Urban Green Spaces and Housing Prices: An Alternative Perspective
Abstract
:1. Introduction
1.1. Hedonic Pricing Analysis of UGS
1.2. Gradient Analysis in Landscape Ecology
1.3. An Alternative Perspective of Analysing UGS Effects on Prices
1.4. Aims and Organization of the Study
- H1: there are price–distance slopes around UGS.
- ○
- We expect to find price–distance slopes around UGS.
- H2: differences in price–distance slopes are related to differences in UGS size.
- ○
- We expect that price–distance slopes around large UGS are more pronounced since prices around small UGS are potentially influenced also by larger UGS close by (Figure 1).
- H3: neighboring UGS influence price–distance slopes.
- ○
- We test if the effects of UGS on prices superimpose each other, implying that other UGS in the vicinity influence their effect on prices in their own buffers.
2. Materials and Methods
2.1. Case Study
2.2. Real Estate and Spatial Data
2.3. Analysis of Buffer Zones around UGS
2.3.1. Data Preparation
2.3.2. Determining Price-Distance Slopes
2.3.3. Hypotheses Testing
3. Results
3.1. Hypothesis 1
3.2. Hypothesis 2
3.3. Hypothesis 3
4. Discussion
4.1. Hypothesis 1
4.2. Hypothesis 2
4.3. Hypothesis 3
4.4. Limitations of the Study
4.5. Suggestions for Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Total Number of UGS | |
---|---|
Total for 20 Buffers | 744 |
I. Regression with untransformed prices (lambda = 1) | |
Significance level of 95%, all 20 buffers | 245 (32% of total) |
Significance level of 95%, cut-off * applied | 233 (31% of total) |
II. Regression with log-transformed prices (lambda = 0) | |
Significance level of 95%, all 20 buffers | 192 (26% of total) |
Significance level of 95%, cut-off applied | 180 (24% of total) |
III. Regression with reciprocal transformation of prices (lambda = −1) | |
Significance level of 95%, all 20 buffers | 188 (25% of total) |
Significance level of 95%, cut-off applied | 176 (24% of total) |
IV. Regression with ‘power of −2 transformation’ of prices (lambda= −2) | |
Significance level of 95%, all 20 buffers | 184 (25% of total) |
Significance level of 95%, cut-off applied | 172 (23% of total) |
V. Regression with ‘power of −3 transformation’ of prices (lambda = −3) | |
Significance level of 95%, all 20 buffers | 190 (26% of total) |
Significance level of 95%, cut-off applied | 178 (24% of total) |
Appendix C
Transformation of Price-Distance Slope ° | UGS Type | Intercept | Estimate for Selected UGS Type (Binary) | Adj. R2 | p Value |
---|---|---|---|---|---|
None | Allotment | −0.0005 | 0.0004 | 0.004 | 0.15 |
Forest | −0.0002 | −0.0001 | −0.0003 | 0.59 | |
Cemetery | −3.5 × 10−4 | −2.2 × 10−6 | −0.004 | 0.996 | |
Park | −0.0004 | 0.0003 | −0.002 | 0.48 | |
Natural log | Allotment | −0.0002 | 0.0002 | −0.001 | 0.34 |
Forest | 1.7 × 10−5 | −1.7 × 10−4 | −0.001 | 0.37 | |
Cemetery | −1.1 × 10−4 | 1.6 × 10−4 | −0.004 | 0.59 | |
Park | −1.1 × 10−4 | 1.2 × 10−4 | −0.004 | 0.65 | |
Reciprocal | Allotment | 1.2 × 10−6 | −1.5 × 10−6 | 0.001 | 0.26 |
Forest | −1.3 × 10−6 | 2.7 × 10−6 | 0.014 | 0.06 | |
Cemetery | 9.8 × 10−7 | −4.3 × 10−6 | 0.013 | 0.07 | |
Park | 6.9 × 10−7 | −8.2 × 10−7 | −0.005 | 0.69 |
Appendix D
Appendix E
Appendix F
Appendix G
References
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment, Ecosystems and Human Well-Being: Biodiversity Synthesis, Washington, DC. 2005. Available online: https://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed on 20 December 2017).
