A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments
Abstract
:1. Introduction
2. Research Methodology
3. Overview of Previous CFD Applications in PV in Indoor Built Environments
3.1. Yearly Publication Distribution
3.2. CFD Codes
3.3. Research Topics of PV Studies
3.4. PV Types with Background HVAC Systems
4. Modeling Computational Thermal Manikin
4.1. Turbulence Models
4.2. Heat Transfer around the Human Body
4.2.1. Geometry of CTMs
4.2.2. Heat Exchange between Human Body and Microenvironment
4.2.3. Boundary Conditions
4.2.4. Coupling of CFD and Thermoregulation Models
4.3. Modeling Performance
4.3.1. Computational Grids
4.3.2. Convergence Criteria
4.3.3. Validation
5. PV Air Supply, Thermal Comfort, and Energy Savings
5.1. PV Air Supply Diffusers
5.2. PV Air Supply Parameters
5.3. Performance Evaluation Indices
5.3.1. Inhaled Air Quality
5.3.2. Thermal Comfort
5.3.3. Energy Savings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fanger, P.O. Indoor Air Quality in the 21st Century: Search for Excellence. Indoor Air 2000, 10, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Fanger, P.O. Human requirements in future air-conditioned environments. Int. J. Refrig. 2001, 24, 148–153. [Google Scholar] [CrossRef]
- Melikov, A.K. Personalized ventilation. Indoor Air 2004, 14, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Wargocki, P.; Wyon, D.P.; Baik, Y.K.; Clausen, G.; Fanger, P.O. Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity in an Office with Two Different Pollution Loads. Indoor Air 1999, 9, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Melikov, A.K.; Cermak, R.; Majer, M. Personalized ventilation: Performance of different air terminal devices. In Proceedings of the CLIMA 2000, Napoli, Italy, 15–18 September 2001. [Google Scholar]
- Melikov, A.K.; Cermak, R.; Majer, M. Personalized ventilation: Evaluation of different air terminal devices. Energy Build. 2002, 34, 829–836. [Google Scholar] [CrossRef]
- Bolashikov, Z.D.; Nikolaev, L.; Melikov, A.K.; Kaczmarczyk, J.; Fanger, P.O. Personalized ventilation: Air terminal devices with high efficiency. In Proceedings of the 7th Healthy Buildings 2003, Singapore, 7–11 September 2003. [Google Scholar]
- Hoyt, T.; Arens, E.; Zhang, H. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 2015, 88, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Hoyt, T.; Lee, K.H.; Zhang, H.; Arens, E.; Webster, T. In Energy savings from extended air temperature setpoints and reductions in room air mixing. In Proceedings of the International Conference on Environmental Ergonomics, Boston, MA, USA, 2–7 August 2009. [Google Scholar]
- Melikov, A.K. Advanced air distribution: Improving health and comfort while reducing energy use. Indoor Air 2016, 26, 112–124. [Google Scholar] [CrossRef]
- Heidarinejad, M.; Dalgo, D.A.; Mattise, N.W.; Srebric, J. Personalized cooling as an energy efficiency technology for city energy footprint reduction. J. Clean Prod. 2018, 171, 491–505. [Google Scholar] [CrossRef]
- Melikov, A.K.; Skwarczynski, M.A.; Kaczmarczyk, J.; Zabecky, J. Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity. Indoor Air 2012, 23, 250–263. [Google Scholar] [CrossRef]
- Amai, H.; Tanabe, S.-I.; Akimoto, T.; Genma, T. Thermal sensation and comfort with different task conditioning systems. Build. Environ. 2007, 42, 3955–3964. [Google Scholar] [CrossRef]
- Bogdan, A.; Chludzinska, M. Assessment of Thermal Comfort Using Personalized Ventilation. HVAC&R Res. 2010, 16, 529–542. [Google Scholar]
- Chen, Y.; Raphael, B.; Sekhar, S.C. Experimental and simulated energy performance of a personalized ventilation system with individual airflow control in a hot and humid climate. Build. Environ. 2016, 96, 283–292. [Google Scholar] [CrossRef]
- Makhoul, A.; Ghali, K.; Ghaddar, N. The Energy Saving Potential and the Associated Thermal Comfort of Displacement Ventilation Systems Assisted by Personalised Ventilation. Indoor Built Environ. 2012, 22, 508–519. [Google Scholar] [CrossRef]
