A Comparative Study of Traditional and Contemporary Building Envelope Construction Techniques in Terms of Thermal Comfort and Energy Efficiency in Hot and Humid Climates
Abstract
:1. Introduction
2. Methodology
3. Case Study Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferrari, S.; Zanotto, V. Adaptive comfort: Analysis and application of the main indices. Build. Environ. 2012, 49, 25–32. [Google Scholar] [CrossRef]
- CEN/EN15251. Indoor Environmental Input Parameters for Design and Assessment of Buildings: Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; Comite Europeen de Normalisation: Brussels, Belgium, 2007. [Google Scholar]
- Ozay, N. A comparative study of climatically responsive house design at various periods of Northern Cyprus architecture. Build. Environ. 2005, 40, 841–852. [Google Scholar] [CrossRef]
- Nicol, J.F. Adaptive thermal comfort standards in the hot and humid tropics. Energy Build. 2004, 36, 628–637. [Google Scholar] [CrossRef]
- Nicol, J.; Humphreys, M. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, M.K.; Kukreja, R.; Chaurasiya, S.K.; Gupta, V.K. Comparative study of thermal comfort and adaptive actions for modern and traditional multi-storey naturally ventilated hostel buildings during monsoon season in India. J. Build. Eng. 2019, 23, 90–106. [Google Scholar] [CrossRef]
- Raja, I.A.; Nicol, J.F.; McCartney, K.J.; Humphreys, M.A. Thermal comfort: Use of controls in naturally ventilated buildings. Energy Build. 2001, 33, 235–244. [Google Scholar] [CrossRef]
- Kenisarin, M.; Mahkamov, K. Passive thermal control in residential buildings using phase change materials. Renew. Sustain. Energy Rev. 2016, 55, 371–398. [Google Scholar] [CrossRef]
- Parsons, K. Thermal comfort in buildings. In Materials for Energy Efficiency and Thermal Comfort in Buildings; Woodhead Publishing: Cambridge, UK, 2010; pp. 127–147. [Google Scholar]
- Kaviany, M. Heat Transfer Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Guimarães, R.P.; Carvalho, M.C.R.; Santos, F.A. The Influence of Ceiling Height in Thermal Comfort of Buildings: A Case Study in Belo Horizonte, Brazil. Int. J. Hous. Sci. 2013, 37, 75–85. [Google Scholar]
- Pulhan, H.; Numan, I. The Traditional Urban House in Cyprus as Material Expression of Cultural Transformation. J. Des. Hist. 2006, 19, 105–119. [Google Scholar] [CrossRef]
- Lotfabadi, P. Optimization Method of Transparency Ratio for Building Envelope in Terms of Thermal and Visual Comfort. Ph.D. Thesis, Eastern Mediterranean University, Famagusta, Northern Cyprus, 2019. Unpublished work. [Google Scholar]
- Huizenga, C.; Abbaszadeh, S.; Zagreus, L.; Arens, E.A. Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey. In Proceedings of the Healthy Buildings, Lisbon, Portugal, 4–8 June 2006; pp. 393–397. [Google Scholar]
- Wägner, A.; Gossauer, E.; Moosmann, C.; Gropp, T.; Leonhart, R. Thermal comfort and workplace occupant satisfaction—Results of field studies in German low energy office buildings. Energy Build. 2007, 39, 758–769. [Google Scholar] [CrossRef]
- Aboulnaga, M.; Abdrabboh, S. Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney. Renew. Energy 2000, 19, 47–54. [Google Scholar] [CrossRef]
- Ghiaus, C. Free-running building temperature and HVAC climatic suitability. Energy Build. 2003, 35, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Mahlia, T.; Saidur, R.; Memon, L.; Zulkifli, N.; Masjuki, H. A review on fuel economy standard for motor vehicles with the implementation possibilities in Malaysia. Renew. Sustain. Energy Rev. 2010, 14, 3092–3099. [Google Scholar] [CrossRef]
- Lotfabadi, P. The impact of city spaces and identity in the residents’ behavior. Humanit. Soc. Sci. Rev. 2013, 3, 589–601. [Google Scholar]
- Höppe, P.; Martinac, I. Indoor climate and air quality. Review of current and future topics in the field of ISB study group 10. Int. J. Biometeorol. 1998, 42, 1–7. [Google Scholar]
