Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering
Abstract
:1. Introduction
2. Theoretical Background for the Development of Systems
2.1. Systems Engineering & Model-Based Systems Engineering
2.1.1. Architectures in the Context of Systems Engineering
2.1.2. Systems Modelling Procedures in the Context of MBSE
2.1.3. System and Process Modelling Notations
2.2. Circular Economy
2.2.1. Frameworks and Strategies for Circular Economy
- Future Proof / Sustainability: reducing the need for new products, e.g. by developing durable products suitable for prolonged use
- Disassembly: non-destructive dismantling, destructive dismantling
- Maintenance: maintenance covers all aspects relating to the provision of services in order to extend the service life of products as much as possible. This includes cleaning, repair, upgrading and lifetime predictions. From a design point of view, optimal maintenance also includes designing a product with a lifetime prediction that can predict future product performance.
- Remake / Redesign: the redesign represents the prolonged use of components and consists of all actions performed when the customer returns a product. Product design for reprocessing is made possible by business models and can be viewed on two levels [80]:
- ○
- Business model and product strategy: including sales, marketing, service support, and reverse logistics.
- ○
- Detailed product design and engineering: including core collection and functional design.
- Recycling: end-of-life material recovery
2.2.2. Design for Circular Economy
2.3. Development of Product-Service Systems
3. Materials and Methods
3.1. Problem Statement
3.1.1. Research Gap I: Lack of Methodological Support for PSS and Smart Services in Concept Design
3.1.2. Research gap II: Lack of Suitable Design Methods for CE Focusing on the Conceptual Design Phase
3.1.3. Synthesis of Research Gaps
3.2. Scope of the Research
3.3. Solution Approach
3.4. Research Methodology
4. Results
4.1. Analysis of Systems Modelling Notations in MBSE
4.2. Analysis of Systems Modelling Procedures in MBSE
- User friendliness (Is the procedure easy to understand, learn and use for applicants with different backgrounds?)
- Inclusion of requirements (How good can the procedure process requirements?)
- Early service orientation (Does the procedure address the customer perspective in functional engineering?)
- Utilization of a function structure (Does the procedure model functions in a systemic diagram such as a function structure?)
- Capability for modelling hardware (Does the procedure include steps for physical product architecture definition?)
- Capability for modelling software (Does the procedure focus on software development sufficiently?)
- Capability for modelling services (Does the procedure focus on modelling services in logical engineering?)
4.3. Development of the Methodology for Smart Service Architecture Definition
- 1.
- The MESSIAH Modelling Language System: A generic system of different diagrams with respective notations for the description of the essential elements of a Smart Service
- 2.
- The MESSIAH Blueprinting Framework: A knowledge system for preserving, accessing and making use of knowledge and valuable generic smart service blueprints
- 3.
- The MESSIAH Procedure: A systematic procedure which can be followed by design teams in order to realize development of Smart Services in the concept design phase
- 4.
- MESSIAH CE: A complementary element of the methodology, which can be used for addressing CE goals when designing Smart Services
4.3.1. The MESSIAH Modelling Language System
- Function (a natural purpose for fulfilling customer needs and requirements)
- Material flow (an indication of where material has to be exchanged. It does not necessarily have to be specified which material)
- Information flow (an indication of where information has to be exchanged. It does not necessarily have to be specified which information)
- Resource (an indication of where the organisation will have to deploy a resource. This resource can be of physical nature or require human work or capabilities)
- Economical value (the delivery of one of the central customer values, which can create economical value for the provider)
- Societal value (the delivery of value to the society, which is not inherent to the economic business models of the Smart Service)
- Activity (the specific process steps, which need to be carried out in order to provide the service)
- Data flow (a specification of data exchange within the delivery of the Smart Service)
- Material flow (a specification of material exchange of the Smart Service)
- Societal value (the delivery of value to the society, which is not inherent to the economic business models of the Smart Service)
- Revenue (an indication of exactly where revenue is created for the organisation)
- Tool (devices, means and IT-programs which are necessary in order to deliver the Smart Service)
- Capability (knowledge and competence required)
- Storage (facilities and means to store data, material or energy)
4.3.2. The MESSIAH Blueprinting framework
4.3.3. The MESSIAH Procedure
4.3.4. The MESSIAH Circular Economy Methodology
5. Validation
5.1. Motivation for the Development of SHEILA
5.2. Application of MESSIAH
5.3. Description of the Developed System
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Environment: Waste production must peak this century. Nat. News 2013, 502, 615–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellen MacArthur Foundation. Towards a circular economy: Economic and business rationale for an accelerated transition. J. Ind. Ecol. 2013, 2, 23–44. [Google Scholar]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F.O. Integrating energy efficiency performance in production management—Gap analysis between industrial needs and scientific literature. J. Clean. Prod. 2011, 19, 667–679. [Google Scholar] [CrossRef]
- Tang, T.; Bhamra, T. Changing energy consumption behaviour through sustainable product design. In Proceedings of the 10th International Design Conference, Dubrovnik, Croatia, 19–20 May 2008. [Google Scholar]
- Valero Navazo, J.M.; Villalba Méndez, G.; Talens Peiró, L. Material flow analysis and energy requirements of mobile phone material recovery processes. Int. J. Life Cycle Assess. 2014, 19, 567–579. [Google Scholar] [CrossRef]
- Boustani, A.; Sahni, S.; Graves, S.C.; Gutowski, T.G. Appliance remanufacturing and life cycle energy and economic savings. In Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology, Arlington, VA, USA, 19 May 2010; pp. 1–6. [Google Scholar]
- European Parliament and Council of the European Union. Directive 2008/98/EC of the European Parliament and of the Council of the European Union: On waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/oj (accessed on 4 June 2019).
