The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases
Abstract
:1. Introduction
2. Literature Review
2.1. Ecosystem Services and GI
2.2. The Multifunctionality of GI
2.3. The Benefits of GI’s Multifunctionality
2.4. A Conceptual Framework for GI’s Multifunctionality
3. Materials and Methods
- Formulation of the research question and goal;
- Selecting content and sample;
- Developing content categories;
- Finalizing the unit of analysis;
- Coding and checking inter-coder reliabilities;
- Analyzing the collected data.
4. Results
4.1. Descriptive Analysis of the 447 Project Cases
4.2. Applied Design Features and the Multiple Benefits of GI
4.3. Multifunctional Benefits of GI Design Features
5. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
References
- Lovell, S.T.; Taylor, J.R. Supplying Urban Ecosystem Services through Multifunctional Green Infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Naumann, S.; Davis, M.; Kaphengst, T.; Pieterse, M.; Rayment, M. Design, Implementation and Cost Elements of Green Infrastructure Projects; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, The Council, the European Economic and Social Committee and the Committee of the Regions. Green Infrastructure (GI)–Enhancing Europe’s Natural Capital; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Dietz, M.E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Newell, J.P.; Seymour, M.; Yee, T.; Renteria, J.; Longcore, T.; Wolch, J.R.; Shishkovsky, A. Green Alley Programs: Planning for a Sustainable Urban Infrastructure? Cities 2013, 31, 144–155. [Google Scholar] [CrossRef]
- Mazza, L.; Bennett, G.; De Nocker, L.; Gantioler, L.; Losarcos, L.; Margerison, C.; Kaphengst, T.; McConville, A.; Rayment, M.; ten Brink, P.; et al. Green Infrastructure Implementation and Efficiency—Final Report for the European Commission; Institute for European Environment Policy: Brussels, Belgium, 2011. [Google Scholar]
- Ahern, J. Urban Landscape Sustainability and Resilience: The Promise and Challenges of Integrating Ecology with Urban Planning and Design. Landsc. Ecol. 2013, 28, 1203–1212. [Google Scholar] [CrossRef]
- Roe, M.; Mell, I. Negotiating Value and Priorities: Evaluating the Demands of Green Infrastructure Development. J. Environ. Plan. Manag. 2013, 56, 650–673. [Google Scholar] [CrossRef]
- Center for Neighborhood Technology (CNT). The Value of Green Infrastructure: A Guide to Recognizing Its Economic, Environmental and Social Benefits; Center for Neighborhood Technology (CNI): Chicago, IL, USA, 2010. [Google Scholar]
- Science for Environment Policy (SEP). The Multifunctionality of Green Infrastructure; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Hansen, R.; Pauleit, S. From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madureira, H.; Andresen, T. Planning for Multifunctional Urban Green Infrastructures: Promises and Challenges. Urban Des. Int. 2014, 19, 38–49. [Google Scholar] [CrossRef]
- De Groot, R.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in Integrating the Concept of Ecosystem Services and Values in Landscape Planning, Management and Decision Making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Mell, I.C. Can Green Infrastructure Promote Urban Sustainability? Proc. Inst. Civ. Eng. Eng. Sustain. 2009, 162, 23–34. [Google Scholar] [CrossRef]
- Kambites, C.; Owen, S. Renewed Prospects for Green Infrastructure Planning in the UK. Plan. Pract. Res. 2006, 21, 483–496. [Google Scholar] [CrossRef]
- Carter, T.; Keeler, A. Life-Cycle Cost-Benefit Analysis of Extensive Vegetated Roof Systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef]
- Foster, J.; Lowe, A.; Winkelman, S. The Value of Green Infrastructure for Urban Climate Adaptation; Center for Clean Air Policy: Washington, DC, USA, 2011. [Google Scholar]
