Operating Performance of Chinese Online Shopping Companies: An Analysis Using DuPont Components
Abstract
:1. Introduction
2. The Growing Trend in the Chinese Online Shopping Industry
2.1. User Size of Online Shopping Companies
2.2. Trading Volume of Online Shopping Companies
3. Literature Review and Hypothesis Development
3.1. Prior Research on DuPont Analysis
3.2. Hypotheses Development
4. Research Design
4.1. The Sample
4.2. Research Model
5. Empirical Findings
5.1. Descriptive Statistics
5.2. Regression Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chu, J.; Arce-Urriza, M.; Cebollada-Calvo, J.J.; Chintagunta, P.K. An empirical analysis of shopping behavior across online and offline channels for grocery products: The moderating effects of household and product characteristics. J. Interact. Mark. 2010, 24, 251–268. [Google Scholar] [CrossRef]
- Chiu, C.M.; Chang, C.C.; Cheng, H.L.; Fang, Y.H. Determinants of customer repurchase intention in online shopping. Online Inf. Rev. 2009, 33, 761–784. [Google Scholar] [CrossRef]
- Fairfield, P.M.; Yohn, T.L. Using asset turnover and profit margin to forecast changes in profitability. Rev. Account. Stud. 2001, 6, 371–385. [Google Scholar] [CrossRef]
- Nissim, D.; Penman, S.H. Ratio analysis and equity valuation: From research to practice. Rev. Account. Stud. 2001, 6, 109–154. [Google Scholar] [CrossRef]
- Ahn, T.; Ryu, S.; Han, I. The impact of the online and offline features on the user acceptance of Internet shopping malls. Electron. Commer. Res. Appl. 2004, 3, 405–420. [Google Scholar] [CrossRef]
- Rohm, A.J.; Swaminathan, V. A typology of online shoppers based on shopping motivations. J. Bus. Res. 2004, 57, 748–757. [Google Scholar] [CrossRef]
- Dehning, B.; Stratopoulos, T. DuPont analysis of an IT-enabled competitive advantage. Int. J. Account. Inf. Syst. 2002, 3, 165–176. [Google Scholar] [CrossRef]
- Jansen, I.P.; Ramnath, S.; Yohn, T.L. A diagnostic for earnings management using changes in asset turnover and profit margin. Contemp. Account. Res. 2012, 29, 221–251. [Google Scholar] [CrossRef]
- Soliman, M.T. The use of DuPont analysis by market participants. Account. Rev. 2008, 83, 823–853. [Google Scholar] [CrossRef]
- Bauman, M.P. Forecasting operating profitability with DuPont analysis: Further evidence. Rev. Account. Financ. 2014, 13, 191–205. [Google Scholar] [CrossRef]
- Hongquan, Z.; Lan, S.; Hong, W.; Luping, F. DuPont Analysis and Value Evaluation—An Empirical Analysis Based on China’s A Share Market. Manag. Rev. 2011, 10, 152–161. [Google Scholar]
- Liu, J.; Ohlson, J.A.; Zhang, W. An evaluation of Chinese firms’ profitability: 2005–2013. Account. Horiz. 2015, 29, 799–828. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Q.; Talebian, M. Online versus bricks-and-mortar retailing: A comparison of price, assortment and delivery time. Int. J. Prod. Res. 2015, 53, 3823–3835. [Google Scholar] [CrossRef]
- Foerster, S.R.; Karolyi, G.A. The effects of market segmentation and investor recognition on asset prices: Evidence from foreign stocks listing in the United States. J. Financ. 1999, 54, 981–1013. [Google Scholar] [CrossRef]
- Sheng, S.; Zhou, K.Z.; Li, J.J. The effects of business and political ties on firm performance: Evidence from China. J. Mark. 2011, 75, 1–15. [Google Scholar] [CrossRef]