- Gupta, V. Thermal efficiency of building clusters: An index for nonair-conditioned buildings in hot climates. In Energy and Urban Built Form; Butterworth-Heinemann: Oxford, UK, 1987. [Google Scholar]
- Lotfabadi, P.; Alibaba, H.Z.; Arfaei, A. Sustainability; as a combination of parametric patterns and bionic strategies. Renew. Sustain. Energy Rev. 2016, 57, 1337–1346. [Google Scholar] [CrossRef]
- Fanger, P.O. Human requirements in future air-conditioned environments. Int. J. Refrig. 2001, 24, 148–153. [Google Scholar] [CrossRef]
- Kaynakli, O.; Kilic, M. An investigation of thermal comfort inside an automobile during the heating period. Appl. Ergon. 2005, 36, 301–312. [Google Scholar] [CrossRef]
- Ozcelik, G.; Becerik-Gerber, B.; Chugh, R. Understanding human-building interactions under multimodal discomfort. Build. Environ. 2019, 151, 280–290. [Google Scholar] [CrossRef]
- Tahti, E. Industrial Ventilation Design Guidebook, 1st ed.; Academic Press: San Diego, CA, USA, 2001; pp. 355–413. [Google Scholar]
- Cilik, C.F.; Durmus, K. Energy production, consumption, policies and recent developments in Turkey. Renew. Sustain. Energy Rev. 2007, 14, 1172–1186. [Google Scholar]
- Ghobadian, V. Analyzing Iran’s Traditional Structures from a Cliamtes Perspective; Tehran Univerdity Press: Tehran, Iran, 1996. [Google Scholar]
- Lotfabadi, P. Analyzing passive solar strategies in the case of high-rise building. Renew. Sustain. Energy Rev. 2015, 52, 1340–1353. [Google Scholar] [CrossRef]
- Lotfabadi, P. Solar considerations in high-rise buildings. Energy Build. 2015, 89, 183–195. [Google Scholar] [CrossRef]
- Wright, G.R.H. Ancient Buildings in Cyprus; E. J. Brill: Leiden, The Netherlands, 1992. [Google Scholar]
- Lotfabadi, P. High-rise buildings and environmental factors. Renew. Sustain. Energy Rev. 2014, 38, 285–295. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2004.
- Humphreys, M.A.; Nicol, F. Understanding the adaptive approach to thermal comfort. ASHRAE Trans. 1998, 104, 991–1004. [Google Scholar]
- ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2010.
- Luma Sense Technologies. Available online: http://www.lumasenseinc.com/preview.php?tpl=content&mID=3621&cID=0&lng=de-deu (accessed on 8 May 2016).
- Olgyay, V. Design with Climate, Bioclimatic Approach to Architectural Regionalism; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Katafygiotou, M.C.; Serghides, D.K. Bioclimatic chart analysis in three climate zones in Cyprus. Indoor Built Environ. 2015, 24, 746–760. [Google Scholar] [CrossRef]
- Serghides, D.K. Integrated Design for the Zero Energy House and the Human Factor. In Proceedings of the PLEA 2008 Towards Zero Energy Building, Dublin, Ireland, 23 October 2008; pp. 22–24. [Google Scholar]
- Al-Azri, N.; Zurigat, Y.; Al-Rawahi, N. Development of bioclimatic chart for passive building design in Muscat-Oman. Int. J. Sustain. Energy 2012, 32, 713–723. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Bell, P.; Green, T. Thermal Stress: Physiological, Comfort, Performance, and Social Effects of Hot and Cold Environments; Cambridge University: London, UK, 2008. [Google Scholar]
- Fransson, N.; Västfjäll, D.; Skoog, J. In search of the comfortable indoor environment: A comparison of the utility of objective and subjective indicators of indoor comfort. Build. Environ. 2007, 42, 1886–1890. [Google Scholar] [CrossRef]
- Orosa, J.A.; Armano, C.O. Passive Methods as a Solution for Improving Indoor Environments; Springer: London, UK, 2012. [Google Scholar]
- Gauthier, M.S.; Shipworth, D. Predictive Thermal Comfort Model: Are Current Field Studies Measuring the most Influential Variables? In Proceedings of the 7th Windsor Conference: The Changing Context of Comfort in an Unpredictable World Cumberland Lodge, Windsor, UK, 12–15 April 2012; Network for Comfort and Energy Use in Buildings: London, UK, 2012. [Google Scholar]