- Kim, G. An integrated system of urban green infrastructure on different types of vacant land to provide multiple benefits for local communities. Sustain. Cities Soc. 2018, 36, 116–130. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, E.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R. Function-Analysis and Valuation as a Tool to Assess Land Use Conflicts in Planning for Sustainable, Multi-Functional Landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C.C. Green Infrastructure as a Tool to Support Spatial Planning in European Urban Regions. J. Biogeosci. For. 2013, 6, 102–108. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-being: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Selman, P. Planning for Landscape Multifunctionality. Sustain. Sci. Pract. Policy J. 2009, 5, 45–52. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development (WBCSD). Guide to Corporate Ecosystem Valuation: A Framework for Improving Corporate Decision-Making; World Business Council for Sustainable Development (WBCSD): Geneva, Switzerland, 2011. [Google Scholar]
- Artmann, M.; Bastian, O.; Grunewald, K. Using the Concepts of Green Infrastructure and Ecosystem Services to Specify Leitbilder for Compact and Green Cities—The Example of the Landscape Plan of Dresden (Germany). Sustainability 2017, 9, 198. [Google Scholar] [CrossRef]
- Gren, A.; Andersson, E. Being efficient and green by rethinking the urban-rural divide—Combining urban expansion and food production by integrating an ecosystem service perspective into urban planning. Sustain. Cities Soc. 2018, 40, 75–82. [Google Scholar] [CrossRef]
- Pauleit, S.; Liu, L.; Ahern, J.; Kazmierczak, A. Multifunctional green infrastructure planning to promote ecological services in the city. In Urban Ecology, Patterns, Processes, and Application; Niemelä, J., Ed.; Oxford University Press: Oxford, UK, 2011; pp. 272–285. [Google Scholar]
- Madureira, H.; Andresen, T.; Monteiro, A. Green Structure and Planning Evolution in Porto. Urban For. Urban Green. 2011, 10, 141–149. [Google Scholar] [CrossRef]
- Ahern, J.F. From Fail-Safe to Safe-to-Fail: Sustainability and Resilience in the New Urban World. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kazmierczak, A.; Niemela, J.; James, P. Promoting Ecosystem and Human Health in Urban Areas Using Green Infrastructure: A Literature Review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Green Infrastructure and Territorial Cohesion: The Concept of Green Infrastructure and its Integration into Policies Using Monitoring Systems; European Environment Agency (EEA): Copenhagen, Denmark, 2011. [Google Scholar]
- Farinha-Marques, P.; Lameiras, J.M.; Fernandes, C.; Silva, S.; Guiherme, F. Urban Biodiversity: A Review of Current Concepts and Contributions to Multidisciplinary Approaches. Innov. Eur. J. Soc. Sci. Res. 2011, 24, 247–271. [Google Scholar] [CrossRef]
- Kattwinkel, M.; Biedermann, R.; Kleyer, M. Temporary Conservation for Urban Biodiversity. Biol. Conserv. 2011, 144, 2335–2343. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing Cities Using a Regionally-focused Biodiversity-led Multifunctional Benefits Approach to Urban Green Infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef]
- Haines-Young, R.H.; Potschin, M.P. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- Department for Environment, Food and Rural Affairs (DEFRA). An Introductory Guide to Valuing Ecosystem Services; Department for Environment, Food and Rural Affairs (DEFRA): London, UK, 2007.
- The Scottish Government. Making the Most of Communities’ Natural Assets: Green Infrastructure; The Scottish Government: Scotland, UK, 2012.
- Town and County Planning Association (TCPA). The Essential Role of Green Infrastructure: Eco-Towns Green Infrastructure Worksheet; Town and County Planning Association (TCPA): London, UK, 2008. [Google Scholar]
- US Environmental Protection Agency (USEPA). Green Infrastructure Case Studies: Municipal Policies for Managing Stormwater with Green Infrastructure; US Environmental Protection Agency (USEPA): Washington, DC, USA, 2010.
