Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.2. Research Methods
2.2.1. Generation of Hydrologic Soil Group Map
2.2.2. ArcL-THIA10.1 Tool
2.2.3. CN Value Definition
2.2.4. Model Calibration and Validation
2.2.5. Scenario Simulation and Assessment of LUCC and Rainfall Change on Surface Runoff
3. Results and Discussion
3.1. Scenario Simulation Results
3.2. Thoughts About Urban Land Use and Surface Runoff Control with Urbanization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, M.X.; Liu, W.D.; Lu, D.D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, M.Y. Spatial-temporal characteristics and determinants of land urbanization quality in China: Evidence from 285 prefecture-level cities. Sustain. Cities Soc. 2018, 38, 70–79. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Schoener, G. Urban Runoff in the U.S. Southwest: Importance of Impervious Surfaces for Small-Storm Hydrology. J. Hydrol. Eng. 2018, 23, 5017033. [Google Scholar] [CrossRef]
- Schueler, T.R.; Fraley-McNeal, L.; Cappiella, K. Is impervious cover still important? Review of recent research. J. Hydrol. Eng. 2009, 14, 309–315. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Fu, Y.; Li, L. Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China. Sustain. 2018, 10, 3761. [Google Scholar] [CrossRef]
- Ministry of water resources of the People’s Republic of China. Report of Floods and Droughts in China, 2016; Sinomaps Press: Beijing, China, 2017.
- Liu, Y.; Engel, B.A.; Collingsworth, P.D.; Pijanowski, B.C. Optimal implementation of green infrastructure practices to minimize influences of land use change and climate change on hydrology and water quality: Case study in Spy Run Creek watershed, Indiana. Sci. Total. Environ. 2017, 601, 1400–1411. [Google Scholar] [CrossRef]
- Luo, H.; Luo, L.; Huang, G.; Liu, P.; Li, J.; Hu, S.; Wang, F.; Xu, R.; Huang, X. Total pollution effect of urban surface runoff. J. Environ. Sci. 2009, 21, 1186–1193. [Google Scholar] [CrossRef]
- Fan, M.; Shibata, H. Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecol. Indic. 2015, 50, 79–89. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Gitau, M.W.; Engel, B.A.; Flanagan, D.C.; Harbor, J.M. Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Sci. Total. Environ. 2019, 665, 69–79. [Google Scholar] [CrossRef]
- Shi, P.J.; Sun, S.; Wang, M. Climate change regionalization in China (1961–2010). Sci. China-Earth Sci. 2014, 44, 2294–2306. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T.; Tu, S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Fan, F.L.; Deng, Y.B.; Hu, X.F.; Weng, Q.H. Estimating Composite Curve Number Using an Improved SCS-CN Method with Remotely Sensed Variables in Guangzhou, China. Remote Sens. 2013, 5, 1425–1438. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; He, F.; Xiong, Y.J.; Qiu, G.Y. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol. Earth Syst. Sci. 2017, 21, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Zuo, D.P.; Xu, Z.X.; Yao, W.Y.; Jin, S.Y.; Xiao, P.Q.; Ran, D.C. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Y.; Xu, Y.; Wu, L.; Wang, Y.; Han, L. Spatial hydrological responses to land use and land cover changes in a typical catchment of the Yangtze River Delta region. Catena 2018, 170, 305–315. [Google Scholar] [CrossRef]