- Pinto, F.S.; Simões, P.; Marques, R.C. Raising the bar: The role of governance in performance assessments. Util. Policy 2017, 49, 38–47. [Google Scholar] [CrossRef]
- Lee, J. Does size matter in firm performance? Evidence from US public firms. Int. J. Econ. Bus. 2009, 16, 189–203. [Google Scholar] [CrossRef]
- Nissim, D.; Penman, S.H. Financial statement analysis of leverage and how it informs about profitability and price-to-book ratios. Rev. Account. Stud. 2003, 8, 531–560. [Google Scholar] [CrossRef]
- Weill, L. Leverage and corporate performance: Does institutional environment matter? Small Bus. Econ. 2008, 30, 251–265. [Google Scholar] [CrossRef]
- Daniel, F.; Lohrke, F.T.; Fornaciari, C.J.; Turner, R.A., Jr. Slack resources and firm performance: A meta-analysis. J. Bus. Res. 2004, 57, 565–574. [Google Scholar] [CrossRef]
Company | Online Store Launched | Multi/Single Product | Offline Store | Listed Market |
---|---|---|---|---|
Alibaba Group | 1999 | Multi | No | US (NYSE) |
JD | 1998 | Multi | No | US (NASDAQ) |
Vipshop | 2008 | Multi | No | US (NYSE) |
Jumei Youpin | 2014 | Single | No | US (NYSE) |
Suning Tesco | 1990 | Multi | Yes | China (Shenzhen) |
GOME | 1987 | Multi | Yes | China (Hong Kong) |
COFCO | 2009 | Single | No | China (Hong Kong) |
Variable | Mean | Std. | 1% | 25% | Median | 75% | 99% |
---|---|---|---|---|---|---|---|
Multi-complex | 0.714 | 0.457 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 |
Offline | 0.286 | 0.457 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 |
US-listed | 0.571 | 0.501 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 |
ROA | 0.071 | 0.198 | −0.109 | −0.008 | 0.033 | 0.091 | 1.222 |
ATO | 1.936 | 2.541 | 0.278 | 1.171 | 1.402 | 1.737 | 15.315 |
PM | 0.061 | 0.117 | −0.050 | −0.005 | 0.022 | 0.049 | 0.475 |
SIZE | 5.543 | 1.898 | −0.342 | 4.969 | 5.957 | 6.722 | 8.531 |
LEV | 0.577 | 0.174 | 0.181 | 0.490 | 0.617 | 0.661 | 0.841 |
CurRatio | 1.609 | 0.885 | 0.710 | 1.115 | 1.246 | 1.722 | 4.547 |
INVREC | 0.206 | 0.110 | 0.000 | 0.142 | 0.218 | 0.290 | 0.379 |
Loss | 0.310 | 0.468 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 |
Variable | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Multi-complex | 1.00 | ||||||||||
2. Offline | 0.40 | 1.00 | |||||||||
(0.01) | |||||||||||
3. US-listed | 0.09 | −0.73 | 1.00 | ||||||||
(0.57) | (<0.01) | ||||||||||
4. ROA | −0.25 | −0.20 | 0.21 | 1.00 | |||||||
(0.11) | (0.21) | (0.17) | |||||||||
5. ATO | −0.19 | −0.16 | 0.20 | 0.84 | 1.00 | ||||||
(0.24) | (0.32) | (0.20) | (<0.01) | ||||||||
6. PM | 0.11 | −0.29 | 0.32 | 0.28 | −0.16 | 1.00 | |||||
(0.48) | (0.06) | (0.04) | (0.07) | (0.31) | |||||||
7. SIZE | 0.58 | 0.33 | −0.22 | −0.44 | −0.58 | 0.27 | 1.00 | ||||
(<0.01) | (0.03) | (0.17) | (<0.01) | (<0.01) | (0.08) | ||||||
8. LEV | 0.38 | 0.12 | −0.10 | 0.07 | 0.23 | −0.21 | −0.11 | 1.00 | |||
(0.01) | (0.43) | (0.55) | (0.68) | (0.15) | (0.18) | (0.48) | |||||
9. CurRatio | −0.31 | −0.30 | 0.45 | 0.02 | −0.14 | 0.31 | −0.08 | −0.79 | 1.00 | ||
(0.04) | (0.05) | (<0.01) | (0.90) | (0.37) | (0.04) | (0.63) | (<0.01) | ||||
10. INVREC | −0.20 | −0.05 | −0.23 | −0.19 | 0.19 | −0.78 | −0.34 | 0.45 | −0.50 | 1.00 | |
(0.21) | (0.77) | (0.15) | (0.22) | (0.24) | (<0.01) | (0.03) | (<0.01) | (<0.01) | |||
11. Loss | 0.20 | 0.03 | 0.06 | −0.35 | −0.07 | −0.45 | 0.08 | 0.15 | −0.18 | 0.31 | 1.00 |