- Powell, L.M.; Rohr, E.S.; Canes, M.E.; Cornet, J.L.; Dzuray, E.J.; McDougle, L.M. Low-Impact Development Strategies and Tools for Local Governments: Building a Business Case; LMI Government Consulting: Tysons Corner, VA, USA, 2005. [Google Scholar]
- Low Impact Development (LID) Center, Inc. Low Impact Development Manual for Southern California: Technical Guidance and Site Planning Strategies; LID Center: Beltsville, MD, USA, 2010. [Google Scholar]
- Clements, J.; Juliana, A.S.; Davis, P. The Green Edge: How Commercial Property Investment in Green Infrastructure Creates Value; Natural Resources Defense Council: New York, NY, US, 2013. [Google Scholar]
- Odom, J.B. Southeastern United States Low Impact Development Guide; River Basin Center: Athens, GA, USA, 2009. [Google Scholar]
- Milwaukee Metropolitan Sewerage District (MMSD). Chapter 5: Green infrastructure benefits and costs. In MMSD Regional Green Infrastructure Plan; Milwaukee Metropolitan Sewerage District (MMSD): Milwaukee, WI, USA, 2013. [Google Scholar]
- Cirillo, C.; Podolsky, L. Health, Prosperity and Sustainability: The Case for Green Infrastructure in Ontario; Green Infrastructure Ontario Coalition: Vaughan, ON, Canada, 2012. [Google Scholar]
- Ziogou, I. Implementation of green roof technology in residential buildings and neighborhoods of Cyprus. Sustain. Cities Soc. 2018, 40, 233–243. [Google Scholar] [CrossRef]
- Zimmer, C.; Despins, C.; Lukes, R.; Linden, K.V.; James, P.; Gupta, N.; Corrigan, C.; Fox, B.; Walters, M.; Dhalla, S. Low Impact Development Discussion Paper; ICF International: Fairfax, VA, USA, 2012. [Google Scholar]
- Anguelovski, I.; Connolly, J.J.T.; Masip, L.; Pearsall, H. Assessing green gentrification in historically disenfranchised neighborhoods: A longitudinal and spatial analysis of Barcelona. Urban Geogr. 2018, 39, 458–491. [Google Scholar] [CrossRef]
- Skipper, L.; Jacobson, A.; Zhang, S.S.; Canto, K. Green Infrastructure Guide Book: Managing Stormwater with Green Infrastructure; University of Illinois Press: Urbana, IL, USA, 2013. [Google Scholar]
- Entrix Inc. Portland’s Green Infrastructure: Quantifying the Health, Energy, and Community Livability Benefits; Entrix Inc.: Portland, UT, USA, 2010. [Google Scholar]
- US Department of Housing and Urban Development (HUD). The Practice of Low Impact Development; US Department of Housing and Urban Development (HUD): Washington, DC, USA, 2003.
- Ran, J.; Tang, M. Passive cooling of the green roofs combined with night-time ventilation and walls insulation in hot and humid regions. Sustain. Cities Soc. 2018, 38, 466–475. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Adapting green roof irrigation practices for a sustainable future: A review. Sustain. Cities Soc. 2015, 19, 74–90. [Google Scholar] [CrossRef]
- Harrogate Borough Council (HBC). The Harrogate District Green Infrastructure Supplementary Planning Document (SPD); Harrogate Borough Council (HBC): North Yorkshire, UK, 2014.
- Wan, C.; Shen, G.Q.; Choi, S. The moderating effect of subjective norm in predicting intention to use urban green spaces: A study of Hong Kong. Sustain. Cities Soc. 2018, 37, 288–297. [Google Scholar] [CrossRef]
- Hendricks, M.D.; Meyer, M.A.; Gharaibeh, N.G.; Van Zandt, S.; Masterson, J.; Cooper, J.T., Jr.; Berke, P. The development of a participatory assessment technique for infrastructure: Neighborhood-level monitoring towards sustainable infrastructure systems. Sustain. Cities Soc. 2018, 38, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.E.; Clausen, J.C. Stormwater Runoff and Export Changes with Development in a Traditional and Low Impact Subdivision. J. Environ. Manag. 2005, 87, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.J.; Waldron, M.C.; Barbaro, J.R.; Sorenson, J.R. Effects of Low-Impact-Development (LID) Practices on Streamflow, Runoff Quantity, and Runoff Quality in the Ipswich River Basin, Massachusetts: A Summary of Field and Modeling Studies; US Geological Survey: Reston, VA, USA, 2010.
- Clark, C.; Adriaens, P.; Talbot, F.B. Green Roof Valuation: A Probabilistic Economic Analysis of Environmental Benefits. Environ. Sci. Technol. 2008, 42, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.D. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- American Society of Landscape Architects. ASLA Green Infrastructure Case Studies. Available online: https://www.asla.org/stormwatercasestudies.aspx (accessed on 12 June 2019).
- American Society of Landscape Architects. Survey for ASLA Green Infrastructure Case Studies. Available online: https://www.surveymonkey.com/r/WCVCNHZ (accessed on 12 June 2019).
