Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula
Abstract
:1. Introduction
- for regional studies by using either reanalysis or mesoscale models [18,19]. In our case, it is carried out by means of the Weather Research and Forecasting Model (WRF) as in the case of Carvalho et al. [20,21,22,23]. However, our simulation is a step ahead in the sense that it includes a six-hourly three-dimensional variational data assimilation step which substantially improves its results.
- 1.
- Obtain a new power curve of the turbine according to the air density of the site. For example:
- 1.1.
- An important work that takes into account the contribution of air density is authored by Farkas et al. [28]. They analyse the air density’s temporal variations (as a function of pressure, temperature, and humidity) in a specific location of Hungary and they propose a correction of the power curve of a specified wind turbine by using neural networks. The air density oscillates around 1.229 kg/m (mean value) between 1.395 kg/m (high density) and 1.124 kg/m (low density). That is, the variations around the mean density are approximately 15%. Since the wind power is proportional to the air density, this is evidently a significant deviation. Apart from that, we conjecture that this is a relevant criterion to evaluate the intra-annual variations. Thus, the target is to establish a reference for the specific location, which will be in our case, the value that is commonly used offshore of temperate latitudes such as the Iberian Peninsula.
- 1.2.
- 2.
- Correct or normalize the wind speed data using the instantaneous air density before the implementation of this time series in the power curve of the turbine. This is our case and there are other examples in the literature:
- 2.1.
- Collins et al. [31] use a correction method of the wind speed similar to ours for short-forecasting purposes (see Equation (7) and Section 2.2.4). According to their conclusions, for similar wind speed, the difference between the power production on a hot day and that on a cold day can be of the order of 10% for medium wind speeds. This error can be conveniently removed if the forecast contains temperature and pressure data, which can be used to calculate the air density, as in our study.
- 2.2.
- In Dahmouni et al. [32], an advancement has been made in this regard by introducing better air density information to obtain an effective wind speed (normalized, in our study) in Borj-Cedria (Tunisia). Particularly, the air density has been estimated from observed data of air pressure and air temperature at specified locations in order to normalize the wind speed according to the air density of each instant. Next, the Weibull distribution was fitted, taking into account this new wind speed, and implemented into the power curve. However, the study was developed at specific locations, and the spatial distribution of the wind power correction according to air density was not analysed as in our case.
2. Data and Methodology
2.1. Data
2.1.1. Buoys
2.1.2. Wind Turbine
2.2. Methodology
2.2.1. WRF Simulation
2.2.2. Dry Temperature and Virtual Temperature
2.2.3. WRDFA Model Results Verification with Experimental Data
- Pearson’s correlation coefficient (r),
- the root mean square error (),
- and the standard deviation ratio ( ratio) between the of the model and the of the observation.
2.2.4. Wind Power Density Calculation
2.2.5. Capacity Factor Calculation
3. Results
3.1. Monthly Air Density Percentile at the Buoys
3.2. Verification versus Buoys
- The correlations represented by the exterior arc are over in the six cases, reaching 0.95 in certain cases. Considering that the number of elements in our samples is in all cases longer than 11,000 (taking into account the NA values of the buoys), the correlation coefficients are significant to 99% according to a two-tailed t-test.
- , represented by the interior arc centred in the observation point, is below 0.01 in each case with a limit value of 0.005. Therefore, it implies a relative error between 1% and 0.5%.
- ratio, which is equal to one over the interior arc parallel to the correlation arc, is between 0.85 and 1.10 in the six cases.