- Pieroni, M.P.; McAloone, T.; Pigosso, D.A.C. Business model innovation for circular economy and sustainability: A review of approaches. Clean. Prod. 2019, 215, 198–216. [Google Scholar] [CrossRef]
- Wijkman, A.; Skånberg, K. The circular economy and benefits for society: Jobs and Climate Clear Winners in an Economy Based on Renewable Energy and Resource Efficiency. A Study Pertaining to Finland, France, The Netherlands, Spain and Sweden. 2015. Available online: https://www.clubofrome.org/wp-content/uploads/2016/03/The-Circular-Economy-and-Benefits-for-Society.pdf (accessed on 24 June 2019).
- Vandermerwe, S.; Rada, J. Servitization of business: Adding value by adding services. Eur. Manag. J. 1988, 6, 314–324. [Google Scholar] [CrossRef]
- Rijsdijk, S.A.; Hultink, E.J. How Today’s Consumers Perceive Tomorrow’s Smart Products. J. Prod. Innov. Manag. 2009, 26, 24–42. [Google Scholar] [CrossRef]
- Tukker, A. Product services for a resource-efficient and circular economy—A review. Special Volume: Why have ‘Sustainable Product-Service Systems’ not been widely implemented? J. Clean. Prod. 2015, 97, 76–91. [Google Scholar] [CrossRef]
- Tukker, A. Eight types of product–service system: Eight ways to sustainability? Experiences from SusProNet. Bus. Strat. Environ. 2004, 13, 246–260. [Google Scholar] [CrossRef]
- Niehoff, S.; Beier, G. Industrie 4.0 and a sustainable development: A short study on the perception and expectations of experts in Germany. Int. J. Innov. Sustain. Dev. 2018, 12, 360. [Google Scholar] [CrossRef]
- Chancerel, P.; Meskers, C.E.; HagelãKen, C.; Rotter, V.S.; Hagelüken, C. Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment. J. Ind. Ecol. 2009, 13, 791–810. [Google Scholar] [CrossRef]
- Tischner, U.; Verkuijl, M.; Tukker, A. First Draft Report of PSS Review; SUSPRONET Report; SUSPRONET: Delft, The Netherlands, 2002. [Google Scholar]
- Wong, M.T.N. Implementation of Innovative Product Service Systems in the Consumer Goods Industry; University of Cambridge: Cambridge, UK, 2004; ISBN 0000 0001 3571 575X. [Google Scholar]
- Haberl, B.; Kopacek, K. IT on demand–towards an environmental conscious service system for Vienna (AT). In Proceedings of the Third International Symposium on Environmentally Conscious Design and Inverse Manufacturing–EcoDesign, Tokyo, Japan, 11 December 2003; pp. 799–802. [Google Scholar]
- Baines, T.S.; Lightfoot, H.W.; Evans, S.; Neely, A.; Greenough, R.; Peppard, J.; Roy, R.; Shehab, E.; Braganza, A.; Tiwari, A.; et al. State-of-the-art in product-service systems. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 1543–1552. [Google Scholar] [CrossRef]
- Ceschin, F. Sustainable Product-Service Systems. Between Strategic Design and Transition Studies; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 978-3-319-03794-3. [Google Scholar]
- Tischner, U.; Ryan, C.; Vezzoli, C. Design for Sustainability. A Step-by-Step Approach, 1st ed.; United Nations Environment Programme: Paris, France, 2009; ISBN 92-807-2711-7. [Google Scholar]
- Ellen MacArthur Foundation. Circular Economy—Case Studies. Available online: https://www.ellenmacarthurfoundation.org/case-studies/business/building-blocks/new-business-models (accessed on 6 June 2019).
- Sauter, R.; Bode, M.; Kittelberger, D. How Industry 4.0 Is Changing How We Manage Value Creation. White Papter—Horváth & Partners. 2015. Available online: https://www.horvath-partners.com/fileadmin/horvathpartners.com/assets/05_Media_Center/PDFs/englisch/Industry_4.0_EN_web-g.pdf (accessed on 24 June 2019).