- Landscape Institute. Green Infrastructure: Connected and Multifunctional Landscapes; Landscape Institute: London, UK, 2009. [Google Scholar]
- Holsti, O.R. Content analysis. In The Handbook of Social Psychology Vol. II, 2nd ed.; Lindzey, G., Aronson, E., Eds.; Amerind Publishing: New Delhi, India, 1968; pp. 596–692. [Google Scholar]
- Prasad, B.D. Content analysis: A method in social science research. In Research Methods for Social Work; Rawat Publications: New Delhi, India, 2008; pp. 173–193. [Google Scholar]
- Zhang, Y.; Wildemuth, B.M. Qualitative analysis of content. Appl. Soc. Res. Methods Quest. Inf. Libr. Sci. 2005, 1, 1–12. [Google Scholar]
- Benoit, W. Chapter 14: Content analysis in political communication. In The Sourcebook for Political Communication Research; Bucy, H., Holbert, L., Eds.; Taylor & Francis: Washington, DC, USA, 2011. [Google Scholar]
- Behrens, J.T. Principles and Procedures of Exploratory Data Analysis. Psychol. Methods 1997, 2, 131–160. [Google Scholar] [CrossRef]
- Seltman, H.J. Experimental Design and Analysis. Available online: http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf (accessed on 12 June 2019).
Functionality | Type of Benefit | Description |
---|---|---|
Economic | Enhanced economic capacity |
|
Sociocultural | Educational opportunities |
|
Improvement of the built environment |
| |
Increase in social capital |
| |
Landscape aesthetics |
| |
Basis of sustainable development |
| |
Ecological | Runoff control |
|
Enhanced environmental soundness |
| |
Climate change adaptation |
|
Items | Answer Type | Variable (Table 3) | |
---|---|---|---|
Multiple Choice | Description | ||
Project Specifications | |||
· General information and project description | ○ | ||
· Project type | ○ | a. f. | |
· Design features | ○ | e. | |
· Specific requirement or mandates | ○ | ||
· Managed impervious area | ○ | ||
· Amount of existing green/open space conserved or preserved to manage stormwater on site | ○ | c. | |
· Regulatory environment and regulator | ○ | ||
· Considering the client’s request such as energy savings, usable green space, or property value enhancement | ○ | ||
Cost and Job analysis | |||
· The estimated cost of the stormwater project | ○ | d. | |
· Performing cost analysis (green vs. gray) | ○ | ○ | |
· The cost impact of conserving green/open space on the overall costs of the site design/development project | ○ | ○ | |
· The cost impact of conserving green/open space for stormwater management in comparison with traditional site design/site development approaches (gray infrastructure) | ○ | ○ | |
· Number of jobs created | ○ | ||
· Job hours devoted to the project | ○ | ||
Performance Measures | |||
· Stormwater reduction performance analysis | ○ | ○ | b. |
· Community and economic benefits resulting from the project | ○ | ○ | b. |
Variable | Classification | Variable | Classification |
---|---|---|---|
a. Type of facility | a1. Institutional/educational, government complexes, public facilities a2. Open spaces, parks, gardens a3. Transportation corridors, streetscapes, parking lots a4. Mixed use a5. Industrial use a6. Commercial use a7. Residential use | d. Estimated project cost | d1. USD 100,000 or less d2. USD 100,000–USD 500,000 d3. USD 500,000–USD 1,000,000 d4. USD 1,000,000 or more |
