Yang, X.K.; Lu, X.X.; Edward, P.; Tarolli, P. Impacts of Climate Change on Lake Fluctuations in the Hindu Kush-Himalaya-Tibetan Plateau. Remote Sens. 2019, 11, 1082. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development. National Standard for River Flow Measurement; Ministry of Housing and Urban-Rural Development (MHURD): Beijing, China, 1993; p. 129.
- Ministry of Housing and Urban-Rural Development. National Standard for Sediment Load Measurement; Ministry of Housing and Urban-Rural Development (MHUD): Beijing, China, 1992; p. 390.
- Vogel, R.M.; Wilson, I.; Daly, C. Regional regression models of annual streamflow for the United States. J. Irrig. Drain. Eng. 1999, 125, 148–157. [Google Scholar] [CrossRef]
- Kalteh, A.M. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput. Geosci. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Brown, C.B. Discussion on Sedimentation in Reservoirs, by J. Witzig Q. Proc. Am. Soc. Civ. Eng. 1943, 69, 1493–1500. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Snelder, T.H.; Cattanéo, F.; Suren, A.M.; Biggs, B.J. Is the River Environment Classification an improved landscape-scale classification of rivers? J. N. Am. Benthol. Soc. 2004, 23, 580–598. [Google Scholar] [CrossRef]
- Dynesius, M.; Nilsson, C. Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science 1994, 266, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Graf, W.L. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts. Water Resour. Res. 1999, 35, 1305–1311. [Google Scholar] [CrossRef]
- Milliman, J.D.; Meade, R.H. World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Graf, W.L.; Wohl, E.; Sinha, T.; Sabo, J.L. Sedimentation and sustainability of western American reservoirs. Water Resour. Res. 2010, 46, W12535. [Google Scholar] [CrossRef]
- Wellmeyer, J.L.; Slattery, M.C.; Phillips, J.D. Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas. Geomorphology 2005, 69, 1–13. [Google Scholar] [CrossRef]
- Lu, X.X.; Ashmore, P.; Wang, J.F. Seasonal water discharge and sediment load changes in the Upper Yangtze, China. Mt. Res. Dev. 2003, 23, 56–64. [Google Scholar] [CrossRef]
- Palmer, M.A.; Reidy Liermann, C.A.; Nilsson, C.; Flörke, M.; Alcamo, J.; Lake, P.S.; Bond, N. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Döll, P.; Schmied, H.M. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 2012, 7, 014037. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- WCD. Dams and Development: A New Framework for Decision-Making; Earthscan Publications Ltd.: London, UK; Sterling, VA, USA, 2000. [Google Scholar]
- Huang, H.; Yan, Z. Present situation and future prospect of hydropower in China. Renew. Sustain. Energy Rev. 2009, 13, 1652–1656. [Google Scholar] [CrossRef]