- Abramovici, M. Smart Products. In CIRP Encyclopedia of Production Engineering; Springer: Berlin, Germany, 2015; pp. 1–5. [Google Scholar]
- Von Engelhardt, S.; Kudernatsch, W.; Liebchen, T.; Rifai, H.; Seidel, U.; Seifert, I.; Weiler, P.; Wischmann, S. Smart Service Welt—Innovationsbericht: Eine Studie im Rahmen der Begleitforschung zum Technologieprogramm Smart Service Welt 2017. Available online: https://www.bmwi.de/Redaktion/DE/Publikationen/Digitale-Welt/smart-service-welt-innovationsbericht.pdf?__blob=publicationFile&v=8 (accessed on 24 June 2019).
- Bishop, R.H. The Mechatronics Handbook, -2 Volume Set; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9780849300660. [Google Scholar]
- Chancerel, P.; Rotter, S. Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manag. 2009, 29, 2336–2352. [Google Scholar] [CrossRef] [PubMed]
- Sievers, H.; Buijs, B.; Espinoza, L.A.T. Limits to the critical raw materials approach. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2012, 165, 201–208. [Google Scholar]
- Glöser, S.; Espinoza, L.T.; Gandenberger, C.; Faulstich, M. Raw material criticality in the context of classical risk assessment. Resour. Policy 2015, 44, 35–46. [Google Scholar] [CrossRef]
- Buchert, M.; Manhart, A.; Bleher, D.; Pingel, D. Recycling Critical Raw Materials from Waste Electronic Equipment; Öko-Institut eV: Freiburg, Germany, 2012. [Google Scholar]
- Friedenthal, S.; Griego, R.; Sampson, M. INCOSE Model Based Systems Engineering (MBSE) Initiative. Available online: https://www.researchgate.net/profile/Mark_Sampson3/publication/267687693_INCOSE_Model_Based_Systems_Engineering_MBSE_Initiative/links/54ca7c290cf22f98631b167e.pdf (accessed on 4 June 2019).
- Stark, R.; Lindow, K.; Reich, D.; Vorsatz, T. Smart Engineering capabilities for new generation product offerings. In Proceedings of the 23rd CIRP Design Conference, Bochum, Germany, 11–13 March 2013. [Google Scholar]
- Kagermann, H. Smart Service Welt 2018: Wo Stehen Wir? Wohin Gehen Wir? Available online: https://www.acatech.de/wp-content/uploads/2018/06/SSW_2018.pdf (accessed on 6 June 2019).
- Ehrlenspiel, K.; Meerkamm, H. Integrierte Produktentwicklung. Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6th ed.; Carl Hanser Verlag: Munich, Germany, 2017; ISBN 978-3-446-44089-0. [Google Scholar]
- Blumberg, B. Management von Technologiekooperationen: Partnersuche und Vertragliche Planung; Springer: Wiesbaden, Germany, 1998; ISBN 978-3-8244-6778-5. [Google Scholar]
- Monczka, R.M.; Handfield, R.B.; Scannell, T.V.; Ragatz, G.L.; Frayer, D.J. New Product Development. Strategies for Supplier Integration; ASQ—American Society für Quality: Milwaukee, WI, USA, 2000; ISBN 0-87389-468-5. [Google Scholar]
- Pahl, G.; Beitz, W. Engineering Design. A Systematic Approach; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 978-3-540-19917-5. [Google Scholar]
- Eppinger, S.D.; Ulrich, K.T. Product Design and Development, 1th ed.; McGraw Hill: New York, NY, USA, 1995; ISBN 9870070658110. [Google Scholar]
- Gausemeier, J.; Czaja, A.; Wiederkehr, O.; Dumitrescu, R.; Tschirner, C.; Steffen, D. Studie: Systems Engineering in der Industriellen Praxis; Carl Hanser Verlag: Munich, Germany, 2013; pp. 113–122. [Google Scholar]
- Bahill, A.; Gissing, B. Re-evaluating systems engineering concepts using systems thinking. IEEE Trans. Syst. Man Cybern. Part. C 1998, 28, 516–527. [Google Scholar] [CrossRef]
- Weilkiens, T.; Soley, R.M. Systems Engineering mit SysML/UML. Anforderungen, Analyse, Architektur; dpunkt.verl.: Heidelberg, Germany, 2014; ISBN 9783864900914. [Google Scholar]
- Walden, D.D.; Roedler, G.J.; Forsberg, K.; Hamelin, R.D.; Shortell, T.M. Systems Engineering Handbook. A Guide for System Life Cycle Processes and Activities, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 111901512X. [Google Scholar]
- Albers, A.; Scherer, H.; Bursac, N.; Rachenkova, G. Model Based Systems Engineering in Construction Kit Development–Two Case Studies. Procedia CIRP 2015, 36, 129–134. [Google Scholar] [CrossRef]
- Eigner, M.; Gilz, T.; Zafirov, R. Interdisziplinäre Produktentwicklung: Modellbasiertes Systems Engineering. Available online: https://www.plmportal.org/de/forschung-detail/interdisziplinaere-produktentwicklung-modellbasiertes-systems-engineering.html (accessed on 24 June 2019).
- Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML. The Systems Modeling Language, 3rd ed.; Morgan Kaufmann: Waltham, MA, USA, 2015; ISBN 9780128002025. [Google Scholar]
- Eigner, M.; Roubanov, D.; Zafirov, R. Modellbasierte Virtuelle Produktentwicklung; Springer: Berlin, Germany, 2014; ISBN 366243816X. [Google Scholar]
- Feldhusen, J. Konstruktionslehre II: V2 Produktarchitektur/Produktstruktur. Institut für Allgemeine Konstruktionstechnik des Maschinenbaus. Available online: https://docplayer.org/4030486-Konstruktionslehre-ii-v2-produktarchitektur-produktstruktur-univ-prof-dr-ing-joerg-feldhusen-16-april-2015.html (accessed on 6 June 2019).
- Lamm, J.G.; Weilkiens, T. Functional Architecture for Systems Method (FAS): The FAS Method & More. Available online: http://fas-method.org/content/ (accessed on 8 November 2018).
- Feldhusen, J.; Grote, K.-H. Pahl/Beitz Konstruktionslehre: Methoden und Anwendung Erfolgreicher Produktentwicklung; Springer: Berlin, Germany, 2013; ISBN 364229569X. [Google Scholar]
- Tschirner, C.; Ackva, S. Systemspezifikation mit MBSE. Available online: https://kem.industrie.de/digitalisierung/systems-engineering/systems-engineering-glossar/systemspezifikation-mit-mbse/ (accessed on 6 June 2019).
- Two Pillars GmbH. Systems Engineering—What Is MBSE? Available online: https://www.two-pillars.de/what-is-mbse/ (accessed on 6 June 2019).
- IBM Knowledge Center. The Harmony Process. Available online: https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.btc.tcatg.user.doc/topics/atgreqcov_SecSysControllerHarmony.html (accessed on 6 June 2019).
- Pearce, P.; Hause, M. Iso-15288, oosem and model-based submarine design. Sete Apcose. 2012. Available online: http://www.omgsysml.org/Pearce_Hause_ISO-15288_OOSEM_and_Model-Based_Submarine_Design_SETE_APCOSE_20121.pdf (accessed on 6 June 2019).
- Rational. Rational Unified Process for Systems Engineering: RUP SE 1.1. A Rational Software White Paper TP 165A, 5/02. Available online: https://docplayer.net/14876813-Rational-unified-process-for-systems-engineering-rup-se1-1-a-rational-software-white-paper-tp-165a-5-02.html (accessed on 6 June 2019).
- Vitech Corporation. STRATA: Driving Consistent Project Succes: Systems Engineering Solutions. Available online: http://www.vitechcorp.com/solutions/strata.shtml (accessed on 6 June 2019).
- Weilkiens, T. SYSMOD-The Systems Modeling Toolbox. Pragmatic MBSE with SysML, 2th ed.; Lulu.com: Hamburg, Germany, 2016; ISBN 978-3-9817875-8-0. [Google Scholar]
- Two Pillars GmbH. Consens Methode + iQUAVIS-Software Macht Effizientes Engineering Möglich. Available online: https://www.two-pillars.de/consens-methode-iquavis/ (accessed on 6 June 2019).
- PolarSys. Let Yourself Be Guided with Arcadia: A Comprehensive Methodological and Tool-Supported Model-Based Engineering Guidance. Available online: https://www.polarsys.org/capella/arcadia.html (accessed on 4 June 2019).
- Eigner, M.; Gilz, T.; Zafirov, R. Proposal for functional product description as part of a PLM solution in interdisciplinary product development. In Proceedings of the DESIGN 2012 12th International Design Conference, Dubrovnik, Croatia, 24 May 2012. [Google Scholar]
- Alt, O. Modellbasierte Systementwicklung mit SysML; Carl Hanser Verlag: Munich, Germany, 2012; ISBN 978-3-446-43066-2. [Google Scholar]
- Becker, J.; Beverungen, D.; Knackstedt, R. Reference Models and Modeling Languages for Product-Service Systems Status-Quo and Perspectives for Further Research. In Proceedings of the 41st Annual Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 10 January 2008. [Google Scholar]
- BPMN. Version 2.0: OMG Specification; BPMN: Needham, MA, USA, 2011; pp. 22–31. [Google Scholar]
- Shostack, G.L. How to Design a Service. Eur. J. Mark. 1982, 16, 49–63. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for Functional Modeling Language—Syntax and Semantics for IDEF0. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=749110 (accessed on 4 June 2019).
- Object Management Group. Unified Modeling Language®UML®: Version 2.5.1. Available online: https://www.omg.org/spec/UML/2.5.1/PDF (accessed on 6 June 2019).
- OMG. OMG SysML: What Is SysML? Available online: http://www.omgsysml.org/what-is-sysml.htm (accessed on 6 June 2019).