- Daily, G.C. Nature’s Services. Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic prices and implicit markets: Product differentiation in pure competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Morancho, A.B. A hedonic valuation of urban green areas. Landsc. Urban Plan. 2003, 66, 35–41. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landsc. Urban Plan. 2006, 78, 422–434. [Google Scholar] [CrossRef]
- Hamilton, J.M. Coastal landscape and the hedonic price of accommodation. Ecol. Econ. 2007, 62, 594–602. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; Nakagoshi, N. Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landsc. Urban Plan. 2007, 79, 240–252. [Google Scholar] [CrossRef]
- Rehdanz, K.; Maddison, D. Local environmental quality and life-satisfaction in Germany. Ecol. Econ. 2008, 64, 787–797. [Google Scholar] [CrossRef]
- Brander, L.M.; Koetse, M.J. The value of urban open space: Meta-analyses of contingent valuation and hedonic pricing results. J. Environ. Manag. 2011, 92, 2763–2773. [Google Scholar] [CrossRef]
- Kovacs, K.F. Integrating property value and local recreation models to value ecosystem services from regional parks, Landsc. Urban Plan. 2012, 108, 79–90. [Google Scholar] [CrossRef]
- Melichar, J.; Kaprová, K. Revealing preferences of Prague’s homebuyers toward greenery amenities: The empirical evidence of distance-size effect, Landsc. Urban Plan. 2013, 109, 56–66. [Google Scholar] [CrossRef]
- Liebelt, V.; Bartke, S.; Schwarz, N. Hedonic pricing analysis of the influence of urban green spaces onto residential prices: The case of Leipzig, Germany. Eur. Plan. Stud. 2018, 26, 133–157. [Google Scholar] [CrossRef]
- Sylla, M.; Lasota, T.; Szewranski, S. Valuing Environmental Amenities in Peri-Urban Areas: Evidence from Poland. Sustainability 2019, 11, 570. [Google Scholar] [CrossRef]
- Mora-Garcia, R.; Cespedes-Lopez, M.F.; Perez-Sanchez, V.R.; Marti, P.; Perez-Sanchez, J. Determinants of the Price of Housing in the Province of Alicante (Spain): Analysis Using Quantile Regression. Sustainability 2019, 11, 437. [Google Scholar] [CrossRef]
- Ma, Y.; Gopal, S. Geographically Weighted Regression Models in Estimating Median Home Prices in Towns of Massachusetts Based on an Urban Sustainability Framework. Sustainability 2018, 10, 1026. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being: Synthesis—Millennium Ecosystem Assessment. 2005. Available online: http://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 20 December 2017).
- Gómez-Baggethun, E.; Ruiz-Pérez, M. Economic valuation and the commodification of ecosystem services. Prog. Phys. Geogr. Earth Environ. 2011, 35, 613–628. [Google Scholar] [CrossRef] [Green Version]
- Bartkowski, B. Economic Valuation of Biodiversity, 1st ed.; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Czembrowski, P.; Kronenberg, J. Hedonic pricing and different urban green space types and sizes: Insights into the discussion on valuing ecosystem services. Landsc. Urban Plan. 2016, 146, 11–19. [Google Scholar] [CrossRef]
- Wang, W.; Chang, Y.; Wang, H. An Application of the Spatial Autocorrelation Method on the Change of Real Estate Prices in Taitung City. Int. J. Geo-Inf. 2019, 8, 249. [Google Scholar] [CrossRef]
- Id, H.W.; Jiao, H.; Yu, Y. Influence Factors and Regression Model of Urban Housing Prices Based on Internet Open Access Data. Sustainability 2018, 10, 1676. [Google Scholar] [CrossRef]
- Weng, Y.C. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Yu, X.J.; Ng, N.C. Spatial and temporal dynamics of urban sprawl along two urban-rural transects: A case study of Guangzhou, China. Landsc. Urban Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Liang, C. A GIS-based buffer gradient analysis on spatiotemporal dynamics of urban expansion in Shanghai and its major satellite cities. Procedia Environ. Sci. 2010, 2, 1139–1156. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Kong, F.; Nakagoshi, N. Spatial-temporal gradient analysis of urban green spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Kroll, F.; Kabisch, N. The relation of diverging urban growth processes and demographic change along an urban–rural gradient. Popul. Space Place. 2012, 18, 260–276. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The Bigger, the Better? The Influence of Urban Green Space Design on Cooling Effects for Residential Areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Pope, R.L.; Martin, C.A.; Brazel, A.J. Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts. Theor. Appl. Climatol. 2011, 103, 197–211. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemi, N. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landsc. Urban Plan. 2014, 123, 73–86. [Google Scholar] [CrossRef]
- Stadt Leipzig, Bevölkerungsbestand/Population Inventory, Stat. Landesamt Des Freistaates Sachsen/Stat. State Off. Free State Saxony. 2018, pp. 1–2. Available online: https://statistik.leipzig.de/statcity/table.aspx?cat=2&rub=1&per=q (accessed on 11 May 2018).