- Sekhar, S.C.; Gong, N.; Tham, K.W.; Cheong, K.W.; Melikov, A.K.; Wyon, D.P.; Fanger, P.O. Findings of Personalized Ventilation Studies in a Hot and Humid Climate. HVAC&R Res. 2005, 11, 603–620. [Google Scholar]
- Schiavon, S.; Melikov, A.K.; Sekhar, C. Energy analysis of the personalized ventilation system in hot and humid climates. Energy Build. 2010, 42, 699–707. [Google Scholar] [CrossRef]
- Schiavon, S.; Melikov, A.K. Energy-saving strategies with personalized ventilation in cold climates. Energy Build. 2009, 41, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Melikov, A.K. Advanced air distribution. ASHRAE J. 2011, 53, 73–77. [Google Scholar]
- Chen, Y.; Raphael, B.; Sekhar, S.C. Individual control of a personalized ventilation system integrated with an ambient mixing ventilation system. HVAC&R Res. 2012, 18, 1136–1152. [Google Scholar]
- Cermak, R.; Melikov, A.K.; Forejt, L.; Kovar, O. Performance of Personalized Ventilation in Conjunction with Mixing and Displacement Ventilation. HVAC&R Res. 2006, 12, 295–311. [Google Scholar]
- Alain, M.; Kamel, G.; Nesreen, G. A simplified combined displacement and personalized ventilation model. HVAC&R Res. 2012, 18, 737–749. [Google Scholar]
- Cermak, R.; Melikov, A.K. Air Quality and Thermal Comfort in an Office with Underfloor, Mixing and Displacement Ventilation. Int. J. Vent. 2006, 5, 323–352. [Google Scholar] [CrossRef]
- Cermak, R.; Melikov, A.K. Protection of Occupants from Exhaled Infectious Agents and Floor Material Emissions in Rooms with Personalized and Underfloor Ventilation. HVAC&R Res. 2007, 13, 23–38. [Google Scholar]
- Li, R.; Sekhar, S.C.; Melikov, A.K. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems. HVAC&R Res. 2011, 17, 829–846. [Google Scholar]
- Chakroun, W.; Ghaddar, N.; Ghali, K. Chilled ceiling and displacement ventilation aided with personalized evaporative cooler. Energy Build. 2011, 43, 3250–3257. [Google Scholar] [CrossRef]
- Lipczynska, A.; Kaczmarczyk, J.; Melikov, A.K. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling. Build. Environ. 2015, 92, 603–614. [Google Scholar] [CrossRef]
- Niu, J.; Gao, N.; Phoebe, M.; Huigang, Z. Experimental study on a chair-based personalized ventilation system. Build. Environ. 2007, 42, 913–925. [Google Scholar] [CrossRef]
- Nielsen, P.V. Fifty years of CFD for room air distribution. Build. Environ. 2015, 91, 78–90. [Google Scholar] [CrossRef]
- Liu, J.; Heidarinejad, M.; Gracik, S.; Srebric, J. The impact of exterior surface convective heat transfer coefficients on the building energy consumption in urban neighborhoods with different plan area densities. Energy Build. 2015, 86, 449–463. [Google Scholar] [CrossRef]
- Liu, J.; Heidarinejad, M.; Pitchurov, G.; Zhang, L.; Srebric, J. An extensive comparison of modified zero-equation, standard k-ε, and LES models in predicting urban airflow. Sust. Cities Soc. 2018, 40, 28–43. [Google Scholar] [CrossRef]
- Li, Y.; Nielsen, P.V. CFD and ventilation research. Indoor Air 2011, 21, 442–453. [Google Scholar] [CrossRef]
- Liu, J.; Heidarinejad, M.; Gracik, S.; Srebric, J.; Yu, N. An indirect validation of convective heat transfer coefficients (CHTCs) for external building surfaces in an actual urban environment. Build. Simul. 2015, 8, 337–352. [Google Scholar] [CrossRef]
- Srebric, J.; Heidarinejad, M.; Liu, J. Building neighborhood emerging properties and their impacts on multi-scale modeling of building energy and airflows. Build. Environ. 2015, 91, 246–262. [Google Scholar] [CrossRef]
- Gao, N.; Niu, J. CFD study on micro-environment around human body and personalized ventilation. Build. Environ. 2004, 39, 795–805. [Google Scholar] [CrossRef]
- Gao, N.; Niu, J.; Zhang, H. Coupling CFD and Human Body Thermoregulation Model for the Assessment of Personalized Ventilation. HVAC&R Res. 2006, 12, 497–518. [Google Scholar]
