Challenges for Sustainable Water Use in the Urban Industry of Korea Based on the Global Non-Radial Directional Distance Function Model
Abstract
:1. Introduction
1.1. Background of the Research
1.2. Geographic Features
2. Methodology
2.1. GNDDF (Global Non-Radial Directional Distance Function)
2.2. GUEIW (Green Use Efficiency of Industrial Water)
3. Empirical Results
3.1. Data Collection
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, B.W.; Kim, G.B.; Kim, D.G.; Koh, Y.K.; Choi, D.H. Current states of the Global water market and considerations for the Groundwater industry in South Korea. J. Eng. Geol. 2014, 24, 431–440. [Google Scholar] [CrossRef]
- Baron, J.S.; Poff, N.L.; Angermeier, P.L.; Dahm, C.N.; Gleick, P.H.; Hairston, N.G.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D. Meeting ecological and socieal needs for freshwater. Ecol. Appl. 2002, 12, 1247–1260. [Google Scholar] [CrossRef]
- Vugteveen, P.; Lenders, H.J. The duality of integrated water management: Science, policy or both? J. Integr. Environ. Sci. 2009, 6, 51–67. [Google Scholar] [CrossRef]
- Choi, I.-C.; Shin, H.-J.; Nguyen, T.T.; Tenhunen, J. Water Policy Reforms in South Korea: A Historical Review and Ongoing Challenges for Sustainable Water Governance and Management. Water 2017, 9, 717. [Google Scholar] [CrossRef]
- Han, S.-Y.; Kwak, S.-J.; Yoo, S.-H. Valuing environmental impacts of large dam construction in Korea: An application of choice experiments. Environ. Impact Assess. Rev. 2008, 28, 256–266. [Google Scholar] [CrossRef]
- Hoang, V.-N.; Seo, B.; Nguyen, T.T.; Hoang, V. Cost and environmental efficiency of rice farms in South Korea. Agric. Econ. 2012, 43, 369–378. [Google Scholar]
- Organization for Economic Co-Operation and Development (OECD). Evaluation of Agricultural Policy Reforms in Korea; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Cho, C.J. The Korean growth-management programs: Issues, problems and possible reforms. Land Use Policy 2002, 19, 13–27. [Google Scholar] [CrossRef]
- Kwak, S.J.; Russell, C.S. Contingent valuation in Korean environmental planning: A pilot application to the protection of drinking water quality in Seoul. Environ. Resour. Econ. 1994, 4, 511–526. [Google Scholar] [CrossRef]
- Labadie, J.W.; Fontane, D.G.; Lee, J.H.; Ko, I.W. Decision support system for adaptive river basin management: Application to the Geum River basin, Korea. Water Int. 2007, 32, 397–415. [Google Scholar] [CrossRef]
- Xi, D.L.; Sun, Y.S. Environmental Monitoring, 4th ed.; Higher Education Press: Beijing, China, 2010; Volume 7, pp. 127–135. [Google Scholar]
- Water Resources Management Information System. Available online: http://www.wamis.go.kr/wke/wke_wqbase_lst.aspx#menu02 (accessed on 1 July 2019).
- Kim, K.M. Improvement of the Han River Watershed Management Fund Policies; National Assembly Research Service (NARS) Issue Report 160; NARS: Seoul, Korea, 2012.
- Shin, H.J.; Jeon, C.H.; Choi, I.C.; Yeon, I.C. Estimation of beneficiary’s willingness to pay in mid and down-stream area to the water quality improvements in upper Bukhan River Basin. Seoul Stud. 2009, 10, 91–106. (In Korean) [Google Scholar]
- Kumbhakar, S.C.; Bhattacharyya, A. Price distortions and resource-use efficiency in indian agriculture: A restricted profit function approach: A restricted profit function approach. Rev. Econ. Stat. 1992, 74, 231–239. [Google Scholar] [CrossRef]
- Li, J.; Ma, X. The utilization efficiency of industrial water under the dual constraints of resource and environment—An empirical study based on sbm-undesirable and meta-frontier model. J. Nat. Resour. 2014, 29, 920–933. (In Chinese) [Google Scholar]
- Cheng, H.; Hu, Y.; Zhao, J. Meeting China’s water shortage crisis: Current practices and challenges. Environ. Sci. Technol. 2009, 43, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, W. Spatiotemporal differences and convergence of urban industrial land use efficiency for China’s major economic zones. J. Geogr. Sci. 2015, 25, 1183–1198. [Google Scholar] [CrossRef]
- Cai, Y.; Yue, W.; Xu, L.; Yang, Z.; Rong, Q. Sustainable urban water resources management considering life-cycle environmental impacts of water utilization under uncertainty. Resour. Conserv. Recycl. 2016, 108, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Wei, T.; Lou, I.; Yang, Z.; Shen, Z.; Li, Y. Water saving effect on integrated water resource management. Resour. Conserv. Recycl. 2014, 93, 50–58. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.P.; Huang, G.H.; Zeng, X.T. A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty. Resour. Conserv. Recycl. 2014, 88, 50–66. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Y.; Yao, L.; Wei, C.; Li, C. Optimal allocation of regional water resources: From a perspective of equity–efficiency. Resour. Conserv. Recycl. 2016, 109, 102–113. [Google Scholar] [CrossRef]