- Lindow, K.; Riedelsheimer, T.; Lünnemann, P.; Stark, R. Betrachtung des Entwicklungsumfeldes durch die methodische Datenflussanalyse. ProStep iVip 2017, 2, 52–56. [Google Scholar]
- Kazemzadeh, Y.; Milton, S.K.; Johnson, L.W. A conceptual comparison of service blueprinting and business process modeling notation (BPMN). IOSR J. Bus. Manag. 2014, 16, 1–10. [Google Scholar] [CrossRef]
- Rose, C.M.; Beiter, K.A.; Ishii, K. Determining end-of-life strategies as a part of product definition. In Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment, Boston, MA, USA, 13 May 1999; pp. 219–224. [Google Scholar]
- Stahel, W.R. The Functional Economy: Cultural and Organizational Change; National Academies Press: Washington, DC, USA, 1997; ISBN 0-309-52042-8. [Google Scholar]
- Braungart, M.; McDonough, W. Cradle to Cradle. Einfach Intelligent Produzieren, 1st ed.; Piper Verlag: Munich, Germany, 2014; ISBN 978-3-492-96479-1. [Google Scholar]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; Morrow: New York, NY, USA, 1997; ISBN 9780060533229. [Google Scholar]
- Lifset, R.; Graedel, T.E. Industrial Ecology: Goals and Definitions. Available online: http://planet.uwc.ac.za/NISL/ESS/Documents/Industrial_Ecology_Overview.pdf (accessed on 4 June 2019).
- Hawken, P.; Lovins, A.B.; Lovins, L.H. Natural Capitalism. The Next Industrial Revolution; Routledge: Abingdon, UK, 2013; ISBN 9781134033065. [Google Scholar]
- Pauli, G.A. The Blue Economy. 10 Years, 100 Innovations, 100 Million Jobs; Paradigm Publications: New Mexico, NM, USA, 2010; ISBN 9780912111902. [Google Scholar]
- Bakker, C.A. Product Lifetimes and the Environment: A Product Design Framework for a Circular Economy. In Proceedings of the PLATE Conference Nottingham Trent University [Online], Nottingham, UK, 19 January 2015; pp. 365–372. Available online: https://www.researchgate.net/profile/Giuseppe_Salvia/publication/303476076_Product_Lifetimes_And_The_Environment_Conference_Proceedings/links/57447ba808aea45ee85306ca.pdf#page=373 (accessed on 4 June 2019).
- Hansen, E.; Schmitt, J. Circular Economy: Potenziale für Produkt-und Geschäftsmodellinnovation heben. UC Journal (Umwelttechnik Cluster). Magazin für Umwelttechnik und Kooperation, Ausgabe 2016, 2, 8–10. [Google Scholar] [CrossRef]
- Gray, C.; Charter, M. Remanufacturing and product design: Designing for the 7th generation: Designing for the 7th Generation; South East England Development Agency: England, UK, 2007. [Google Scholar]
- Rose, C.M. Design for environment: A method for formulating product end-of-life strategies for Electronics Industry. J. Stanf. Univ. Stanf. 2000, 11. [Google Scholar] [CrossRef]
- Gehin, A.; Zwoliński, P.; Brissaud, D. A tool to implement sustainable end-of-life strategies in the product development phase. J. Clean. Prod. 2008, 16, 566–576. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material efficiency: A white paper. Resour. Conserv. Recycl. 2011, 55, 362–381. [Google Scholar] [CrossRef]
- Guinée, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2002, 7, 311–313. [Google Scholar] [CrossRef]
- Jørgensen, A.; Le Bocq, A.; Nazarkina, L.; Hauschild, M. Methodologies for social life cycle assessment. Int. J. Life Cycle Assess. 2008, 13, 96. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards Life Cycle Sustainability Assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef] [Green Version]
- Brunner, P.H.; Rechberger, H. Practical handbook of material flow analysis. Int. J. Life Cycle Assess. 2004, 9, 337–338. [Google Scholar] [CrossRef]
- Rose, C.M.; Ishii, K.; Stevels, A. Influencing Design to Improve Product End-of-Life Stage. Res. Eng. Des. 2002, 13, 83–93. [Google Scholar] [CrossRef]
- Ramani, K.; Ramanujan, D.; Bernstein, W.Z.; Zhao, F.; Sutherland, J.; Handwerker, C.; Choi, J.-K.; Kim, H.; Thurston, D. Integrated Sustainable Life Cycle Design: A Review. J. Mech. Des. 2010, 132. [Google Scholar] [CrossRef]
- Romme, G.; Endenburg, G. Construction Principles and Design Rules in the Case of Circular Design. Organ. Sci. 2006, 17, 287–297. [Google Scholar] [CrossRef]