- AlOtaibi, M. The Effect of Ceiling Height on Thermal Comfort for Ceiling-Based Air Distribution Systems Vs Underfloor Air Distribution Systems in an Office Space. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France, 26–27 July 2018; pp. 2453–2465. [Google Scholar]
- Carlucci, A.; Pagliano, L. An Optimization Procedure Based on Thermal Discomfort. Minimization to Support the Design of Comfortable Net Zero Energy Buildings. In Proceedings of the BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013; Network for Comfort and Energy Use in Buildings: Chambery, France, 2013; pp. 3690–3697. [Google Scholar]
- International Standards Organization (ISO). Moderate Thermal Environments-Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort; International Standards Organization: Geneva, Switzerland, 1984. [Google Scholar]
- Andreasi, W.A.; Lamberts, R.; Candido, C. Thermal acceptability assessment in buildings located in hot and humid regions in Brazil. Build. Environ. 2010, 45, 1225–1232. [Google Scholar] [CrossRef]
- Al-Ajmi, F.F. Thermal comfort in air-conditioned mosques in the dry desert climate. Build. Environ. 2010, 45, 2407–2413. [Google Scholar] [CrossRef]
- Cheung, T.; Schiavon, S.; Parkinson, T.; Li, P.; Brager, G. Analysis of the accuracy on PMV—PPD model using the ASHRAE Global Thermal Comfort Database II. Build. Environ. 2019, 153, 205–217. [Google Scholar] [CrossRef]
- Rasooli, A.; Itard, L. In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method. Energy Build. 2019, 179, 374–383. [Google Scholar] [CrossRef]
- International Standards Organization (ISO/FDIS). Ergonomics of Thermal Environment–Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Standards Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Humphreys, M.; Fergus, N.; Roaf, S. Adaptive Thermal Comfort: Foundations and Analysis; Routledge, Taylor & Francis Group: London, UK; New York, NY, USA, 2016. [Google Scholar]
- Huang, C.; Zou, Z.; Li, M.; Wang, X.; Li, W.; Huang, W.; Yang, J.; Xiao, X. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons. Build. Environ. 2007, 42, 1869–1877. [Google Scholar] [CrossRef]
- Krüger, E.; Givoni, B. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons. Build. Environ. 2007, 42, 431–435. [Google Scholar]
- Hashimoto, Y.; Yoneda, H. Numerical study on the influence of a ceiling height. In Proceedings of the Eleventh International IBPSA Conference, Glasgow, Scotland, 27–30 July 2009. [Google Scholar]
- Aflaki, A.; Mahyuddin, N.; Manteghi, G.; Baharum, M.R. Building height effects on indoor air temperature and velocity in high rise residential buildings in tropical climate. OIDA Int. J. Sustain. Dev. 2014, 7, 39–48. [Google Scholar]
- Nobuo, M.; Kojima, S.; Yoko, T.; Kakon, A.N. Assessment of Thermal Comfort in Respect to Building Height in a High-Density City in the Tropics. Am. J. Eng. Appl. Sci. 2010, 3, 545–551. [Google Scholar] [Green Version]
- Yang, Y.; Zhang, X.; Lu, X.; Hu, J.; Pan, X.; Zhu, Q.; Su, W. Effects of Building Design Elements on Residential Thermal Environment. Sustainability 2018, 10, 57. [Google Scholar] [CrossRef]
- Dincyurek, O.; Mallick, F.H.; Numan, I. Cultural and environmental values in the arcaded Mesaorian houses of Cyprus. Build. Environ. 2003, 38, 1463–1473. [Google Scholar] [CrossRef]
- Hansen, T.K.; Bjarløv, S.P.; Peuhkuri, R.H.; Harrestrup, M. Long term in situ measurements of hygrothermal conditions at critical points in four cases of internally insulated historic solid masonry walls. Energy Build. 2018, 172, 235–248. [Google Scholar] [CrossRef]
- Halawa, E.; GhaffarianHoseini, A.; GhaffarianHoseini, A.; Trombley, J.; Hassan, N.; Baig, M.; Yusoff, S.Y.; Ismail, M.A. A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin. Renew. Sustain. Energy Rev. 2018, 82, 2147–2161. [Google Scholar] [CrossRef]
- La Gennusa, M.; Nucara, A.F.; Pietrafesa, M.; Rizzo, G. A model for managing and evaluating solar radiation for indoor thermal comfort. Sol. Energy 2007, 81, 594–606. [Google Scholar] [CrossRef]