- Shen, C.; Gao, N.; Wang, T. CFD study on the transmission of indoor pollutants under personalized ventilation. Build. Environ. 2013, 63, 69–78. [Google Scholar] [CrossRef]
- Kong, M.; Zhang, J.; Wang, J. Air and air contaminant flows in office cubicles with and without personal ventilation: A CFD modeling and simulation study. Build. Simul. 2015, 8, 381–392. [Google Scholar] [CrossRef]
- Chen, Q.; Lee, K.; Mazumdar, S.; Poussou, S.; Wang, L.; Wang, M.; Zhang, Z. Ventilation performance prediction for buildings: Model assessment. Build. Environ. 2010, 45, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Ishizu, Y.; Kato, S.; Murakami, S. CFD analysis on characteristics of contaminated indoor air ventilation and its application in the evaluation of the effects of contaminant inhalation by a human occupant. Build. Environ. 2002, 37, 219–230. [Google Scholar] [CrossRef]
- Liu, J.; Srebric, J.; Yu, N. Numerical simulation of convective heat transfer coefficients at the external surfaces of building arrays immersed in a turbulent boundary layer. Int. J. Heat Mass Transf. 2013, 61, 209–225. [Google Scholar] [CrossRef]
- Sørensen, D.N.; Nielsen, P.V. Guest editorial: CFD In Indoor Air. Indoor Air 2004, 13, 1. [Google Scholar] [CrossRef]
- Roache, P.J. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics 1997, 29, 123–160. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Progress Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef] [Green Version]
- Stamou, A.; Katsiris, I. Verification of a CFD model for indoor airflow and heat transfer. Build. Environ. 2006, 41, 1171–1181. [Google Scholar] [CrossRef]
- Cao, G.; Awbi, H.; Yao, R.; Fan, Y.; Sirén, K.; Kosonen, R.; Zhang, J. A review of the performance of different ventilation and airflow distribution systems in buildings. Build. Environ. 2014, 73, 171–186. [Google Scholar] [CrossRef]
- Veselý, M.; Zeiler, W. Personalized conditioning and its impact on thermal comfort and energy performance—A review. Renew. Sust. Energ. Rev. 2014, 34, 401–408. [Google Scholar] [CrossRef]
- Zhang, H.; Arens, E.; Zhai, Y. A review of the corrective power of personal comfort systems in non-neutral ambient environments. Build. Environ. 2015, 91, 15–41. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, S.; Calautit, J.K.; Calautit, K.; Hughes, B.; Aquino, A.I. Advanced Personal Comfort System (APCS) for the workplace: A review and case study. Energy Build. 2018, 173, 689–709. [Google Scholar] [CrossRef]
- Chen, Q.; Srebric, J. A Procedure for Verification, Validation, and Reporting of Indoor Environment CFD Analyses. HVAC&R Res. 2002, 8, 201–216. [Google Scholar]
- Sørensen, D.N.; Nielsen, P.V. Quality control of computational fluid dynamics in indoor environments. Indoor Air 2003, 13, 2–17. [Google Scholar] [CrossRef]
- Zhai, Z. Application of Computational Fluid Dynamics in Building Design: Aspects and Trends. Indoor Built Environ. 2006, 15, 305–313. [Google Scholar] [CrossRef]
- Zhai, Z.J.; Zhang, Z.; Zhang, W.; Chen, Q.Y. Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 1—Summary of Prevalent Turbulence Models. HVAC&R Res. 2007, 13, 853–870. [Google Scholar]
- Zhang, Z.; Zhang, W.; Zhai, Z.J.; Chen, Q.Y. Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2—Comparison with Experimental Data from Literature. HVAC&R Res. 2007, 13, 871–886. [Google Scholar]
- Sideroff, C.N.; Dang, T.Q. Verification and Validation of CFD for the Personal Micro-Environment. ASHRAE Trans. 2008, 114, 45–56. [Google Scholar]
- Wang, H.; Wang, H.; Gao, F.; Zhou, P.; Zhai, Z. Literature review on pressure–velocity decoupling algorithms applied to built-environment CFD simulation. Build. Environ. 2018, 143, 671–678. [Google Scholar] [CrossRef]
- Kato, S. Review of airflow and transport analysis in building using CFD and network model. Japan Archit. Rev. 2018, 1, 299–309. [Google Scholar] [CrossRef]