3.3. Seasonal Wind Power Density Maps
3.4. Seasonal Capacity Factor Maps: Winter and Summer
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ECMWF | European Centre for Medium-Range Weather Forecasts |
m.a.s.l | meters above sea level |
NCEP | National Centers for Environmental Prediction |
NOAA | National Oceanic and Atmospheric Administration |
OI | Optimum Interpolation |
PrepBUFR | Prepared (Qual. Control.) Binary Universal Format for the Representation of data |
RRTMG | Scheme selected in WRF for radiation computations (Rapid Radiative Transfer Model) |
SAR | synthetic aperture radar |
SST | sea surface temperature (K) |
WRF | Weather Research and Forecasting Model |
WRFDA | WRF Data Assimilation System |
3DVAR | three-dimensional variational analysis method |
WSM5 | WRF Single Moment 5 class microphysics scheme |
annual energy production (GWh) | |
capacity factor (%) | |
cost of energy (US$) | |
e | partial pressure of water vapour (Pa) |
mean absolute percentage error (%) | |
rated power of the wind turbine (kW) | |
P | pressure (Pa) |
root mean square error | |
seasonal capacity factor (%) | |
standard deviation | |
seasonal energy production (GWh) | |
T, | temperature, virtual temperature (K) |
U | wind velocity (m/s) |
normalized wind velocity (m/s) | |
wind power density (W/m) | |
wind power density relative error (%) | |
; , and | air density; dry, moist air density and water vapor density (kg m) |
standard air density (1.225 kg m) |
References
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.; Koven, C.; McGuire, A.D.; Grosse, G.; Kuhry, P.; et al. Permafrost collapse is accelerating carbon release. Nature 2019, 569, 32–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.R.; Rahman, F.; Xu, W. Advances in Solar Photovoltaic Power Plants; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Islam, M.R. Introduction. In Advances in Solar Photovoltaic Power Plants; Islam, M.R., Rahman, F., Xu, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–11. [Google Scholar]
- Ulazia, A.; Gonzalez-Rojí, S.J.; Ibarra-Berastegi, G.; Carreno-Madinabeitia, S.; Sáenz, J.; Nafarrate, A. Seasonal air density variations over the East of Scotland and the consequences for offshore wind energy. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 261–265. [Google Scholar]
- Ulazia, A.; Sáenz, J.; Ibarra-Berastegui, G.; González-Rojí, S.J.; Carreno-Madinabeitia, S. Using 3DVAR data assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean. Appl. Energy 2017, 208, 1232–1245. [Google Scholar] [CrossRef] [Green Version]
- Ulazia, A.; Sáenz, J.; Ibarra-Berastegui, G. Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for estimating offshore wind energy potential. A case study of the Iberian northern coastline. Appl. Energy 2016, 180, 617–627. [Google Scholar] [CrossRef]
- Islam, M.R.; Guo, Y.; Zhu, J. A review of offshore wind turbine nacelle: Technical challenges, and research and developmental trends. Renew. Sustain. Energy Rev. 2014, 33, 161–176. [Google Scholar] [CrossRef]
- Irawan, C.A.; Ouelhadj, D.; Jones, D.; Stålhane, M.; Sperstad, I.B. Optimisation of maintenance routing and scheduling for offshore wind farms. Eur. J. Oper. Res. 2017, 256, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Elosegui, U.; Egana, I.; Ulazia, A.; Ibarra-Berastegi, G. Pitch angle misalignment correction based on benchmarking and laser scanner measurement in wind farms. Energies 2018, 11, 3357. [Google Scholar] [CrossRef]
- Danook, S.H.; Jassim, K.J.; Hussein, A.M. The impact of humidity on performance of wind turbine. Case Stud. Therm. Eng. 2019, 14, 100456. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. The role of air density in wind energy assessment—A case study from Germany. Energy 2019, 171, 385–392. [Google Scholar] [CrossRef]
- Weisser, D. A wind energy analysis of Grenada: An estimation using the Weibull density function. Renew. Energy 2003, 28, 1803–1812. [Google Scholar] [CrossRef]
- Gökçek, M.; Bayülken, A.; Bekdemir, Ş. Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey. Renew. Energy 2007, 32, 1739–1752. [Google Scholar] [CrossRef]
- Akdağ, S.A.; Güler, Ö. Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey. Appl. Energy 2010, 87, 2574–2580. [Google Scholar] [CrossRef]
- Gross, M.S.; Magar, V. Offshore wind energy potential estimation using UPSCALE climate data. Energy Sci. Eng. 2015, 3, 342–359. [Google Scholar] [CrossRef]
- Hasager, C.B.; Barthelmie, R.J.; Christiansen, M.B.; Nielsen, M.; Pryor, S. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea. Wind Energy 2006, 9, 63–74. [Google Scholar] [CrossRef]
- Doubrawa, P.; Barthelmie, R.J.; Pryor, S.C.; Hasager, C.B.; Badger, M.; Karagali, I. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas. Remote Sens. Environ. 2015, 168, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Dvorak, M.J.; Archer, C.L.; Jacobson, M.Z. California offshore wind energy potential. Renew. Energy 2010, 35, 1244–1254. [Google Scholar] [CrossRef]
- Fueyo, N.; Sanz, Y.; Rodrigues, M.; Montañés, C.; Dopazo, C. High resolution modelling of the on-shore technical wind energy potential in Spain. Wind Energy 2010, 13, 717–726. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Santos, C.S.; Pereira, R. Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques. Appl. Energy 2013, 108, 493–504. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula. Appl. Energy 2014, 135, 234–246. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens. Environ. 2014, 152, 480–492. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula. Appl. Energy 2014, 134, 57–64. [Google Scholar] [CrossRef]
- Esteban, M.; Leary, D. Current developments and future prospects of offshore wind and ocean energy. Appl. Energy 2012, 90, 128–136. [Google Scholar] [CrossRef]
- Statoil Company. 20 November 2016. Available online: https://www.statoil.com/en/news/hywindscotland.html (accessed on 20 May 2019).