- Vanegas, P.; Peeters, J.R.; Cattrysse, D.; Tecchio, P.; Ardente, F.; Mathieux, F.; Dewulf, W.; Duflou, J.R. Ease of disassembly of products to support circular economy strategies. Resour. Conserv. Recycl. 2018, 135, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Knapp, J.; Allesch, A.; Müller, W.; Bockreis, A. Methods to estimate the transfer of contaminants into recycling products—A case study from Austria. Waste Manag. 2017, 69, 88–100. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; Lou, E.; Mativenga, P.T. What should be recycled: An integrated model for product recycling desirability. J. Clean. Prod. 2017, 154, 51–60. [Google Scholar] [CrossRef]
- De Aguiar, J.; De Oliveira, L.; Da Silva, J.O.; Bond, D.; Scalice, R.K.; Becker, D. A design tool to diagnose product recyclability during product design phase. J. Clean. Prod. 2017, 141, 219–229. [Google Scholar] [CrossRef]
- Mangun, D.; Thurston, D. Incorporating component reuse, remanufacture, and recycle into product portfolio design. IEEE Trans. Eng. Manag. 2002, 49, 479–490. [Google Scholar] [CrossRef]
- Ceha, A. Tackling the Circular Economy: Aiding Firms in the Design and Implementation of Circular Business Models. Unpublished Thesis, University of Twente, Enschede, The Netherlands, 2017. [Google Scholar]
- Asif, F.M.; Lieder, M.; Rashid, A. Multi-method simulation-based tool to evaluate economic and environmental performance of circular product systems. J. Clean. Prod. 2016, 139, 1261–1281. [Google Scholar] [CrossRef]
- Kjaer, L.L.; Pigosso, D.C.A.; Niero, M.; Bech, N.M.; McAloone, T.C. Product/Service-Systems for a Circular Economy: The Route to Decoupling Economic Growth from Resource Consumption? J. Ind. Ecol. 2019, 23, 22–35. [Google Scholar] [CrossRef]
- Moreno, M.; Rios, C.D.L.; Rowe, Z.; Charnley, F. A Conceptual Framework for Circular Design. Sustainability 2016, 8, 937. [Google Scholar] [CrossRef]
- Wastling, T.; Charnley, F.; Moreno, M. Design for Circular Behaviour: Considering Users in a Circular Economy. Sustainability 2018, 10, 1743. [Google Scholar] [CrossRef]
- Okorie, O.; Salonitis, K.; Charnley, F.; Moreno, M.; Turner, C.; Tiwari, A. Data-Driven Approaches for Circular Economy in Manufacturing for Digital Technologies: A Review of Current Research and Proposed Framework. Preprints 2018. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; De Pauw, I.; Bakker, C.; Van Der Grinten, B. Product design and business model strategies for a circular economy. J. Ind. Prod. Eng. 2016, 33, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Bakker, C.A.; Hollander, M.C.; Hultink, E.J. Product Design in a Circular Economy: Development of a Typology of Key Concepts and Terms. J. Ind. Ecol. 2017, 21, 517–525. [Google Scholar]
- Lewandowski, M. Designing the Business Models for Circular Economy—Towards the Conceptual Framework. Sustainability 2016, 8, 43. [Google Scholar] [CrossRef]
- Linder, M.; Williander, M. Circular business model innovation: Inherent uncertainties. Bus. Strat. Environ. 2017, 26, 182–196. [Google Scholar] [CrossRef]
- Meier, H.; Uhlmann, E.; Kortmann, D. Hybride Leistungsbündel–Nutzenorientiertes Produktverständnis durch interferierende Sach-und Dienstleistungen. wt Werkstattstechnik Online 2005, 95, 8. [Google Scholar]
- Schendel, C.; Spahl, T.; Birkhofer, H. Considerations towards Systematic Engineering of Product Service Systems. In Proceedings of the NordDesign 2008 Conference, Tallinn, Estonia, 23 August 2008. [Google Scholar]
- Muto, K.; Kimita, K.; Shimomura, Y. A Guideline for Product-Service-Systems Design Process. Procedia CIRP 2015, 30, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Müller, P. Integrated Engineering of Products and Services. Layer-Based Development Methodology for Product-Service Systems; Fraunhofer Verlag: Stuttgart, Germany, 2014; ISBN 3839605490. [Google Scholar]
- Van Halen, C.; Vezzoli, C.; Wimmer, R. Methodology for Product Service System Innovation. How to Develop Clean, Clever and Competitive Strategies in Companies; Van Gorcum: Assen, The Netherlands, 2005; ISBN 90-232-4143-6. [Google Scholar]
- Welp, E.G.; Sadek, T. Conceptual design of Industrial Product Service Systems (IPSS) based on the extended heterogeneous modelling approach. In Proceedings of the DESIGN 2008 10th International Design Conference, Dubrovnik, Croatia, 19–20 May 2008. [Google Scholar]