b. Type of benefit | b1. Enhanced economic capacity b2. Educational opportunities b3. Improvement of the built environment b4. Increase in social capital b5. Landscape aesthetics b6. Basis of sustainable development b7. Runoff control b8. Enhanced environmental soundness b9. Climate change adaptation | e. Design features | e1. Bioretention area e2. Constructed stormwater wetlands e3. Permeable pavements e4. Grassed swales e5. Grassed filter strips e6. Rainwater harvesting e7. Green roofs e8. Riparian buffers e9. Rain gardens e10. Curb cuts e11. Disconnected downspouts e12. Other |
c. Amount of green spaces for managing stormwater | c1. 0.047 ha or less c2. 0.047 ha–0.405 ha c3. 0.405 ha–2.023 ha c4. 2.023 ha or more | f. Project type | f1. Part of a new development f2. Part of a redevelopment project f3. A retrofit of an existing property |
Design Feature | Type of Facility | Project Type | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | a6 | a7 | f1 | f2 | f3 | ||
e1 | 63 | 55 | 35 | 9 | 3 | 22 | 21 | 60 | 41 | 107 | 208 |
e2 | 5 | 18 | 1 | 2 | 1 | 6 | 2 | 17 | 5 | 13 | 35 |
e3 | 80 | 47 | 34 | 12 | 5 | 20 | 29 | 56 | 60 | 111 | 227 |
e4 | 85 | 89 | 28 | 11 | 6 | 27 | 26 | 88 | 52 | 132 | 272 |
e5 | 14 | 9 | 3 | 4 | 0 | 2 | 7 | 15 | 9 | 15 | 39 |
e6 | 49 | 32 | 6 | 9 | 3 | 8 | 13 | 26 | 23 | 71 | 120 |
e7 | 34 | 8 | 3 | 4 | 1 | 10 | 9 | 21 | 17 | 31 | 69 |
e8 | - | 3 | 3 | - | - | - | - | - | - | 6 | 6 |
e9 | 84 | 48 | 24 | 10 | 5 | 26 | 24 | 64 | 50 | 107 | 221 |
e10 | 49 | 34 | 35 | 6 | 2 | 19 | 14 | 52 | 36 | 71 | 159 |
e11 | 28 | 11 | 6 | 7 | 3 | 7 | 10 | 23 | 10 | 39 | 72 |
e12 | 30 | 25 | 16 | 6 | 2 | 4 | 7 | 18 | 21 | 51 | 90 |
Total number of design features | 521 | 379 | 194 | 80 | 31 | 151 | 162 | 440 | 324 | 754 | 1518 |
Total number of project cases | 146 | 127 | 64 | 16 | 7 | 41 | 46 | 132 | 77 | 237 | 447 |
Average number of applied design features of each project case | 3.6 | 3.0 | 3.0 | 5.0 | 4.4 | 3.7 | 3.5 | 3.3 | 4.2 | 3.2 | 3.4 |
Type of Benefit | Type of Facility | Project Type | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | a6 | a7 | f1 | f2 | f3 | ||
b1 | 37 | 63 | 18 | 13 | 1 | 20 | 26 | 85 | 55 | 38 | 178 |
b2 | 53 | 30 | 10 | 4 | 2 | 5 | 7 | 68 | 27 | 16 | 111 |
b3 | 45 | 61 | 58 | 6 | 2 | 14 | 14 | 115 | 41 | 44 | 200 |
b4 | 26 | 19 | 10 | 2 | 1 | 3 | 5 | 34 | 14 | 18 | 66 |
b5 | 27 | 18 | 16 | 1 | 1 | 12 | 5 | 55 | 16 | 9 | 80 |
b6 | 12 | 6 | 3 | 1 | – | 6 | 2 | 11 | 10 | 9 | 30 |
b7 | 28 | 31 | 16 | 5 | – | 8 | 12 | 64 | 26 | 10 | 100 |
b8 | 44 | 62 | 9 | 4 | 2 | 9 | 18 | 76 | 49 | 23 | 148 |
b9 | 16 | 15 | 6 | – | – | 8 | 6 | 19 | 21 | 11 | 51 |
Total number of benefits | 288 | 305 | 146 | 36 | 9 | 85 | 95 | 527 | 259 | 178 | 964 |
Total number of project cases | 146 | 127 | 64 | 16 | 7 | 41 | 46 | 132 | 77 | 237 | 447 |
Average number of benefits per project case | 2.0 | 2.4 | 2.3 | 2.3 | 1.3 | 2.1 | 2.1 | 4.0 | 3.4 | 0.8 | 2.2 |
Type of Facility | Number of Applied Design Features | Number of Benefit Types | Ratio of Cases with Multiple Benefits | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | None | ||
