The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Adaptation Strategies for Extreme Heat
2.3. Extreme Heat Criteria and MRT Model
2.4. Climate Change Mitigation Scenarios
3. Results
3.1. Extreme Heat Impact under Climate Change
3.2. Effects of Adaptation Strategies
4. Discussion
4.1. Mitigation Scenarios and Adaptation Strategies
4.2. The Need for Innovative Adaptation Strategies
4.3. Decision-Making for Local Adaptation Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Battisti, A.; Laureti, F.; Zinzi, M.; Volpicelli, G. Climate mitigation and adaptation strategies for roofs and pavements: A case study at Sapienza University Campus. Sustainability 2018, 10, 3788. [Google Scholar] [CrossRef]
- Martinich, J.; Crimmins, A. Climate damages and adaptation potential across diverse sectors of the United States. Nat. Clim. Chang. 2019, 9, 397–404. [Google Scholar] [CrossRef]
- Pasimeni, M.R.; Valente, D.; Zurlini, G.; Petrosillo, I. The interplay between urban mitigation and adaptation strategies to face climate change in two European countries. Environ. Sci. Policy 2019, 95, 20–27. [Google Scholar] [CrossRef]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Fazey, I.; Carmen, E.; Chapin, F.S.; Ross, H.; Rao-Williams, J.; Lyon, C.; Connon, I.L.C.; Searle, B.A.; Knox, K. Community resilience for a 1.5 °C world. Curr. Opin. Environ. Sustain. 2018, 31, 30–40. [Google Scholar] [CrossRef]
- Baker, I.; Peterson, A.; Brown, G.; McAlpine, C. Local government response to the impacts of climate change: An evaluation of local climate adaptation plans. Landsc. Urban Plan. 2012, 107, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y.; Gao, Y.; Fu, J.S.; Johnson, B.A.; Huang, C.; Kim, Y.-M.; Liu, Y. Estimation and Uncertainty Analysis of Impacts of Future Heat Waves on Mortality in the Eastern United States. Environ. Health Perspect. 2013, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Lau, K.K.L.; Lindberg, F.; Rayner, D.; Thorsson, S. The effect of urban geometry on mean radiant temperature under future climate change: A study of three European cities. Int. J. Biometeorol. 2015, 59, 799–814. [Google Scholar] [CrossRef]
- Matthews, T.K.R.; Wilby, R.L.; Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA 2017, 114, 3861–3866. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Eum, H., II; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shrestha, M.L.; Hwang, S.; Nasim, W.; Khan, I.A.; et al. Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Chapman, S.; Thatcher, M.; Salazar, A.; Watson, J.E.M.; McAlpine, C.A. The impact of climate change and urban growth on urban climate and heat stress in a subtropical city. Int. J. Climatol. 2019, 39, 3013–3030. [Google Scholar] [CrossRef] [Green Version]
- Founda, D.; Varotsos, K.V.; Pierros, F.; Giannakopoulos, C. Observed and projected shifts in hot extremes’ season in the Eastern Mediterranean. Glob. Planet. Chang. 2019, 175, 190–200. [Google Scholar] [CrossRef]
- Min, S.K.; Son, S.W.; Seo, K.H.; Kug, J.S.; An, S., II; Choi, Y.S.; Jeong, J.H.; Kim, B.M.; Kim, J.W.; Kim, Y.H.; et al. Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci. 2015, 51, 103–121. [Google Scholar] [CrossRef]