- Wu, F.; Zhu, J. Study on the construction of the database of energy-saving building wall’s thermal performance in Hangzhou. Energy 2012, 14, 943–948. [Google Scholar] [CrossRef]
- Radhi, H. Viability of autoclaved aerated concrete walls for the residential sector in the United Arab Emirates. Energy Build. 2011, 43, 2086–2092. [Google Scholar] [CrossRef]
- Stazi, F.; Vegliò, A.; Di Perna, C.; Munafò, P. Experimental comparison between 3 different traditional wall constructions and dynamic simulations to identify optimal thermal insulation strategies. Energy Build. 2013, 60, 429–441. [Google Scholar] [CrossRef]
- Hens, H.; Janssens, A.; Depraetere, W.; Carmeliet, J.; Lecompte, J. Brick Cavity Walls: A Performance Analysis Based on Measurements and Simulations. J. Build. Phys. 2007, 31, 95–124. [Google Scholar] [CrossRef]
- Znouda, E.; Ghrab-Morcos, N.; Hadj-Alouane, A. Optimization of Mediterranean building design using genetic algorithms. Energy Build. 2007, 39, 148–153. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y. Shape optimization of free-form buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China. Sol. Energy 2016, 132, 38–50. [Google Scholar] [CrossRef]
- Neri, M.; Luscietti, D.; Fiorentino, A.; Pilotelli, M. Statistical Approach to Estimate the Temperature in Chimney Roof Penetration. Fire Technol. 2018, 54, 395–417. [Google Scholar] [CrossRef]
- Neri, M.; Leppänen, P.; Bani, S.; Pentti, M.; Pilotelli, M. Experimental and Computational Study of the Temperatures Field Around a Chimney Roof Penetration. Fire Technol. 2016, 52, 1799–1823. [Google Scholar] [CrossRef]
- Neri, M.; Lezzi, A.M.; Beretta, G.P.; Pilotelli, M. Energy- and Exergy-Based Analysis for Reducing Energy Demand in Heat Processes for Aluminum Casting. J. Energy Resour. Technol. 2019, 141, 104501–104513. [Google Scholar] [CrossRef]
- Neri, M.; Pilotelli, M. Data on temperature-time curves measured at chimney-roof penetration. Data Brief. 2018, 20, 306–315. [Google Scholar] [CrossRef]
- Ozel, M. Influence of glazing area on optimum thickness of insulation for different wall orientations. Appl. Therm. Eng. 2019, 147, 770–780. [Google Scholar] [CrossRef]
- Ozel, M.; Pihtili, K. Optimum location and distribution of insulation layers on building walls with various orientations. Build. Environ. 2007, 42, 3051–3059. [Google Scholar] [CrossRef]
- Pekdogan, T.; Basaran, T. Thermal performance of different exterior wall structures based on wall orientation. Appl. Therm. Eng. 2017, 112, 15–24. [Google Scholar] [CrossRef]
- Asan, H. Investigation of wall’s optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy Build. 2000, 32, 197–203. [Google Scholar] [CrossRef]
- Bond, D.E.; Clark, W.W.; Kimber, M. Configuring wall layers for improved insulation performance. Appl. Energy 2013, 112, 235–245. [Google Scholar] [CrossRef]
- Neri, M.; Ferrari, P.; Luscietti, D.; Pilotelli, M. Computational Analysis of the Influence of PCMs on Building Performance in Summer. In Energy Management of Municipal Transportation Facilities and Transport; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–15. [Google Scholar]
- Sambou, V.; Lartigue, B.; Monchoux, F.; Adj, M. Thermal optimization of multilayered walls using genetic algorithms. Energy Build. 2009, 41, 1031–1036. [Google Scholar] [CrossRef]
- Abanto, G.A.; Karkri, M.; Lefebvre, G.; Horn, M.; Solis, J.L.; Gómez, M.M. Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material. Case Stud. Constr. Mater. 2017, 6, 177–191. [Google Scholar] [CrossRef]
- Boostani, H.; Hancer, P. A Model for ExternalWalls Selection in Hot and Humid Climates. Sustainability 2019, 11, 100. [Google Scholar]
- Dincyurek, O.; Turker, O.O. Learning from traditional built environment of Cyprus: Re-interpretation of the contextual values. Build. Environ. 2007, 42, 3384–3392. [Google Scholar] [CrossRef]
- Census. Statistical Service. Available online: http://www.mof.gov.cy/mof/cystat/statistics.nsf/census-2011_cystat_en/census-2011_cystat_en? (accessed on 28 April 2015).