- Gaudiosi, G. Offshore wind energy in the world context. Renew. Energy 1996, 9, 899–904. [Google Scholar] [CrossRef]
- European Wind Energy Association and Greenpeace. Wind Force 12; European Wind Energy Association (EWEA): Brussels, Belgium, 2004. [Google Scholar]
- Farkas, Z. Considering air density in wind power production. arXiv 2011, arXiv:1103.2198. [Google Scholar]
- Pourrajabian, A.; Mirzaei, M.; Ebrahimi, R.; Wood, D. Effect of air density on the performance of a small wind turbine blade: A case study in Iran. J. Wind Eng. Ind. Aerodyn. 2014, 126, 1–10. [Google Scholar] [CrossRef]
- Soraperra, G. Design of wind turbines for non-standard air density. Wind Eng. 2005, 29, 115–128. [Google Scholar] [CrossRef]
- Collins, J.; Parkes, J.; Tindal, A. Short term forecasting for utility-scale wind farms. The power model challenge. Wind Eng. 2009, 33, 247–257. [Google Scholar] [CrossRef]
- Dahmouni, A.; Salah, M.B.; Askri, F.; Kerkeni, C.; Nasrallah, S.B. Assessment of wind energy potential and optimal electricity generation in Borj-Cedria, Tunisia. Renew. Sustain. Energy Rev. 2011, 15, 815–820. [Google Scholar] [CrossRef]
- Turbines, W. Part 12-1: Power Performance Measurements of Electricity Producing wind Turbines; IEC TC/SC 88; Technical Report, IEC 61400-12-1; Hong Kong Polytechnic Univ.: Hong Kong, China, 2005. [Google Scholar]
- Svenningsen, L. Power Curve Air Density Correction And Other Power Curve Options in WindPRO; Technical Report; EMD International A/S: Aalborg, Denmark, 2010. [Google Scholar]
- Eurek, K.; Sullivan, P.; Gleason, M.; Hettinger, D.; Heimiller, D.; Lopez, A. An improved global wind resource estimate for integrated assessment models. Energy Econ. 2017, 64, 552–567. [Google Scholar] [CrossRef]
- Elliott, D.; Holladay, C.; Barchet, W.; Foote, H.; Sandusky, W. Wind Energy Resource Atlas of the United States; NASA STI/Recon Technical Report N; NREL: Golden, CO, USA, 1987. [Google Scholar]
- Floors, R.; Nielsen, M. Estimating Air Density Using Observations and Re-Analysis Outputs for Wind Energy Purposes. Energies 2019, 12, 2038. [Google Scholar] [CrossRef]
- Mortensen, N.G. 46200 Planning and Development of Wind Farms: Wind Resource Assessment Using the WAsP Software; DTU Wind, Riso Laboratory: Roskilde, Denmark, 2015. [Google Scholar]
- Puertos del Estado. Puertos del Estado: Oceanography: Forecast, Real Time and Climate; Spanish Government: Madrid, Spain, 11 November 2015. Available online: http://www.puertos.es/en-us/oceanografia/Pages/portus.aspx (accessed on 20 December 2015).