- Voigtländer, M. Why is the German Homeownership Rate so Low? Hous. Stud. 2009, 24, 355–372. [Google Scholar] [CrossRef]
- Großmann, K.; Bierwirth, A.; Bartke, S.; Jensen, T.; Kabisch, S.; von Malottki, C.; Mayer, I.; Rügamer, J. Energetische Sanierung: Sozialräumliche Strukturen von Städten berücksichtigen (Energetic Retrofit: Considering Socio-spatial Structures of Cities). GAIA-Ecol. Perspect. Sci. Soc. 2014, 23, 309–312. [Google Scholar] [CrossRef]
- Banzhaf, E.; Hoefer, R. Monitoring Urban Structure Types as Spatial Indicators With CIR Aerial Photographs for a More Effective Urban Environmental Management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 1–14. [Google Scholar] [CrossRef]
- Stadt Leipzig, Integriertes Stadtentwicklungskonzept Leipzig 2030/Integrated urban development concept Leipzig 2030, Leipzig. 2018. Available online: https://www.leipzig.de/fileadmin/mediendatenbank/leipzig-de/Stadt/02.6_Dez6_Stadtentwicklung_Bau/61_Stadtplanungsamt/Stadtentwicklung/Stadtentwicklungskonzept/Leipzig-2030_Beschluss_Gesamtfassung.pdf (accessed on 20 December 2017).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2017. Available online: https://www.r-project.org/ (accessed on 20 December 2017).
- Bräuniger, C.; Knapp, S.; Kühn, I.; Klotz, S. Testing taxonomic and landscape surrogates for biodiversity in an urban setting. Landsc. Urban Plan. 2010, 97, 283–295. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, X.; Li, W.; Aini, G.; Chen, L.; Gong, Y. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecol. Indic. 2015, 48, 417–427. [Google Scholar] [CrossRef]
- Grinde, A.R.; Niemi, G.J.; Sturtevant, B.R.; Panci, H.; Thogmartin, W.; Wolter, P. Importance of scale, land cover, and weather on the abundance of bird species in a managed forest. For. Ecol. Manag. 2017, 405, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Lutzenhiser, M.; Netusil, N.R. The effect of open spaces on a home’s sale price. Contemp. Econ. Policy. 2001, 19, 291–298. [Google Scholar] [CrossRef]
- NIST/SEMATECH, NIST/SEMATECH e-Handbook of Statistical Methods. 2013. Available online: http://www.itl.nist.gov/div898/handbook/eda/section3/eda336.htm (accessed on 20 December 2017).
- Osborne, J.W. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 1–9. [Google Scholar]
- Robbins, N. When Should I Use Logarithmic Scales in My Charts and Graphs? Forbes.com, 2012. Available online: http://www.forbes.com/sites/naomirobbins/2012/01/19/when-should-i-use-logarithmic-scales-in-my-charts-and-graphs/ (accessed on 20 December 2017).