- Kim, D.W.; Deo, R.C.; Chung, J.H.; Lee, J.S. Projection of heat wave mortality related to climate change in Korea. Nat. Hazards 2016, 80, 623–637. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, A.D.L.; Vollaro, R.D.L. How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy Build. 2015, 99, 32–49. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Yuan, J.; Emura, K.; Farnham, C. Is urban albedo or urban green covering more effective for urban microclimate improvement? A simulation for Osaka. Sustain. Cities Soc. 2017, 32, 78–86. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.J.; Tenpierik, M.; van den Dobbelsteen, A. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Manteghi, G.; bin Lamit, H.; Ossen, D.R. Influence of Street Orientation and Distance to Water Body on Microclimate Temperature Distribution in Tropical Coastal City of Malacca. Int. J. Appl. Environ. Sci. 2015, 10, 749–766. [Google Scholar]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Aryal, A.; Shrestha, S.; Babel, M.S. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theor. Appl. Climatol. 2019, 135, 193–209. [Google Scholar] [CrossRef]
- Aminipouri, M.; Rayner, D.; Lindberg, F.; Thorsson, S.; Knudby, A.J.; Zickfeld, K.; Middel, A.; Krayenhoff, E.S. Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver’s local climate zones. Build. Environ. 2019, 158, 226–236. [Google Scholar] [CrossRef]
- Kim, E.; Jeon, S.-W.; Lee, J.-W.; Park, Y.-H.; Lee, D.-K. Local Adaptation Plan to Climate Change Impact in Seoul: Focused on Heat Wave Effects. J. Environ. Impact Assess. 2012, 21, 71–80. [Google Scholar]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int. J. Climatol. 2011, 31, 1498–1506. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Verification of heat stress thresholds for a health-based heatwave definition. J. Appl. Meteorol. Climatol. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Foudi, S.; Spadaro, J.V.; Chiabai, A.; Polanco-Martínez, J.M.; Neumann, M.B. The climatic dependencies of urban ecosystem services from green roofs: Threshold effects and non-linearity. Ecosyst. Serv. 2017, 24, 223–233. [Google Scholar] [CrossRef]
- Lee, J. The Present Status and Issues of Local Government Adaptation Plans for Climate Change: Focusing on the Health Sector. Korean J. Environ. Health Sci. 2017, 43, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Mayer, H. Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. Int. J. Biometeorol. 2018, 62, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Taleghani, M.; Tenpierik, M.; Van Den Dobbelsteen, A.; Sailor, D.J. Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the Netherlands. Sol. Energy 2014, 103, 108–124. [Google Scholar] [CrossRef]
- Bradley, A.V.; Thornes, J.E.; Chapman, L.; Unwin, D.; Roy, M. Modelling spatial and temporal road thermal climatology in rural and urban areas using a GIS. Clim. Res. 2002, 22, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Shahidan, M.F.; Jones, P.J.; Gwilliam, J.; Salleh, E. An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials. Build. Environ. 2012, 58, 245–257. [Google Scholar] [CrossRef]
- Hendel, M.; Parison, S.; Grados, A.; Royon, L. Which pavement structures are best suited to limiting the UHI effect? A laboratory-scale study of Parisian pavement structures. Build. Environ. 2018, 144, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Park, C.Y.; Lee, D.K.; Krayenhoff, E.S.; Heo, H.K.; Ahn, S.; Asawa, T.; Murakami, A.; Kim, H.G. A multilayer mean radiant temperature model for pedestrians in a street canyon with trees. Build. Environ. 2018, 141, 298–309. [Google Scholar] [CrossRef]
- Lee, S. Further Development of the Vegetated Urban Canopy Model Including a Grass-Covered Surface Parametrization and Photosynthesis Effects. Bound.-Layer Meteorol. 2011, 140, 315–342. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, D.K.; Krayenhoff, E.S.; Heo, H.K.; Hyun, J.H.; Oh, K.; Park, T.Y. Variations in pedestrian mean radiant temperature based on the spacing and size of street trees. Sustain. Cities Soc. 2019, 48, 1–9. [Google Scholar] [CrossRef]