- Aladejana, O.O.; Salami, A.T.; Adetoro, O.-I.O. Hydrological responses to land degradation in the Northwest Benin Owena River Basin, Nigeria. J. Environ. Manag. 2018, 225, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wan, L.; Dong, C.; Xie, Y.; Yang, C.; Yang, J.; Li, Y. Impacts of Climate Change and Human Activities on the Surface Runoff in the Wuhua River Basin. Sustain. 2018, 10, 3405. [Google Scholar] [CrossRef]
- Yan, T.; Bai, J.; Yi, A.L.Z.; Shen, Z. SWAT-Simulated Streamflow Responses to Climate Variability and Human Activities in the Miyun Reservoir Basin by Considering Streamflow Components. Sustain. 2018, 10, 941. [Google Scholar] [CrossRef]
- Botero-Acosta, A.; Chu, M.L.; Stumpf, A.J. Impacts of environmental stressors on the water resources of intensively managed hydrologic systems. Hydrol. Process. 2018, 32, 2947–2962. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Engel, B.A.; Muthukrishnan, S.; Harbor, J. GIS-Based long term hydrologic impact evaluation for watershed urbanization. J. Am. Water Resour. Assoc. 2003, 39, 623–635. [Google Scholar] [CrossRef]
- Delgado, J.; Llorens, P.; Nord, G.; Calder, I.R.; Gallart, F. Modelling the hydrological response of a Mediterranean medium-sized headwater basin subject to land cover change: The Cardener River basin (NE Spain). J. Hydrol. 2010, 383, 125–134. [Google Scholar] [CrossRef]
- Loizu, J.; Massari, C.; Álvarez-Mozos, J.; Tarpanelli, A.; Brocca, L.; Casalí, J. On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation. Adv. Water Resour. 2018, 111, 86–104. [Google Scholar] [CrossRef]
- Sarkar, S.; Butcher, J.B.; Johnson, T.E.; Clark, C.M. Simulated Sensitivity of Urban Green Infrastructure Practices to Climate Change. Earth Interactions 2018, 22, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Suttles, K.M.; Singh, N.K.; Vose, J.M.; Martin, K.L.; Emanuel, R.E.; Coulston, J.W.; Saia, S.M.; Crump, M.T. Assessment of hydrologic vulnerability to urbanization and climate change in a rapidly changing watershed in the Southeast U.S. Sci. Total. Environ. 2018, 645, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Viney, N.R.; Bormann, H.; Breuer, L.; Bronstert, A.; Croke, B.; Frede, H.; Graff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.; et al. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions. Adv. Water Resour. 2009, 32, 147–158. [Google Scholar] [CrossRef]
- Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso). J. Hydrol. 2016, 537, 187–199. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Shi, T.; Qu, X.; Walter, M.T. Effects of urbanization on direct runoff characteristics in urban functional zones. Sci. Total. Environ. 2018, 643, 301–311. [Google Scholar] [CrossRef]
- Chen, J.; Theller, L.; Gitau, M.W.; Engel, B.A.; Harbor, J.M. Urbanization impacts on surface runoff of the contiguous United States. J. Environ. Manag. 2017, 187, 470–481. [Google Scholar] [CrossRef]
- Tu, M.-C.; Smith, P. Modeling Pollutant Buildup and Washoff Parameters for SWMM Based on Land Use in a Semiarid Urban Watershed. Water, Air, Soil Pollut. 2018, 229, 121. [Google Scholar] [CrossRef]
- Park, Y.S.; Kyoung, J.L.; Larry, T.; Engel, B.A. Long-Term Hydrologic Impact Assessment. Department of Agricultural and Biological Engineering, 2013. Available online: http://npslab.kongju.ac.kr/models/LTHIA2013_Manual.pdf (accessed on 13 August 2018).
- NRCS (Natural Resources Conservation Service). Urban hydrology for small watersheds. Technical Release 55. USDA Natural Resources Conservation Services. 1986. Available online: https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/other/TR55documentation.pdf (accessed on 10 August 2018).