- Tu, Y.; Zhou, X.; Gang, J.; Liechty, M.; Xu, J.; Lev, B. Administrative and market-based allocation mechanism for regional water resources. Resour. Conserv. Recycl. 2015, 95, 156–173. [Google Scholar] [CrossRef]
- Zhang, N.; Xie, H. Toward green IT: Modeling sustainable production characteristics for Chinese electronic information industry, 1980–2012. Technol. Forecast. Soc. Chang. 2015, 96, 62–70. [Google Scholar] [CrossRef]
- Shao, Y. Analysis of energy savings potential of China’s nonferrous metals industry. Resour. Conserv. Recycl. 2016. [Google Scholar] [CrossRef]
- Wu, H.; Shi, Y.; Xia, Q.; Zhu, W. Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan. Resour. Conserv. Recycl. 2014, 83, 163–175. [Google Scholar] [CrossRef]
- Bian, Y.; Yan, S.; Xu, H. Efficiency evaluation for regional urban water use and wastewater decontamination systems in China: A DEA approach. Resour. Conserv. Recycl. 2014, 83, 15–23. [Google Scholar] [CrossRef]
- Geissler, B.; Mew, M.C.; Weber, O.; Steiner, G. Efficiency performance of the world’s leading corporations in phosphate rock mining. Resour. Conserv. Recycl. 2015, 105, 246–258. [Google Scholar] [CrossRef]
- Jaeger, S.D.; Rogge, N. Cost-efficiency in packaging waste management: The case of Belgium. Resour. Conserv. Recycl. 2014, 85, 106–115. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Ren, J.; Manzardo, A.; Mazzi, A.; Fedele, A.; Scipioni, A. Emergy analysis and sustainability efficiency analysis of different crop-based biodiesel in life cycle perspective. Sci. World J. 2013, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Choi, Y. A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renew. Sustain. Energy Rev. 2014, 33, 50–59. [Google Scholar] [CrossRef]
- Zhang, N.; Kong, F.; Kung, C.C. On modeling environmental production characteristics: A slacks-based measure for China’s Poyang lake ecological economics zone. Comput. Econ. 2014, 46, 1–16. [Google Scholar] [CrossRef]
- Zhang, N.; Kong, F.; Choi, Y. Measuring sustainability performance for China: A sequential generalized directional distance function approach. Econ. Model. 2014, 41, 392–397. [Google Scholar] [CrossRef]
- Ren, J.; Tan, S.; Dong, L.; Mazzi, A.; Scipioni, A.; Sovacool, B.K. Determining the life cycle energy efficiency of six biofuel systems in China: A data envelopment analysis. Bioresour. Technol. 2014, 162, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, S.; Yeh, F. Total-factor water efficiency of regions in China. Resour. Policy 2006, 31, 217–230. [Google Scholar] [CrossRef]
- Liao, H.; Dong, Y. Utilization efficiency of water resources in 12 western provinces of china based on the DEA and Malmquist TFP index. Resour. Sci. 2011, 33, 273–279. [Google Scholar]
- Zhao, X.; Chen, B.; Yang, Z.F. National water footprint in an input–output framework—A case study of China 2002. Ecol. Model. 2009, 220, 245–253. [Google Scholar] [CrossRef]
- Manzardo, A.; Ren, J.; Piantella, A.; Mazzi, A.; Fedele, A.; Scipioni, A. Integration of water footprint accounting and costs for optimal chemical pulp supply mix in paper industry. J. Clean. Prod. 2014, 72, 167–173. [Google Scholar] [CrossRef]
- Wang, W.; Xie, H.; Jiang, T.; Zhang, D.; Xie, X. Measuring the total-factor carbon emission performance of industrial land use in China based on the global directional distance function and non-radial luenberger productivity index. Sustainability 2016, 8, 336. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W.; Yang, Z.; Choi, Y. Measuring the sustainable performance of industrial land utilization in major industrial zones of China. Technol. Forecast. Soc. Chang. 2016. [Google Scholar] [CrossRef]
- Zhou, P.; Poh, K.L.; Ang, B.W. A non-radial DEA approach to measuring environmental performance. Eur. J. Oper. Res. 2007, 178, 1–9. [Google Scholar] [CrossRef]
- Min, K.J. The Role of the State and the Market in the Korean Water Sector: Strategic Decision Marking Approach for Good Governance. Ph.D. Thesis, University of Bath School of Management, Bath, UK, January 2011. [Google Scholar]
- Ministry of Land, Infrastructure and Transportation of Korea (MOLIT); Korea Water Resources Corporation (K-Water). Water for the Future: Water and Sustainable Development; K-Water: Daejeon, Korea, 2015.