(0.21) | (0.84) | (0.71) | (0.02) | (0.67) | (<0.01) | (0.60) | (0.33) | (0.25) | (0.05) |
Indep. Variable | (1) Dep. Variable = ROA | (2) Dep. Variable = ATO | (3) Dep. Variable = PM | |||
---|---|---|---|---|---|---|
Coefficient | (t-value) | Coefficient | (t-value) | Coefficient | (t-value) | |
Intercept | 0.820 * | (1.78) | 12.201 ** | (2.40) | −0.036 | (−0.39) |
Multi-complex | −0.017 | (−0.31) | 1.776 * | (1.85) | −0.080 ** | (−2.51) |
SIZE | −0.065 * | (−1.83) | −1.192 *** | (−2.82) | 0.021 ** | (2.67) |
LEV | −0.077 | (−0.31) | −4.857 | (−1.63) | 0.317 *** | (2.88) |
CurRatio | −0.082 | (−1.37) | −1.182 * | (−1.75) | 0.026 | (1.50) |
INVREC | −0.889 ** | (−2.32) | −1.715 | (−0.41) | −0.851 *** | (−5.47) |
Loss | −0.070 ** | (−2.10) | −0.061 | (−0.13) | −0.060 *** | (−2.96) |
Year FE | Included | Included | Included | |||
Adj. R2 | 0.3543 | 0.4169 | 0.6362 | |||
N. of obs. | 42 | 42 | 42 |
Indep. Variable | (1) Dep. Variable = ROA | (2) Dep. Variable = ATO | (3) Dep. Variable = PM | |||
---|---|---|---|---|---|---|
Coefficient | (t-value) | Coefficient | (t-value) | Coefficient | (t-value) | |
Intercept | 0.881 * | (1.89) | 10.295 * | (1.91) | 0.146 ** | (2.33) |
Offline | −0.055 * | (−1.87) | −0.219 | (−0.51) | −0.116 *** | (−7.43) |
SIZE | −0.064 * | (−1.83) | −0.908 ** | (−2.35) | 0.015 *** | (5.40) |
LEV | −0.141 | (−0.62) | −1.865 | (−0.60) | 0.104 | (1.19) |
CurRatio | −0.099 | (−1.61) | −1.083 | (−1.43) | −0.014 | (−1.10) |
INVREC | −0.906 ** | (−2.46) | −3.945 | (−0.92) | −0.831 *** | (−8.24) |
Loss | −0.072 ** | (−2.19) | 0.184 | (0.41) | −0.070 *** | (−4.98) |
Year FE | Included | Included | Included | |||
Adj. R2 | 0.3708 | 0.3701 | 0.8070 | |||
N. of obs. | 42 | 42 | 42 |
Indep. Variable | (1) Dep. Variable = ROA | (2) Dep. Variable = ATO | (3) Dep. Variable = PM | |||
---|---|---|---|---|---|---|
Coefficient | (t-value) | Coefficient | (t-value) | Coefficient | (t-value) | |
Intercept | 0.937 * | (1.98) | 11.651 ** | (2.20) | 0.131 | (1.35) |
US-listed | 0.094 ** | (2.04) | 1.457 ** | (2.61) | 0.071 *** | (3.69) |
SIZE | −0.064 * | (−1.94) | −0.859 ** | (−2.41) | 0.011 ** | (2.51) |
LEV | −0.305 | (−1.09) | −4.809 | (−1.42) | 0.027 | (0.26) |
CurRatio | −0.135 * | (−1.78) | −1.820 ** | (−2.11) | −0.020 | (−0.99) |
INVREC | −0.800 ** | (−2.42) | −2.714 | (−0.72) | −0.704 *** | (−5.27) |
Loss | −0.089 *** | (−2.83) | −0.084 | (−0.19) | −0.084 *** | (−4.70) |
Year FE | Included | Included | Included | |||
Adj. R2 | 0.3961 | 0.4309 | 0.6594 | |||
N. of obs. | 42 | 42 | 42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Choi, S.U. Operating Performance of Chinese Online Shopping Companies: An Analysis Using DuPont Components. Sustainability 2019, 11, 3602. https://doi.org/10.3390/su11133602
Hao Y, Choi SU. Operating Performance of Chinese Online Shopping Companies: An Analysis Using DuPont Components. Sustainability. 2019; 11(13):3602. https://doi.org/10.3390/su11133602
Chicago/Turabian StyleHao, Yue, and Seung Uk Choi. 2019. "Operating Performance of Chinese Online Shopping Companies: An Analysis Using DuPont Components" Sustainability 11, no. 13: 3602. https://doi.org/10.3390/su11133602
APA StyleHao, Y., & Choi, S. U. (2019). Operating Performance of Chinese Online Shopping Companies: An Analysis Using DuPont Components. Sustainability, 11(13), 3602. https://doi.org/10.3390/su11133602