- Harbor, J.M. A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology. J. Am. Plan. Assoc. 1994, 60, 95–108. [Google Scholar] [CrossRef]
- Bhaduri, B.; Harbor, J.; Engel, B.; Grove, M.; Harbor, J. Assessing Watershed-Scale, Long-Term Hydrologic Impacts of Land-Use Change Using a GIS-NPS Model. Environ. Manag. 2000, 26, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Engel, B.; Tang, Z.; Muthukrishnan, S.; Choi, J.; Kim, K. Effects of calibration on L-THIA GIS runoff and pollutant estimation. J. Environ. Manag. 2006, 78, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Weng, Q. Assessing Surface Water Quality and Its Relation with Urban Land Cover Changes in the Lake Calumet Area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gitau, M.W.; Engel, B.A.; Flanagan, D.C. Suitability of CLIGEN precipitation estimates based on an updated database and their impacts on urban runoff: a case study of the Great Lakes Region, USA. Hydrol. Sci. J. 2018, 1–17. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Engel, B.A.; Chen, J.; Sun, H. Green infrastructure practices simulation of the impacts of land use on surface runoff: Case study in Ecorse River watershed, Michigan. J. Environ. Manag. 2019, 233, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.-J.; Yuan, Y.; Zheng, J.; Wang, J.-A.; Ge, Y.; Qiu, G.-Y. The effect of land use/cover change on surface runoff in Shenzhen region, China. Catena 2007, 69, 31–35. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Zhong, K.; Ruan, H.; Liu, X. Coupling Modified Linear Spectral Mixture Analysis and Soil Conservation Service Curve Number (SCS-CN) Models to Simulate Surface Runoff: Application to the Main Urban Area of Guangzhou, China. Water 2016, 8, 550. [Google Scholar] [CrossRef]
- USDA (United States Department of Agriculture). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51, Version 2. 2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/research/guide/?cid=STELPRDB1240058 (accessed on 13 August 2018).
- Yizhong, L.; Li, B. Edaphology, 1st ed.; China Agricultural Press: Beijing, China, 2006; pp. 26–29. [Google Scholar]
- Hawkins, R.H. Asymptotic Determination of Runoff Curve Numbers from Data. J. Irrig. Drain. Eng. 1993, 119, 334–345. [Google Scholar] [CrossRef]
- Soulis, K.X. Estimation of SCS Curve Number variation following forest fires. Hydrol. Sci. J. 2018, 63, 1332–1346. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D. Identification of the SCS-CN Parameter Spatial Distribution Using Rainfall-Runoff Data in Heterogeneous Watersheds. Water Resour. Manag. 2013, 27, 1737–1749. [Google Scholar] [CrossRef]
- Baird, C.; Jennings, M.; Ockerman, D.; Dybala, T. Characterization of Nonpoint Sources and Loadings to the Corpus Christi Bay National Estuary Program Study Area; Final report; Natural Resources Conservation Service: Washington, DC, USA, 1996.
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A land use and land cover classification system for use with remote sensor data. Professional Paper 1976, 964. [Google Scholar]
- Gregorio, A.D. UN Land Cover Classification System (LCCS)—Classification Concepts and User Manual for Software Version 2. Food and Agriculture Organization of the United Nations, 2005. Available online: https://www.fao.org/3/y7220e/y7220e00.htm (accessed on 19 June 2018).
- Santoro, M.; Kirches, G.; Wevers, J.; Boettcher, M.; Brockmann, C.; Lamarche, C.; Bontemps, S.; Moreau, I.; Defourny, P. Land Cover CCI: Product User Guide Version 2.0. 2017. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 19 June 2018).