- Yamaguchi, A.; Ishihara, T. Assessment of offshore wind energy potential using mesoscale model and geographic information system. Renew. Energy 2014, 69, 506–515. [Google Scholar] [CrossRef]
- The Wind Power. Wind Energy Market Intelligence; The Wind Power: Tournefeuille, France, 2018. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G.; et al. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar]
- Barker, D.; Huang, W.; Guo, Y.; Xiao, Q. A Three-dimensional (3DVAR) Data Assimilation Systems for Use with MM5: Implementation and Initial Results. Mon. Weather Rev. 2004, 132. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xiao, Q.; Barker, D.M.; Zhang, X.; Michalakes, J.; Huang, W.; Henderson, T.; Bray, J.; Chen, Y.; Ma, Z.; et al. Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Weather Rev. 2009, 137, 299–314. [Google Scholar] [CrossRef]
- Barker, D.; Huang, X.Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef]
- Argüeso, D.; Hidalgo-Muñoz, J.M.; Gámiz-Fortis, S.R.; Esteban-Parra, M.J.; Dudhia, J.; Castro-Díez, Y. Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep regionalization. J. Clim. 2011, 24, 5633–5651. [Google Scholar] [CrossRef]
- Zheng, D.; Van Der Velde, R.; Su, Z.; Wen, J.; Wang, X. Assessment of NOAH land surface model with various runoff parameterizations over a Tibetan river. J. Geophys. Res. Atmos. 2017, 122, 1488–1504. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Jones, R.; Murphy, J.; Noguer, M. Simulation of climate change over europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Q. J. R. Meteorol. Soc. 1995, 121, 1413–1449. [Google Scholar]
- Rummukainen, M. State-of-the-art with regional climate models. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- González-Rojí, S.J.; Sáenz, J.; Ibarra-Berastegi, G.; Díaz de Argandoña, J. Moisture balance over the Iberian Peninsula according to a regional climate model. The impact of 3DVAR data assimilation. J. Geophys. Res. Atmos. 2018, 123, 708–729. [Google Scholar] [CrossRef]
- Bai, G.; Fleck, B.; Zuo, M.J. A stochastic power curve for wind turbines with reduced variability using conditional copula. Wind Energy 2016, 19, 1519–1534. [Google Scholar] [CrossRef]
- Sáenz, J.; González-Rojí, S.J.; Carreno-Madinabeitia, S.; Ibarra-Berastegi, G. Package ‘aiRthermo’. Atmospheric Thermodynamics and Visualization; R Package Version 1.1; Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU): Vizcaya, Spain, 2017. [Google Scholar]
- Sáenz, J.; González-Rojí, S.J.; Carreno-Madinabeitia, S.; Ibarra-Berastegi, G. Analysis of atmospheric thermodynamics using the R package aiRthermo. Comput. Geosci. 2019, 122, 113–119. [Google Scholar] [CrossRef]
- Bohren, C.F.; Albrecht, B.A. Atmospheric Thermodynamics; Oxford University Press: New York, NY, USA, 1998; p. 402. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science. An Introductory Survey, 2nd ed.; Elsevier: Oxford, UK, 2006; p. 483. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362–371. [Google Scholar] [CrossRef]
- Kusiak, A.; Zhang, Z.; Verma, A. Prediction, operations, and condition monitoring in wind energy. Energy 2013, 60, 1–12. [Google Scholar] [CrossRef]
- Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. In Proceedings of the North American Power Symposium (NAPS), Arlington, TX, USA, 26–28 September 2010; pp. 1–8. [Google Scholar]
- Ibarra-Berastegi, G.; Saénz, J.; Esnaola, G.; Ezcurra, A.; Ulazia, A. Short-term forecasting of the wave energy flux: Analogues, random forests, and physics-based models. Ocean Eng. 2015, 104, 530–539. [Google Scholar] [CrossRef]
- García, M. Atlas Climático Ibérico; AEMET/IMP: Madrid, Spain, 2011. [Google Scholar]
- Red Eléctrica de España; REE: Madrid, Spain, 2017.