- Thorsson, S.; Rocklöv, J.; Konarska, J.; Lindberg, F.; Holmer, B.; Dousset, B.; Rayner, D. Mean radiant temperature—A predictor of heat related mortality. Urban Clim. 2014, 10, 332–345. [Google Scholar] [CrossRef]
- Monteiro, A.; Carvalho, V.; Oliveira, T.; Sousa, C. Excess mortality and morbidity during the July 2006 heat wave in Porto, Portugal. Int. J. Biometeorol. 2013, 57, 155–167. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Christen, A.; Martilli, A.; Oke, T.R. A Multi-Layer Radiation Model for Urban Neighbourhoods with Trees. Bound.-Layer Meteorol. 2014, 151, 139–178. [Google Scholar] [CrossRef]
- Williamson, C.E.; Zepp, R.G.; Lucas, R.M.; Madronich, S.; Austin, A.T.; Ballaré, C.L.; Norval, M.; Sulzberger, B.; Bais, A.F.; McKenzie, R.L.; et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Chang. 2014, 4, 434–441. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.; Ab, W. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Tebaldi, C.; Wehner, M.F. Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Clim. Chang. 2018, 146, 349–361. [Google Scholar] [CrossRef]
- Kim, M.-K.; Lee, D.-H.; Kim, J. Production and Validation of Daily Grid Data with 1km Resolution in South Korea. J. Clim. Res. 2013, 8, 13–25. [Google Scholar]
- Dow, K.; Berkhout, F.; Preston, B.L.; Klein, R.J.T.; Midgley, G.; Shaw, M.R. Limits to adaptation. Nat. Clim. Chang. 2013, 3, 305–307. [Google Scholar] [CrossRef]
- Colloff, M.J.; Martín-lópez, B.; Lavorel, S.; Locatelli, B.; Gorddard, R.; Longaretti, P.; Walters, G.; Van Kerkhoff, L.; Wyborn, C.; Coreau, A.; et al. Environmental Science & Policy An integrative research framework for enabling transformative adaptation. Environ. Sci. Policy 2017, 68, 87–96. [Google Scholar]
- Dover, J.W. Green Infrastructure. Incorporating Plants and Enhancing Biodiversity in Buildings and Urban Environments; Routledge: Abingdon, UK, 2015; ISBN 9780415521239. [Google Scholar]
- McNamara, K.E.; Buggy, L. Community-based climate change adaptation: A review of academic literature. Local Environ. 2017, 22, 443–460. [Google Scholar] [CrossRef]
- Pilli-Sihvola, K.; van Oort, B.; Hanssen-Bauer, I.; Ollikainen, M.; Rummukainen, M.; Tuomenvirta, H. Communication and use of climate scenarios for climate change adaptation in Finland, Sweden and Norway. Local Environ. 2015, 20, 510–524. [Google Scholar] [CrossRef]
- Miller, D.D.; Ota, Y.; Sumaila, U.R.; Cisneros-Montemayor, A.M.; Cheung, W.W.L. Adaptation strategies to climate change in marine systems. Glob. Chang. Biol. 2018, 24, e1–e14. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Weaver, C.P.; Lempert, R.J.; Brown, C.; Hall, J.A.; Revell, D.; Sarewitz, D. Improving the contribution of climate model information to decision making: The value and demands of robust decision frameworks. Wiley Interdiscip. Rev. Clim. Chang. 2013, 4, 39–60. [Google Scholar] [CrossRef]
- McDermott, T.K.J.; Surminski, S. How normative interpretations of climate risk assessment affect local decision-making: An exploratory study at the city scale in Cork, Ireland. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170300. [Google Scholar] [CrossRef] [PubMed]
- Pedde, S.; Kok, K.; Hölscher, K.; Frantzeskaki, N.; Holman, I.; Dunford, R.; Smith, A.; Jäger, J. Advancing the use of scenarios to understand society’s capacity to achieve the 1.5 degree target. Glob. Environ. Chang. 2019, 56, 75–85. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor under setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