- Maussang, N.; Zwolinski, P.; Brissaud, D. Product-service system design methodology: From the PSS architecture design to the products specifications. J. Eng. Des. 2009, 20, 349–366. [Google Scholar] [CrossRef]
- Uhlmann, E.; Bochnig, H. The Philosopher’s Stone for Sustainability: PSS-CAD: An Approach to the Integrated Product and Service Development. In Proceedings of the 4th CIRP International Conference on Industrial Product-Service Systems, Tokyo, Japan, 9 November 2012; pp. 61–66. [Google Scholar]
- Alexopoulos, K. Resource Planning for the Installation of Industrial Product Service Systems. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Hamburg, Germany, 7 July 2017; pp. 205–213. [Google Scholar]
- Pezzotta, G.; Pirola, F.; Rondini, A.; Pinto, R.; Ouertani, M.-Z. Towards a methodology to engineer industrial product-service system—Evidence from power and automation industry. CIRP J. Manuf. Sci. Technol. 2016, 15, 19–32. [Google Scholar] [CrossRef]
- Haber, N.; Fargnoli, M. Design for product-service systems: A procedure to enhance functional integration of product-service offerings. Int. J. Prod. Dev. 2017, 22, 135. [Google Scholar] [CrossRef]
- Sun, J.; Chai, N.; Pi, G.; Zhang, Z.; Fan, B. Modularization of Product Service System Based on Functional Requirement. Procedia CIRP 2017, 64, 301–305. [Google Scholar] [CrossRef]
- Joore, P.; Brezet, H. A Multilevel Design Model: The mutual relationship between product-service system development and societal change processes. J. Clean. Prod. 2015, 97, 92–105. [Google Scholar] [CrossRef]
- Fadeyi, J.A.; Monplaisir, L.; Aguwa, C. The integration of core cleaning and product serviceability into product modularization for the creation of an improved remanufacturing-product service system. J. Clean. Prod. 2017, 159, 446–455. [Google Scholar] [CrossRef]
- Boughnim, N.; Yannou, B. Using blueprinting method for developing product-service systems. In Proceedings of the International Conference of Engineering Design (ICED), Melbourne, Australia, 15–18 August 2005. [Google Scholar]
- Song, W.; Sakao, T. A customization-oriented framework for design of sustainable product/service system. J. Clean. Prod. 2017, 140, 1672–1685. [Google Scholar] [CrossRef]
- Kuijken, B.; Gemser, G.; Wijnberg, N.M. Effective product-service systems: A value-based framework. Ind. Mark. Manag. 2017, 60, 33–41. [Google Scholar] [CrossRef]
- Sakao, T.; Shimomura, Y. Service Engineering: A novel engineering discipline for producers to increase value combining service and product. J. Clean. Prod. 2007, 15, 590–604. [Google Scholar] [CrossRef]
- Sakao, T.; Lindahl, M. Introduction to Product/Service-System Design; Springer: Berlin, Germany, 2009; ISBN 978-1-84882-908-4. [Google Scholar]
- Tomiyama, T. Service engineering to intensify service contents in product life cycles. In Proceedings of the Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, 15 December 2001. [Google Scholar]
- Exner, K.; Smolka, E.; Blüher, T.; Stark, R. A method to design Smart Services based on information categorization of industrial use cases. In Proceedings of the 11th CIRP Conference on Industrial Product-Service Systems, Zhuhai and Hong Kong, China, 29–31 May 2019. [Google Scholar]
- Halstenberg, F.A.; Stark, R. Introducing Product Service System Architectures for realizing Circular Economy. In Proceedings of the 16th Global Conference on Sustainable Manufacturing, Lexington, KY, USA, 9–11 October 2019. [Google Scholar]
- Burghardt, M. Projektmanagement: Leitfaden für die Planung, Überwachung und Steuerung von Projekten; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 3895789593. [Google Scholar]
- Friedrichs, W.; Ostermann, J.; Lutz, M.; Buschhorn, B.; Joepen, M. Das Fitnessprogramm für KMU: Methoden für mehr Effizienz im Automobil-, Anlagen-und Sondermaschinenbau; Carl Hanser Verlag: Munich, Germany, 2017; ISBN 3446453733. [Google Scholar]
- Meyer, H. Projektmanagement Fachmann, 10th ed.; Wissenschaft & Praxis: Sternenfels, Germany, 2011; ISBN 978-3-89673-575-1. [Google Scholar]
- Senatsverwaltung für Umwelt, Verkehr und Klimaschutz—Stadt Berlin. Radverkehrsstrategie. Available online: https://www.berlin.de/senuvk/verkehr/politik_planung/rad/strategie/index.shtml (accessed on 6 December 2018).