- Lotfabadi, P.; Emadi, B. Renewable Energies in Architecture. Tech. Mag. KCEDO 2011, 49–50, 77–81. [Google Scholar]
- Eskin, N.; Türkmen, H. Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey. Energy Build. 2008, 40, 763–773. [Google Scholar] [CrossRef]
- Guo, W.; Nutter, D.W. Setback and setup temperature analysis for a classic double-corridor classroom building. Energy Build. 2010, 42, 189–197. [Google Scholar] [CrossRef]
- Henninger, R.H.; Witte, M.J.; Crawley, D.B. Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100–E200 test suite. Energy Build. 2004, 36, 855–863. [Google Scholar] [CrossRef]
- Sailor, D. A green roof model for building energy simulation programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Zhai, Z.J.; Johnson, M.H.; Krarti, M. Assessment of natural and hybrid ventilation models in whole-building energy simulations. Energy Build. 2011, 43, 2251–2261. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef] [Green Version]
- Baharvand, M.; Bin Ahmad, M.H.; Safikhani, T.; Binti Abdul Majid, R. DesignBuilder Verification and Validation for Indoor Natural Ventilation. J. Basic Appl. Sci. Res. 2013, 3, 182–189. [Google Scholar]
- Fathalian, A.; Kargarsharifabad, H. Actual validation of energy simulation and investigation of energy management strategies (Case Study: An office building in Semnan, Iran). Case Stud. Therm. Eng. 2018, 12, 510–516. [Google Scholar] [CrossRef]
- Famagusta Climate & Temperature. Available online: www.famagusta.climatemps.com (accessed on 11 June 2019).
- Brager, G. Mixed mode cooling. ASHRAE J. 2006, 48, 30–37. [Google Scholar]
Time Periods | Venetian | Ottoman | British Colonial Period | Contemporary | |
1192–1571 | 1571–1878 | 1878–1960 | From 1983 | ||
Outdoor View | |||||
Indoor view | |||||
Construction materials | Adobe, Sandstone, Limestone, Timber | Sandstone, Limestone, Timber | Sandstone, Limestone, Timber, Concrete | Reinforced Concrete, Break | |
Approximate Ceiling to Ground Height | ~5.9 m | ~4.7–5.4 m | ~4.1 m | 2.6–3.5 m | |
Materials | Conductivity (W/m-K) | Specific Heat (J/kg-K) | Density (kg/m3) | Thermal Absorptance (Emissivity) | Thermal Diffusivity (m²/s) |
Adobe (Soil, Earth, Common) | 1.280 | 880 | 1460 | 0.900 | 9.9 × 10−7 |
Adobe with Straw | 1.800 | 609 | 1640 | 0.910 | 1.8 × 10−6 |
Sandstone | 2.320 | 710 | 2150 | 0.970 | 1.17 × 10−6 |
Limestone | 1.280 | 909 | 2750 | 0.960 | 6.2 × 10−7 |
Timber | 1.300 | 2500 | 850 | 0.870 | 8.2 × 10−8 |
Concretes | 2.270 | 837.36 | 2321.40 | 0.920 | 1.2 × 10−6 |
Brick | 0.840 | 800 | 1700 | 0.860 | 6.1 × 10−7 |
Thermal Comfort Parameters Setting | |
Activity Factor | 1.00 |
Winter Clothing | 1.00 clo |
Summer Clothing | 0.50 clo |
Heating Set-point Temperature | 20.00 °C |
Cooling Set-point Temperature | 26.00 °C |
Winter Operative Temperature Range | 14–20 °C |
Summer Operative Temperature Range | 23–26 °C |
Heating Comfort PMV Set-point | −0.5/−0.7 |
Cooling Comfort PMV Set-point | 0.5/0.7 |
Indoor Air Quality Parameters Setting | |
RH Humidification Set-point | 10.00% |
RH Dehumidification Set-point | 90.00% |
Minimum Fresh Air | 2.50 L/s-person |
CO₂ Set-point | 900 ppm |
Minimum CO₂ Concentration | 600 ppm |
Wall Structure | ||||
---|---|---|---|---|
Traditional | Without Insulation | Inner Layer Insulated | Middle Layer Insulated | Outer Layer Insulated |