- Lu, X.X.; Zhang, S.R.; Jiang, T.; Xiong, M. Sediment loads in the lower Jinshajiang of the Yangtze River: Current status and potential impacts of the cascade dams. Sediment Dyn. Chang. Future 2010, 337, 113–120. [Google Scholar]
Sub-basin | Drainage Area (104 km2) | Runoff (km3 yr−1) | Reservoir Capacity (km3) | Capacity: Area (103 m3 km−2) | Capacity: Runoff Ratio (yr) | |
---|---|---|---|---|---|---|
Upper reach | Jinsha River | 47 | 135.1 | 11.3 | 24.0 | 0.08 |
Min River | 13 | 87.5 | 3.9 | 30.0 | 0.04 | |
Tuo River | 3 | 14.9 | 7.3 | 243.3 | 0.49 | |
Jialing River | 15 | 72.7 | 17.1 | 114.0 | 0.24 | |
Wu River | 9 | 42.9 | 11.6 | 128.9 | 0.27 | |
Middle reach | Han River | 15 | 55.3 | 49.8 | 332.0 | 0.90 |
Dongting Lake Region | ||||||
Lei River | 2.7 | 13.1 | 3.7 | 137.0 | 0.28 | |
Yuan River | 9.4 | 64.3 | 15.5 | 164.9 | 0.24 | |
Zi River | 3 | 21.7 | 5.9 | 196.7 | 0.27 | |
Xiang River | 9.8 | 72.2 | 17.4 | 177.6 | 0.24 | |
Poyang Lake Region | ||||||
Xiu River | 1.6 | 10.8 | 11.5 | 718.8 | 1.06 | |
Gan River | 7.4 | 68.7 | 18.5 | 250.0 | 0.27 | |
Fu River | 1.5 | 14.7 | 4.3 | 286.7 | 0.29 | |
Xin River | 1.6 | 17.8 | 2.8 | 175.0 | 0.16 |
Tributary | Stream Length (km) | No. of Nodes | No. of Dams | RCI | |
---|---|---|---|---|---|
Upper reach | Jinsha River | 51,453 | 5613 | 82 | 42.60 |
Min River | 15,225 | 1661 | 23 | 22.83 | |
Tuo River | 3769 | 361 | 30 | 12.37 | |
Jialing River | 20,550 | 1851 | 91 | 15.83 | |
Wu River | 10,140 | 1089 | 71 | 11.66 | |
Middle reach | Han River | 21,212 | 1948 | 189 | 34.80 |
Dongting Lake Region | |||||
Yuan River | 11,567 | 1062 | 110 | 17.55 | |
Li River | 3255 | 279 | 36 | 65.33 | |
Zi River | 3555 | 359 | 44 | 33.66 | |
Xiang River | 11,418 | 1137 | 134 | 49.57 | |
Poyang Lake Region | |||||
Gan River | 8685 | 861 | 99 | 50.99 | |
Xiu River | 1835 | 178 | 15 | 54.10 | |
Fu River | 1892 | 199 | 21 | 86.55 | |
Xin River | 2007 | 188 | 34 | 59.90 | |
Total | Overall Yangtze | 211,527 | 21,530 | 1358 | 43.97 |
Tributary | Total Length (km) | No. of Dams | Extent of Affected River with a DOR >= 5% | Extent of Affected Rivers (All River Sizes Combined) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
By Stream Order | By DOR | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | ≥5% | ≥10% | ≥30% | ≥50% | Unit | |||
Jinsha River | 51,696 | 1817 | 1975 | 1366 | 823 | 292 | 0 | 0 | 4457 | 3227 | 1468 | 733 | km |
7.9 | 11.5 | 10.7 | 11.8 | 0.0 | 0.0 | 8.6 | 6.2 | 2.8 | 1.4 | % | |||
Min River | 15,225 | 889 | 429 | 386 | 124 | 0 | 0 | 0 | 939 | 659 | 133 | 14 | km |
5.8 | 10.7 | 5.4 | 0.0 | 0.0 | 0.0 | 6.2 | 4.3 | 0.9 | 0.1 | % | |||
Tuo River | 3769 | 1793 | 1322 | 729 | 426 | 459 | 0 | 0 | 2937 | 2563 | 1098 | 526 | km |
79.0 | 66.3 | 85.2 | 100.0 | 0.0 | 0.0 | 77.9 | 68.0 | 29.1 | 14.0 | % | |||
Jialing River | 20,550 | 3531 | 3162 | 1638 | 1021 | 422 | 37 | 104 | 6385 | 4823 | 1208 | 466 | km |