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Soulis, K.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—the two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Representation and Evaluation of Low Impact Development Practices with L-THIA-LID: An Example for Site Planning. Environ. Pollut. 2012, 1, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Bralts, V.F.; Engel, B.A. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Sci. Total. Environ. 2015, 511, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A hydrologic/water quality model application protocol. J. Am. Water Resour. Assoc. 2007, 43, 1223–1236. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Qi, Y. Construction land expansion and cultivated land protection in urbanizing China: Insights from national land surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Lim, K.J.; Engel, B.A.; Muthukrishnan, S.; Harbor, J.; Harbor, J. Effects of initial abstraction and urbanization on estimated runoff using CN technology. J. Am. Water Resour. Assoc. 2006, 42, 629–643. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total. Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zou, C.; Zhao, J.; Li, X. Role of Low-Impact Development in Generation and Control of Urban Diffuse Pollution in a Pilot Sponge City: A Paired-Catchment Study. Water 2018, 10, 852. [Google Scholar] [CrossRef]
- Su, D.; Zhang, Q.; Ngo, H.; Dzakpasu, M.; Guo, W.; Wang, X. Development of a water cycle management approach to Sponge City construction in Xi’an, China. Sci. Total. Environ. 2019, 685, 490–496. [Google Scholar] [CrossRef]
- Li, Z.; Dong, M.; Wong, T.; Wang, J.; Kumar, A.J.; Singh, R.P. Objectives and Indexes for Implementation of Sponge Cities—A Case Study of Changzhou City, China. Water 2018, 10, 623. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, X.; Li, Y.; Yang, H.; Tanaka, K.; Tanka, K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. J. Clean. Prod. 2019, 222, 373–380. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.Y.; Zhu, F.F.; Tang, Y.T.; Xu, Y.Y.; Thorne, C.R. “Sponge City” in China-A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
Conventional Names | Equivalent Grain Size (Diameter) (mm) | |
---|---|---|
Soil Mechanical in the USA | Soil Mechanical in China | |
Gravel | 3–2 | 3–1 |
Sand | 2–0.05 | 1–0.05 |
Silt | 0.05–0.002 | 0.05–0.002 |
Clay | Less than 0.002 | Less than 0.002 |
Reclassified Values of Land Use Types | Initial Values of Initial Land Use Dataset | Calculate Methods of CN Values | Reclassified Values of Land Use Types | Initial Values of Initial Land Use Dataset | Calculate Methods of CN Values |
---|---|---|---|---|---|
1 | 10 | 20 | 120 | ||
2 | 11 | 21 | 121 | ||
3 | 12 | 22 | 122 | ||
4 | 20 | 23 | 130 | ||
5 | 30 | 24 | 140 | ||
6 | 40 | 25 | 150 | ||
7 | 50 | 26 | 151 | ||
8 | 60 | 27 | 152 | ||
9 | 61 | 28 | 153 | ||
10 | 62 | 29 | 160 | ||
11 | 70 | 30 | 170 | ||
12 | 71 | 31 | 180 | ||
13 | 72 | 32 | 190 | ||
14 | 80 | 33 | 200 | ||
15 | 81 | 34 | 201 | ||
16 | 82 | 35 | 202 | ||
17 | 90 | 36 | 210 | ||
18 | 100 | 37 | 220 | ||
19 | 110 |
Calibration or Validation | Hydrologic Station | Longitude (°) | Latitude (°) | Watershed Area (km2) | Observed Runoff Volume (1 × 108 m3) | Simulated Runoff Volume (1 × 108 m3) | Adjustment Parameters of CN Values | Time (Month) |
---|---|---|---|---|---|---|---|---|
Calibration (R2 = 0.95, NSE = 0.94) | Guchengzi | 124.260 | 48.533 | 25,485 | 6.98 | 7.01 | 0.88 | 1–12 |
Changjiangtun | 129.592 | 45.990 | 35,465 | 32.00 | 33.15 | 0.97 | 1–12 | |
Linghai | 121.367 | 41.183 | 22,286 | 0.57 | 0.71 | 0.70 | 5– 9 | |