No | Procedure | Tool | Language | Reference |
---|---|---|---|---|
1 | Harmony SE | Rational Rhapsody | UML/SysML | [54] |
2 | OOSEM | - | SysML | [55] |
3 | RUP SE | IBM Rational Developer | UML/SysML | [56] |
4 | STRATA | CORE | SDL | [57] |
5 | SYSMOD | Cameo System Modeller | SysML/SYSMOD | [58] |
6 | CONSENS | iQUAVIS | SysML | [59] |
7 | ARCADIA | Capella | DSML | [60] |
8 | mecPro2 | Cameo System Modeller | SysML | [61] |
9 | ALT | - | SysML | [62] |
Assessment Criteria | Weighting | IDEF | UML | SysML | BPMN | eEPK | Mo2Go | Data Flow Architecture | Petri Nets | N2Chart | Function Structure | OMEGA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Functional requirements | 12% | 20% | 80% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Non-functional requirements | 5% | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Function structures | 10% | 60% | 80% | 80% | 0% | 0% | 0% | 0% | 0% | 20% | 60% | 0% |
Function processes (sequential) | 14% | 40% | 60% | 20% | 100% | 60% | 100% | 80% | 0% | 0% | 0% | 100% |
Product structures | 12% | 20% | 0% | 60% | 0% | 0% | 0% | 0% | 0% | 20% | 0% | 0% |
Services | 26% | 40% | 60% | 60% | 100% | 60% | 100% | 40% | 20% | 0% | 0% | 100% |
Software | 21% | 40% | 80% | 60% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Sum | 100% | 35% | 59% | 69% | 40% | 24% | 40% | 22% | 5% | 4% | 6% | 52% |
Assessment Criteria | Weight | Harmony | OOSEM | RUP SE | STRATA | SYSMOD, FAS, VAMOS | CONSENS | ARCADIA | mecPro2 | ALT |
---|---|---|---|---|---|---|---|---|---|---|
User friendliness | 14% | 28 | 14 | 42 | 55.8 | 62.8 | 48.8 | 84 | 56 | 14 |
Inclusion of requirements | 7% | 28 | 28 | 28 | 42 | 42 | 28 | 42 | 42 | 14 |
Early service orientation | 12% | 23 | 23 | 23 | 12 | 23 | 12 | 23 | 23 | 0 |
Utilization of a function structure | 16% | 40.7 | 65 | 0 | 65 | 98 | 49 | 81 | 65 | 33 |
Capability for modelling hardware | 7% | 14 | 14 | 7 | 14 | 28 | 14 | 28 | 14 | 14 |
Capability for modelling software | 21% | 115.1 | 42 | 63 | 0 | 42 | 21 | 42 | 42 | 21 |
Capability for modelling services | 23% | 23 | 23 | 23 | 0 | 23 | 0 | 0 | 23 | 0 |
Total | 100% | 54% | 42% | 37% | 38% | 64% | 34% | 60% | 53% | 19% |
No. | MESSIAH | MESSIAH CE |
---|---|---|
0 | Requirements analysis | |
1 | Function analysis and modelling | |
1.1 | Create function process | |
1.1.1 | Analysis of requirements | Analysis of CE requirements |
1.1.2 | Analysis of Function Process Blueprints | Analysis of CE Function Process Blueprints |
1.1.3 | Transformation of requirements into functions | |
1.1.4 | Modelling the core business processes | Developing holistic CE strategy by using holistic CE blueprint |
1.1.5 | Modelling supporting business processes | Pre-defining sufficient CE processes for all components |
1.2 | Creating a Systemic Function Structure | |
1.2.1 | Analysis of requirements | |
1.2.2 | Transformation of requirements into functions | |
1.2.1 | Arranging functions in a systemic function structure | |
1.2.2 | Modelling dependencies and interactions among the individual functional carriers | Modelling CE dependencies and interactions Design for disassembly |
1.3 | Set trace links between function process and systemic function structure | |
2 | Creating Logical Function Architecture | |
2.1 | Analysis of functions and assignation to solution | Preferring material-less solutions (software, service) |
2.2 | Creating a Logical Service Structure | |
2.2.1 | Analysis of Service Structure Blueprints | Analysis of CE Service Structure Blueprints |
2.2.2 | Transformation of functions into services | |
2.2.3 | Transformation of Function Processes into Service Structures | Transformation of CE Function Processes into CE Service Structures;Closing material cycles in the models |
2.3 | Creating Product Structure | Aligning the Product Structure according to the necessities of the CE Service Structures |
2.4 | Creating Software Architecture | |
2.5 | Linking the Services to corresponding functions/components | |
2.5 | Tracelinking of Data, Services and Components | |
3. | Perform structural analysis and optimization (regarding CE and IoT) | |
3.1 | Analysis of tracelinks between different models | |
3.2 | Analysis along the process steps and structures | Analysis regarding the strategies |
3.3 | Analysis of Blueprints | |
3.4 | Choosing optimal solutions for CE, taking into account strategies in step 3.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halstenberg, F.A.; Lindow, K.; Stark, R. Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering. Sustainability 2019, 11, 3517. https://doi.org/10.3390/su11133517
Halstenberg FA, Lindow K, Stark R. Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering. Sustainability. 2019; 11(13):3517. https://doi.org/10.3390/su11133517
Chicago/Turabian StyleHalstenberg, Friedrich A., Kai Lindow, and Rainer Stark. 2019. "Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering" Sustainability 11, no. 13: 3517. https://doi.org/10.3390/su11133517
APA StyleHalstenberg, F. A., Lindow, K., & Stark, R. (2019). Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering. Sustainability, 11(13), 3517. https://doi.org/10.3390/su11133517