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Rabanal, A.; Ulazia, A.; Ibarra-Berastegi, G.; Sáenz, J.; Elosegui, U. MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms. Energies 2019, 12, 28. [Google Scholar] [CrossRef]
- Ulazia, A.; Penalba, M.; Ibarra-Berastegui, G.; Ringwood, J.; Sáenz, J. Wave energy trends over the Bay of Biscay and the consequences for wave energy converters. Energy 2017, 141, 624–634. [Google Scholar] [CrossRef]
- Petty, G.W. A First Course in Atmospheric Thermodynamics; Sundog Publishing: Madison, WI, USA, 2008; p. 337. [Google Scholar]
- North, G.R.; Erukhimova, T.L. Atmospheric Thermodynamics; Cambridge University Press: New York, NY, USA, 2009; p. 267. [Google Scholar]
- Atmosphere, U.S. United States Committee on Extension to the Standard Atmosphere. National Oceanic and Atmospheric Administration, Washington, DC (NOAA-S/T 76-15672): Supt. of Docs., US Gov Print Office (Stock No. 003-017-00323-0); NOOA: Washington, DC, USA, 1976. [Google Scholar]
- Olauson, J. ERA5: The new champion of wind power modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Suganthan, P.; Srikanth, N. Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
Name | Long. (E) | Lat. (N) | Depth (m) | Dist. (km) |
---|---|---|---|---|
Cabo de Palos, CP | −0.30 | 37.65 | 230 | 6.7 |
Cabo Begur, CB | 3.65 | 41.92 | 1200 | 3.7 |
Mahón, M | 4.42 | 39.72 | 1200 | 4.1 |
Bilbao Vizcaya, BV | −3.05 | 43.64 | 600 | 3.2 |
Golfo de Cádiz, GC | −6.96 | 36.48 | 300 | 5.0 |
Cabo Silleiro, CS | −9.43 | 42.12 | 615 | 6.2 |
Spatial resolution | 15 km × 15 km |
---|---|
Vertical levels | 51 levels up to 20 hPa |
Temporal resolution | Outputs stored every 3 h |
Parametrizations used | Five-class microphysics WSM5 |
RRTMG (longwave and shortwave) radiation | |
Mellor-Yamada Nakanishi and Niino Level 2.5 PBL | |
Revised MM5 surface layer scheme | |
Tiedtke cumulus parameterization | |
Data used | PREPBUFR from the NCEP ADP Global Observations for data assimilation |
Boundary conditions from ERA-Interim fields (ECMWF) and NOOA OI SSTV2 |
Buoy | R-sq. (P) | p-val. (P) | Slope (P) | R-sq. (T) | p-val. (T) | Slope (T) |
---|---|---|---|---|---|---|
BV | 0.99 | 2.2 | 0.94 | 0.95 | 2.2 | 0.94 |
CB | 0.97 | 2.2 | 0.94 | 0.97 | 2.2 | 1.00 |
CP | 0.98 | 2.2 | 0.95 | 0.97 | 2.2 | 0.98 |
CS | 0.99 | 2.2 | 0.96 | 0.91 | 2.2 | 0.98 |
GC | 0.97 | 2.2 | 0.96 | 0.93 | 2.2 | 1.01 |
M | 0.98 | 2.2 | 0.93 | 0.92 | 2.2 | 0.93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulazia, A.; Ibarra-Berastegi, G.; Sáenz, J.; Carreno-Madinabeitia, S.; González-Rojí, S.J. Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula. Sustainability 2019, 11, 3648. https://doi.org/10.3390/su11133648
Ulazia A, Ibarra-Berastegi G, Sáenz J, Carreno-Madinabeitia S, González-Rojí SJ. Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula. Sustainability. 2019; 11(13):3648. https://doi.org/10.3390/su11133648
Chicago/Turabian StyleUlazia, Alain, Gabriel Ibarra-Berastegi, Jon Sáenz, Sheila Carreno-Madinabeitia, and Santos J. González-Rojí. 2019. "Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula" Sustainability 11, no. 13: 3648. https://doi.org/10.3390/su11133648
APA StyleUlazia, A., Ibarra-Berastegi, G., Sáenz, J., Carreno-Madinabeitia, S., & González-Rojí, S. J. (2019). Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula. Sustainability, 11(13), 3648. https://doi.org/10.3390/su11133648