Category | Examples | Capacity for Urban Heat Reduction | Capacity for Pedestrian Heat Load Reduction |
---|---|---|---|
Green area | Urban forest, urban oasis, urban farm, park, street greenery, greenway, street tree, roadside green area, ecological rest area, cool share square, green wall | ○ | ○ |
Building roof | Cool roof, green roof | ○ | X |
Watering | Cooling fog, cool road (watering road), waterscape facility (fountain) | ○ | △ |
Gray infrastructure | Heat shelter (buildings), heat shade on the street | X | ○ |
Name (ID) | Description | Illustration |
---|---|---|
Greenway sidewalk (GS) | Convert a 1.5-m stretch of sidewalk into grass. Grass height = 0.3 m, albedo = 0.205, emissivity = 0.93 [34]. | |
Green wall (GW) | Convert a building wall into a green wall. Grass height = 0.3 m, albedo = 0.205, emissivity = 0.93 [34]. | |
Reduced-albedo sidewalk (SA) | Lower the albedo of sidewalk from 0.65 (gray granite [35]) to 0.3 (dark granite [36]). | |
Street tree (ST) | Plant 20 street trees on each side of the road to a total leaf area density of the street of 0.13. Tree height = 7 m, canopy width = 4 m, leaf albedo = 0.18 [37], emissivity = 0.96 [38]. |
Variable type | Variable | Value/Component |
---|---|---|
Fixed variable | Dew point temperature (°C) | 10.1 |
Relative humidity (0–1) | 0.29 | |
Cloud fraction (0–1) | 0 | |
Time (LST) | 13:00 | |
Non-fixed variable | Air temperature | Daily maximum air temperature of RCP2.6 and RCP 8.5 |
Date (DOY) | 152–243 | |
Solar radiation | Function of time and date |
Mitigation Scenario | Health Criterion | 2020s | 2030s | 2040s | 2050s |
---|---|---|---|---|---|
RCP2.6 | EHD (days/10 years) | 22 | 20 | 57 | 29 |
AMRT (°C) | 55.40 | 55.60 | 55.81 | 55.83 | |
RCP8.5 | EHD (days/10 years) | 30 | 41 | 41 | 138 |
AMRT (°C) | 56.18 | 55.76 | 55.74 | 56.47 |
Adaptation Strategy | Health Criterion | 2020s | 2030s | 2040s | 2050s |
---|---|---|---|---|---|
GS | EHD (days/10 years) | 0 | 4 | 7 | 7 |
AMRT (°C) | - | 55.15 | 55.57 | 55.54 | |
GW | EHD (days/10 years) | 0 | 3 | 4 | 10 |
AMRT (°C) | - | 55.14 | 55.72 | 55.88 | |
SA | EHD (days/10 years) | 0 | 5 | 10 | 10 |
AMRT (°C) | - | 55.40 | 55.70 | 55.87 | |
ST | EHD (days/10 years) | 0 | 0 | 0 | 0 |
AMRT (°C) | - | - | - | - |
Adaptation Strategy | Health Criterion | 2020s | 2030s | 2040s | 2050s |
---|---|---|---|---|---|
GS | EHD (days/10 years) | 10 | 4 | 9 | 87 |
AMRT (°C) | 55.68 | 55.19 | 55.43 | 56.10 | |
GW | EHD (days/10 years) | 7 | 5 | 9 | 59 |
AMRT (°C) | 55.67 | 55.27 | 55.44 | 55.99 | |
SA | EHD (days/10 years) | 11 | 5 | 7 | 74 |
AMRT (°C) | 55.65 | 55.24 | 55.50 | 56.11 | |
ST | EHD (days/10 years) | 0 | 0 | 0 | 0 |
AMRT (°C) | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.Y.; Lee, D.K.; Hyun, J.H. The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea. Sustainability 2019, 11, 3801. https://doi.org/10.3390/su11143801
Park CY, Lee DK, Hyun JH. The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea. Sustainability. 2019; 11(14):3801. https://doi.org/10.3390/su11143801
Chicago/Turabian StylePark, Chae Yeon, Dong Kun Lee, and Jung Hee Hyun. 2019. "The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea" Sustainability 11, no. 14: 3801. https://doi.org/10.3390/su11143801
APA StylePark, C. Y., Lee, D. K., & Hyun, J. H. (2019). The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea. Sustainability, 11(14), 3801. https://doi.org/10.3390/su11143801