1.5 cm Gypsum Plastering | 1.5 cm Gypsum Plastering | 1.5 cm Gypsum Plastering | 1.5 cm Gypsum Plastering | 1.5 cm Gypsum Plastering |
12.5 cm Brickwork, Outer Leaf | 25 cm Brickwork, Outer Leaf | |||
40 cm Adobe (Soil, Earth, Common) | 30 cm Brickwork, Outer Leaf | 5 cm depth metal framing, R-13 Insulation, Expanded polystyrene, molded beads (Effective Insulation/Framing layers added to Above-Grade Mass walls & Below-Grade walls) | ||
Framing and cavity insulation | ||||
Rigid foam insulation | ||||
Wood structural sheathing | ||||
Water Resistant Barrier | ||||
1 cm Plaster (Dense) | 1 cm Plaster (Dense) | 25 cm Brickwork, Outer Leaf | 12.5 cm Brickwork, Outer Leaf | 1 cm Plaster (Dense) |
1 cm Plaster (Dense) | 1 cm Plaster (Dense) |
Ceiling Structure | ||||
---|---|---|---|---|
Traditional | Without Insulation | Inner Layer Insulated | Middle Layer Insulated | Outer Layer Insulated |
1.5 cm Plaster (Lightweight) | 1.5 cm Plaster (Lightweight) | 1.5 cm Plaster (Lightweight) | 1.5 cm Plaster (Lightweight) | 1.5 cm Plaster (Lightweight) |
15 cm Adobe (Soil, Earth, Common) | 15 cm Concrete | 5 cm Concrete | 7.5 cm Concrete | 10 cm Concrete |
5 cm depth metal framing, R-13 Insulation, Expanded polystyrene, molded bead | ||||
5 cm Clay Tile | 10 cm Concrete | 7.5 cm Concrete | 5 cm Concrete | |
3.5 cm Asphalt | 3.5 cm Asphalt | 3.5 cm Asphalt | 3.5 cm Asphalt | 3.5 cm Asphalt |
Materials | Conductivity (W/m-K) | Specific Heat (J/kg-K) | Density (kg/m3) | Thermal Absorptance (Emissivity) | Embodied Carbon (kgCO2/kg) | Thermal Diffusivity (m²/s) | |
---|---|---|---|---|---|---|---|
1 | Gypsum Plastering | 0.400 | 1000 | 1000 | 0.900 | 0.38 | 4 × 10−7 |
2 | Brick | 0.840 | 800 | 1700 | 0.900 | 0.22 | 6.1 × 10−7 |
3 | Insulation | 0.355 | 1470 | 10.00 | 0.900 | ----- | 2.4 × 10−7 |
4 | Plaster (Dense) | 0.500 | 1000 | 1300 | 0.900 | 0.12 | 3.8 × 10−7 |
5 | Adobe (Soil, Earth, Common) | 1.280 | 880 | 1460 | 0.900 | 0.02 | 9.9 × 10−7 |
6 | Plaster (Lightweight) | 0.160 | 1000 | 600 | 0.900 | 0.12 | 2.6 × 10−7 |
7 | Concretes | 2.270 | 837.36 | 2321.40 | 0.900 | ----- | 1.2 × 10−6 |
8 | Asphalt | 0.700 | 1000 | 2100 | 0.900 | 0.05 | 3.3 × 10−7 |
9 | Clay Tile | 1.000 | 800 | 2000 | 0.900 | 0.46 | 6.2 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotfabadi, P.; Hançer, P. A Comparative Study of Traditional and Contemporary Building Envelope Construction Techniques in Terms of Thermal Comfort and Energy Efficiency in Hot and Humid Climates. Sustainability 2019, 11, 3582. https://doi.org/10.3390/su11133582
Lotfabadi P, Hançer P. A Comparative Study of Traditional and Contemporary Building Envelope Construction Techniques in Terms of Thermal Comfort and Energy Efficiency in Hot and Humid Climates. Sustainability. 2019; 11(13):3582. https://doi.org/10.3390/su11133582
Chicago/Turabian StyleLotfabadi, Pooya, and Polat Hançer. 2019. "A Comparative Study of Traditional and Contemporary Building Envelope Construction Techniques in Terms of Thermal Comfort and Energy Efficiency in Hot and Humid Climates" Sustainability 11, no. 13: 3582. https://doi.org/10.3390/su11133582
APA StyleLotfabadi, P., & Hançer, P. (2019). A Comparative Study of Traditional and Contemporary Building Envelope Construction Techniques in Terms of Thermal Comfort and Energy Efficiency in Hot and Humid Climates. Sustainability, 11(13), 3582. https://doi.org/10.3390/su11133582