- Crawley, M.J. The R Book; Wiley-Blackwell Publishing, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Brandt, S.; Maennig, W. Perceived externalities of cell phone base stations: The case of property prices in Hamburg, Germany. Environ. Plan. A 2012, 44, 396–410. [Google Scholar] [CrossRef]
- Tyrväinen, L. The amenity value of the urban forest: An application of the hedonic pricing method. Landsc. Urban Plan. 1997, 37, 211–222. [Google Scholar] [CrossRef]
- Din, A.; Hoesli, M.; Bender, A. Environmental variables and real estate prices. Urban Stud. 2001, 38, 1989–2000. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Maennig, W. External productivity and utility effects of city airports. Reg. Stud. 2011, 47, 508–529. [Google Scholar] [CrossRef]
- Palmquist, R.B. Welfare measurement for environmental improvements using the hedonic model: The case of nonparametric marginal prices. J. Environ. Econ. Manag. 1988, 15, 297–312. [Google Scholar] [CrossRef]
- Panduro, T.E.; Veie, K.L. Classification and valuation of urban green spaces—A hedonic house price valuation. Landsc. Urban Plan. 2013, 120, 119–128. [Google Scholar] [CrossRef]
- Bolitzer, B.; Netusil, N. The impact of open spaces on property values in Portland, Oregon. J. Environ. Manag. 2000, 59, 185–193. [Google Scholar] [CrossRef]
- Larson, E.K.; Perrings, C. The value of water-related amenities in an arid city: The case of the Phoenix metropolitan area. Landsc. Urban Plan. 2013, 109, 45–55. [Google Scholar] [CrossRef]
- Liebelt, V.; Bartke, S.; Schwarz, N. Revealing Preferences for Urban Green Spaces: A Scale-sensitive Hedonic Pricing Analysis for the City of Leipzig. Ecol. Econ. 2018, 146, 536–548. [Google Scholar] [CrossRef]
Variable and Units | Description |
---|---|
Mean price (Euro/m2) in buffers from 100 m to 2000 m | Mean rental price for all flats located in a buffer, calculated for 20 buffers of 100 m radius each. |
UGS Size (ha) | Size of UGS (ha). |
CBD Distance (m) | Distance from central business district (CBD) to UGS. |
UGS Share (%) | Share (in %) of UGS in the buffer area of 2000 m around the UGS. |
UGS Types | Types of UGS: allotment, forest, cemetery or park. |
λ | Required Transformation | Explanation |
---|---|---|
1 | None | Price |
0 | Natural log | log(price) |
−1 | Reciprocal, i.e., power of −1 | 1/price |
−2 | Power of −2 | 1/(price^2) |
−3 | Power of −3 | 1/(price^3) |
Transformation of Price-Distance Slope 1,2 | Transformation of UGS Share in 2000 m Buffer 3 | Intercept | Estimate for UGS Share in 2000 m Buffer | Adj. R2 | p-Value |
---|---|---|---|---|---|
None | none | −0.0006 * | 0.0002 | 0.001 | 0.270 |
log(UGS share) | −0.001 * | 0.0002 | 0.006 | 0.113 | |
sqrt(UGS Share) | −0.0008 * | 0.0001 | 0.003 | 0.180 | |
Natural log | None | −0.0003 | 0.00001 | 0.004 | 0.187 |
log(UGS share) | −0.0005 | 0.0002 | 0.008 | 0.121 | |
sqrt(UGS share) | −0.0005 | 0.0001 | 0.008 | 0.112 | |
Reciprocal | None | 1.9 × 10−6 | −6.5 × 10−8 | 0.001 | 0.274 |
log(UGS share) | 1.7 × 10−6 | −4.0 × 10−7 | −0.004 | 0.638 | |
sqrt(UGS share) | 3.0 × 10−6 | −5.6 × 10−7 | 0.002 | 0.254 | |
Power of −2 | None | 3.8 × 10−9 | −2.0 × 10−10 | −0.005 | 0.888 |
log(UGS share) | −8.4 × 10−8 | 5.9 × 10−8 | 0.0066 | 0.140 | |
sqrt(UGS share) | 1.9 × 10−9 | 1.2 × 10−8 | −0.005 | 0.872 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liebelt, V.; Bartke, S.; Schwarz, N. Urban Green Spaces and Housing Prices: An Alternative Perspective. Sustainability 2019, 11, 3707. https://doi.org/10.3390/su11133707
Liebelt V, Bartke S, Schwarz N. Urban Green Spaces and Housing Prices: An Alternative Perspective. Sustainability. 2019; 11(13):3707. https://doi.org/10.3390/su11133707
Chicago/Turabian StyleLiebelt, Veronika, Stephan Bartke, and Nina Schwarz. 2019. "Urban Green Spaces and Housing Prices: An Alternative Perspective" Sustainability 11, no. 13: 3707. https://doi.org/10.3390/su11133707
APA StyleLiebelt, V., Bartke, S., & Schwarz, N. (2019). Urban Green Spaces and Housing Prices: An Alternative Perspective. Sustainability, 11(13), 3707. https://doi.org/10.3390/su11133707