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, B.; Chen, Z. Carbon emission reductions and technology gaps in the world’s factory, 1990–2012. Energy Policy 2016, 91, 28–37. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, B.; Liu, Z. Carbon emissions dynamics, efficiency gains, and technological innovation in China’s industrial sectors. Energy 2016, 99, 10–19. [Google Scholar] [CrossRef]
- Chang, T.P.; Hu, J.L. Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China. Appl. Energy 2010, 87, 3262–3270. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. New Directions: Efficiency and Productivity; Springer: New York, NY, USA, 2005. [Google Scholar]
- Pastor, J.T.; Lovell, C.A.K. A Global Malmquist Productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Wang, W.; Xie, H.; Dong, X.; Zhang, N. Sustainable water use and water shadow price in China’s urban industry. Resour. Conserv. Recycl. 2018, 128, 489–498. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transportation of Korea (MOLIT). (2011–2020): Water Vision 2020. In The Long-Term Comprehensive Water Resource Plan (2011–2020): The Second Revised Water Vision 2020; MOLIT: Sejong, Korea, 2011. (In Korean) [Google Scholar]
- Ministry of Environment. Available online: http://eng.me.go.kr/ndg/web/main.do (accessed on 15 July 2019).
- Song, P.; Zhu, M. Korean economy in two economic crises and its countermeasures. Shangdong Soc. Sci. 2011, 191, 7. (In Chinese) [Google Scholar]
- Oh, B.H. 2012 Modularization of Korea’s Development Experience: Korea’s River Basin Management Policy; Korea Development Institute School of Public Policy and Management: Seoul, Korea, 2013. [Google Scholar]
- Porter, M.E.; van der Linde, C. Toward a new conception of the environment: Competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Choi, J.; Hearne, R.; Lee, K.; Roberts, D. The relation between water pollution and economic growth using the environmental Kuznets curve: A case study in South Korea. Water Int. 2015, 40, 499–512. [Google Scholar] [CrossRef]
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
---|---|---|---|---|---|---|---|---|---|
Public water price (won/m3) | 603.9 | 609.3 | 609.9 | 610.2 | 619.3 | 649.1 | 660.4 | 666.9 | 683.4 |
Production costs (won/m3) | 715.4 | 730.7 | 761.6 | 777.2 | 813.4 | 814.7 | 849.3 | 876.5 | 881.7 |
Cost coverage ratio (%) | 84.4 | 83.4 | 80.1 | 78.5 | 76.1 | 79.7 | 77.8 | 76.1 | 77.5 |
Variable | Unit | Mean | Std. Dev. | Min | Max | Obs. | |
---|---|---|---|---|---|---|---|
Input | Labor | 103 person | 166.43 | 183.20 | 3.14 | 885.85 | 160 |
Industrial water | 107 m3 | 11.16 | 10.91 | 1.68 | 43.90 | 160 | |
Capital | 1012 KRW | 6.11 | 14.82 | 0.02 | 82.88 | 160 | |
Desirable output | GDP | 1012 KRW | 172.09 | 157.39 | 11.02 | 753.95 | 160 |
Undesirable output | water waste | 106 m3 | 11.90 | 10.54 | 0.29 | 46.87 | 160 |
Organic pollutant | 103 ton | 5.63 | 4.81 | 0.19 | 20.98 | 160 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Choi, Y. Challenges for Sustainable Water Use in the Urban Industry of Korea Based on the Global Non-Radial Directional Distance Function Model. Sustainability 2019, 11, 3895. https://doi.org/10.3390/su11143895
Wang N, Choi Y. Challenges for Sustainable Water Use in the Urban Industry of Korea Based on the Global Non-Radial Directional Distance Function Model. Sustainability. 2019; 11(14):3895. https://doi.org/10.3390/su11143895
Chicago/Turabian StyleWang, Na, and Yongrok Choi. 2019. "Challenges for Sustainable Water Use in the Urban Industry of Korea Based on the Global Non-Radial Directional Distance Function Model" Sustainability 11, no. 14: 3895. https://doi.org/10.3390/su11143895
APA StyleWang, N., & Choi, Y. (2019). Challenges for Sustainable Water Use in the Urban Industry of Korea Based on the Global Non-Radial Directional Distance Function Model. Sustainability, 11(14), 3895. https://doi.org/10.3390/su11143895