a1 | 22 | 29 | 24 | 24 | 22 | 15 | 7 | 3 | - | 29 | 43 | 27 | 15 | 5 | - | 1 | 26 | 62% |
a2 | 23 | 43 | 19 | 19 | 10 | 7 | 3 | 3 | - | 20 | 28 | 30 | 24 | 6 | 1 | 1 | 17 | 71% |
a3 | 10 | 15 | 18 | 12 | 4 | 4 | - | 1 | - | 12 | 20 | 7 | 4 | 9 | 2 | - | 10 | 66% |
a4 | 1 | 4 | - | - | 2 | 4 | 4 | - | 1 | 5 | 5 | 2 | 1 | 1 | 1 | - | 1 | 63% |
a5 | - | 1 | 2 | 1 | 2 | - | - | - | 1 | 1 | 1 | 2 | - | - | - | - | 3 | 43% |
a6 | 6 | 3 | 10 | 11 | 6 | 2 | 2 | - | 1 | 11 | 12 | 9 | 3 | 1 | 1 | - | 4 | 63% |
a7 | 8 | 4 | 12 | 9 | 6 | 5 | 2 | - | - | 11 | 15 | 6 | 5 | 2 | 1 | - | 6 | 63% |
Total | 70 | 99 | 85 | 76 | 52 | 37 | 18 | 7 | 3 | 89 | 124 | 83 | 52 | 24 | 6 | 2 | 67 |
Project Type | Number of Applied Design Features | Number of Benefits | Ratio of Cases with Multiple Benefits | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | None | ||
f1 | 31 | 19 | 23 | 23 | 16 | 13 | 4 | 3 | - | 44 | 66 | 41 | 34 | 16 | 2 | - | 35 | 67% |
f2 | 3 | 14 | 16 | 8 | 16 | 10 | 8 | 1 | 1 | 33 | 42 | 22 | 9 | 3 | 3 | 1 | 19 | 61% |
f3 | 36 | 66 | 46 | 45 | 20 | 14 | 6 | 3 | 2 | 12 | 16 | 20 | 9 | 5 | 1 | 1 | 13 | 68% |
Total | 70 | 99 | 85 | 76 | 52 | 37 | 18 | 7 | 3 | 89 | 124 | 83 | 52 | 24 | 6 | 2 | 67 |
Number of Design Features | Number of Benefits | Ratio of Cases with Multiple Benefits | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | None | ||
1 | 14 | 21 | 10 | 8 | 3 | 1 | 1 | 12 | 63% |
2 | 16 | 21 | 19 | 17 | 5 | - | - | 21 | 63% |
3 | 19 | 29 | 12 | 7 | 4 | 2 | 1 | 11 | 65% |
4 | 20 | 23 | 11 | 10 | 4 | 1 | - | 7 | 64% |
Above 5 | 20 | 30 | 31 | 10 | 8 | 2 | - | 16 | 69% |
Total | 89 | 124 | 83 | 52 | 24 | 6 | 2 | 67 |
Design Feature | Type of Benefit | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | None | ||
e1 | 79 | 62 | 97 | 38 | 38 | 15 | 44 | 61 | 22 | 29 | 456 |
e2 | 21 | 10 | 16 | 9 | 5 | 4 | 10 | 9 | 6 | 2 | 90 |
e3 | 99 | 62 | 100 | 33 | 39 | 21 | 47 | 58 | 24 | 34 | 483 |
e4 | 111 | 72 | 113 | 36 | 47 | 24 | 55 | 105 | 31 | 41 | 594 |
e5 | 15 | 9 | 19 | 6 | 9 | 4 | 7 | 15 | 4 | 6 | 88 |
e6 | 67 | 30 | 47 | 21 | 21 | 6 | 25 | 54 | 15 | 12 | 286 |
e7 | 27 | 21 | 27 | 15 | 9 | 8 | 11 | 27 | 7 | 10 | 152 |
e8 | 2 | 3 | 9 | - | 3 | - | 3 | 1 | - | - | 21 |
e9 | 88 | 55 | 70 | 45 | 43 | 15 | 33 | 74 | 26 | 39 | 449 |
e10 | 49 | 39 | 80 | 26 | 28 | 15 | 32 | 45 | 27 | 23 | 341 |
e11 | 42 | 21 | 15 | 6 | 9 | 5 | 16 | 14 | 5 | 11 | 133 |
e12 | 40 | 20 | 56 | 15 | 23 | 8 | 28 | 35 | 11 | 5 | 236 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Song, S.-K. The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases. Sustainability 2019, 11, 3917. https://doi.org/10.3390/su11143917
Kim D, Song S-K. The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases. Sustainability. 2019; 11(14):3917. https://doi.org/10.3390/su11143917
Chicago/Turabian StyleKim, Donghyun, and Seul-Ki Song. 2019. "The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases" Sustainability 11, no. 14: 3917. https://doi.org/10.3390/su11143917
APA StyleKim, D., & Song, S. -K. (2019). The Multifunctional Benefits of Green Infrastructure in Community Development: An Analytical Review Based on 447 Cases. Sustainability, 11(14), 3917. https://doi.org/10.3390/su11143917