Yanchi | 115.883 | 40.033 | 52,094 | 0.19 | 0.27 | 0.36 | 6– 9 | |
Jingcun | 108.137 | 35.013 | 40,333 | 2.34 | 3.20 | 0.47 | 1–12 | |
Geermu | 94.780 | 36.307 | 20,042 | 1.66 | 1.91 | 0.47 | 6– 9 | |
Chaoyang | 101.760 | 36.657 | 38,205 | 7.04 | 7.13 | 0.57 | 1–12 | |
Feilaixia | 113.236 | 23.786 | 36,899 | 76.80 | 76.05 | 1.08 | 1–12 | |
Wujingdu | 106.787 | 27.314 | 24,643 | 55.10 | 55.08 | 1.11 | 1–12 | |
Geputan | 113.717 | 30.938 | 8730 | 13.40 | 13.22 | 1.11 | 1–12 | |
Xiaolongtan | 103.186 | 23.814 | 187,867 | 9.17 | 9.53 | 0.82 | 1–12 | |
Jiajiang | 103.543 | 29.753 | 12,540 | 31.67 | 32.87 | 1.15 | 1–12 | |
Tangjia | 91.793 | 29.899 | 20,046 | 19.04 | 19.03 | 0.95 | 5–10 | |
Lijiadu | 116.161 | 28.215 | 15,855 | 50.32 | 50.67 | 1.16 | 1–12 | |
Yangkou | 117.918 | 26.796 | 12,521 | 76.19 | 51.74 | 1.16 | 1–12 | |
Dashankou | 85.734 | 42.251 | 18,568 | 9.03 | 8.65 | 1.06 | 6–9 | |
Heishiguan | 112.931 | 34.719 | 18,579 | 6.03 | 6 | 0.65 | 1–12 | |
Validation (R2 = 0.96, NSE = 0.93) | Kafuqihai | 82.484 | 43.422 | 19,067 | 29.80 | 37.78 | 0.99 | 5–8 |
Chenming | 129.483 | 46.973 | 20,272 | 12.31 | 9.97 | 0.92 | 4–11 | |
Yitang | 111.833 | 37.001 | 23,876 | 2.15 | 1.53 | 0.45 | 6–9 | |
Ganzi | 99.967 | 31.619 | 33,720 | 0.44 | 0.09 | 0.76 | 1–3 | |
Shimen | 111.384 | 29.588 | 15,584 | 38.53 | 40.02 | 1.11 | 1–12 | |
Lanxi | 119.468 | 29.218 | 12,789 | 30.26 | 27.13 | 1.08 | 1–12 | |
Gengzhang | 94.152 | 29.746 | 15,030 | 9.84 | 6.89 | 0.93 | 5–10 |
Scenarios | Input Data | Purpose |
---|---|---|
S1 | (1) LUCC data of 2005, rainfall data 2003–07 (average value of annual surface runoff volumes 2003–07 was used); (2) LUCC data of 2010, rainfall data 2008–12 (average value of annual surface runoff volumes 2008–12 was used); (3) LUCC data of 2015, rainfall data 2013–17 (average value of annual surface runoff volume 2013–17 was used); | To assess the responses of surface runoff depth to LUCC and rainfall change. |
S2 | (1) LUCC data of 2015, rainfall data 2003–07 (average value of annual surface runoff volumes 2003–07 was used); (2) LUCC data of 2015, rainfall data 2008–12 (average value of annual surface runoff volumes 2008–12 was used); (3) LUCC data of 2015, rainfall data 2013–17 (average value of annual surface runoff volume 2013–17 was used); | To assess the impacts of rainfall change on surface runoff depth. |
S3 | (1) The increased developed land 2005–10, rainfall data of 2017; (2) The increased developed land 2010–15, rainfall data of 2017; (3) The initial land types of 2005 that transformed into developed land in 2010, rainfall data of 2017; (4) The initial land types of 2010 that transformed into developed land in 2015, rainfall data of 2017; | To assess the impacts of developed land expansion on surface runoff depth. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Chen, J.; Liu, Y.; Xu, P.; Sun, H.; Engel, B.A.; Wang, S. Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China. Sustainability 2019, 11, 3535. https://doi.org/10.3390/su11133535
Li F, Chen J, Liu Y, Xu P, Sun H, Engel BA, Wang S. Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China. Sustainability. 2019; 11(13):3535. https://doi.org/10.3390/su11133535
Chicago/Turabian StyleLi, Fazhi, Jingqiu Chen, Yaoze Liu, Peng Xu, Hua Sun, Bernard A. Engel, and Shizhong Wang. 2019. "Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China" Sustainability 11, no. 13: 3535. https://doi.org/10.3390/su11133535
APA StyleLi, F., Chen, J., Liu, Y., Xu, P., Sun, H., Engel, B. A., & Wang, S. (2019). Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China. Sustainability, 11(13), 3535. https://doi.org/10.3390/su11133535