33.4 | 30.4 | 37.8 | 27.4 | 4.9 | 14.7 | 31.1 | 23.5 | 5.9 | 2.3 | % | |||
Wu River | 10,148 | 1086 | 1026 | 833 | 372 | 246 | 339 | 0 | 2817 | 1090 | 123 | 49 | km |
20.5 | 33.0 | 25.1 | 41.3 | 63.1 | 0.0 | 27.8 | 10.7 | 1.2 | 0.5 | % | |||
Hanjiang River | 21,212 | 3461 | 3067 | 2246 | 713 | 517 | 156 | 480 | 7179 | 5662 | 2908 | 1831 | km |
50.0 | 38.0 | 29.1 | 39.6 | 18.0 | 100.0 | 33.8 | 26.7 | 13.7 | 8.6 | % | |||
Dongting Lake Region | |||||||||||||
Lei River | 3255 | 500 | 184 | 168 | 11 | 153 | 0 | 0 | 517 | 285 | 83 | 15 | km |
12.4 | 21.3 | 2.4 | 29.7 | 0.0 | 0.0 | 15.9 | 8.8 | 2.5 | 0.5 | % | |||
Yuan River | 11,567 | 1662 | 1836 | 573 | 200 | 51 | 0 | 0 | 1661 | 638 | 95 | 46 | km |
32.4 | 20.8 | 15.6 | 4.0 | 0.0 | 0.0 | 14.4 | 5.5 | 0.8 | 0.4 | % | |||
Zi River | 3555 | 1241 | 700 | 245 | 220 | 572 | 0 | 0 | 1736 | 648 | 122 | 3 | km |
40.2 | 29.0 | 55.6 | 100.0 | 0.0 | 0.0 | 48.8 | 18.2 | 3.4 | 0.1 | % | |||
Xiang River | 11,418 | 3854 | 2302 | 1159 | 727 | 373 | 567 | 0 | 5130 | 2678 | 486 | 181 | km |
41.7 | 40.8 | 48.4 | 39.0 | 100.0 | 0.0 | 44.9 | 23.5 | 4.3 | 1.6 | % | |||
Poyang Lake Region | |||||||||||||
Xiu River | 1835 | 644 | 304 | 55 | 28 | 35 | 26 | 0 | 449 | 243 | 44 | 29 | km |
34.2 | 9.0 | 38.4 | 15.1 | 100.0 | 0.0 | 24.5 | 13.2 | 2.4 | 1.6 | % | |||
Gan River | 8685 | 2918 | 950 | 542 | 289 | 179 | 66 | 0 | 2026 | 981 | 215 | 151 | km |
23.4 | 24.9 | 21.0 | 30.8 | 13.9 | 0.0 | 23.3 | 11.3 | 2.5 | 1.7 | % | |||
Fu River | 1892 | 1125 | 293 | 154 | 86 | 8 | 42 | 0 | 583 | 407 | 88 | 20 | km |
29.7 | 36.8 | 26.1 | 7.0 | 100.0 | 0.0 | 29.4 | 20.5 | 4.4 | 1.0 | % | |||
Xin River | 2007 | 1862 | 533 | 142 | 76 | 235 | 0 | 0 | 987 | 551 | 20 | 2 | km |
49.4 | 31.0 | 32.5 | 100.0 | 0.0 | 0.0 | 49.2 | 27.5 | 1.0 | 0.1 | % |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Lu, X.; Ran, L.; Tarolli, P. Geomorphometric Assessment of the Impacts of Dam Construction on River Disconnectivity and Flow Regulation in the Yangtze Basin. Sustainability 2019, 11, 3427. https://doi.org/10.3390/su11123427
Yang X, Lu X, Ran L, Tarolli P. Geomorphometric Assessment of the Impacts of Dam Construction on River Disconnectivity and Flow Regulation in the Yangtze Basin. Sustainability. 2019; 11(12):3427. https://doi.org/10.3390/su11123427
Chicago/Turabian StyleYang, Xiankun, Xixi Lu, Lishan Ran, and Paolo Tarolli. 2019. "Geomorphometric Assessment of the Impacts of Dam Construction on River Disconnectivity and Flow Regulation in the Yangtze Basin" Sustainability 11, no. 12: 3427. https://doi.org/10.3390/su11123427
APA StyleYang, X., Lu, X., Ran, L., & Tarolli, P. (2019). Geomorphometric Assessment of the Impacts of Dam Construction on River Disconnectivity and Flow Regulation in the Yangtze Basin. Sustainability, 11(12), 3427. https://doi.org/10.3390/su11123427