- Blocken, B. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul. 2018, 11, 821–870. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.V. Computational fluid dynamics and room air movement. Indoor Air 2004, 14, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q. Ventilation performance prediction for buildings: A method overview and recent applications. Build. Environ. 2009, 44, 848–858. [Google Scholar] [CrossRef]
- Murakami, S. Analysis and design of micro-climate around the human body with respiration by CFD. Indoor Air 2004, 14, 144–156. [Google Scholar] [CrossRef]
- Gao, N.; Niu, J. CFD Study of the Thermal Environment around a Human Body: A Review. Indoor Built Environ. 2005, 14, 5–16. [Google Scholar] [CrossRef]
- You, R.; Zhang, Y.; Zhao, X.; Lin, C.-H.; Wei, D.; Liu, J.; Chen, Q. An innovative personalized displacement ventilation system for airliner cabins. Build. Environ. 2018, 137, 41–50. [Google Scholar] [CrossRef]
- Zítek, P.; Vyhlídal, T.; Simeunović, G.; Nováková, L.; Čížek, J. Novel personalized and humidified air supply for airliner passengers. Build. Environ. 2010, 45, 2345–2353. [Google Scholar] [CrossRef]
- Oh, M.S.; Ahn, J.H.; Kim, D.W.; Jang, D.S.; Kim, Y. Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system. Appl. Energy 2014, 133, 14–21. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, L.; Xu, G.; Li, Y.; Chen, W.; Tao, W.-Q. Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: Test/numerical model and validation. Appl. Therm. Eng. 2009, 29, 2022–2027. [Google Scholar] [CrossRef]
- Croitoru, C.; Nastase, I.; Bode, F.; Meslem, A.; Dogeanu, A. Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. Renew. Sust. Energ. Rev. 2015, 44, 304–318. [Google Scholar] [CrossRef]
- Gao, N.; Niu, J. Modeling the Performance of Personalized Ventilation under Different Conditions of Room Air and Personalized Air. HVAC&R Res. 2005, 11, 587–602. [Google Scholar]
- Nielsen, P.V.; Hyldgaard, C.E.; Melikov, A.; Andersen, H.; Soennichsen, M. Personal Exposure Between People in a Room Ventilated by Textile Terminals—with and without Personalized Ventilation. HVAC&R Res. 2007, 13, 635–643. [Google Scholar]
- Gao, N.; Zhang, H.; Niu, J. Investigating Indoor Air Quality and Thermal Comfort Using a Numerical Thermal Manikin. Indoor Built Environ. 2007, 16, 7–17. [Google Scholar] [CrossRef]
- Zhao, B.; Guan, P. Modeling particle dispersion in personalized ventilated room. Build. Environ. 2007, 42, 1099–1109. [Google Scholar] [CrossRef]
- Yang, B.; Sekhar, S.C. The Influence of Evenly Distributed Ceiling Mounted Personalized Ventilation Devices on the Indoor Environment. Int. J. Vent. 2008, 7, 99–112. [Google Scholar]
- Russo, J.S.; Dang, T.Q.; Khalifa, H.E. Computational analysis of reduced-mixing personal ventilation jets. Build. Environ. 2009, 44, 1559–1567. [Google Scholar] [CrossRef]
- Dygert, R.K.; Russo, J.S.; Dang, T.Q.; Khalifa, H.E. Modeling of the Human Body to Study the Personal Micro Environment. ASHRAE Trans. 2009, 115, 407–420. [Google Scholar]
- Russo, J.S.; Khalifa, H.E. CFD assessment of intake fraction in the indoor environment. Build. Environ. 2010, 45, 1968–1975. [Google Scholar] [CrossRef]
- Russo, J.; Khalifa, H.E. CFD Analysis of Personal Ventilation with Volumetric Chemical Reactions. HVAC&R Res. 2010, 16, 799–812. [Google Scholar]
- Conceição, E.Z.E.; Lúcio, M.M.J.R.; Rosa, S.P.; Custódio, A.L.V.; Andrade, R.L.; Meira, M.J.P.A. Evaluation of comfort level in desks equipped with two personalized ventilation systems in slightly warm environments. Build. Environ. 2010, 45, 601–609. [Google Scholar] [CrossRef]
- Tham, K.W.; Pantelic, J. Performance evaluation of the coupling of a desktop personalized ventilation air terminal device and desk mounted fans. Build. Environ. 2010, 45, 1941–1950. [Google Scholar] [CrossRef]
- He, Q.; Niu, J.; Gao, N.; Zhu, T.; Wu, J. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room. Build. Environ. 2011, 46, 397–408. [Google Scholar] [CrossRef]
- Zhai, Z.; Metzger, I.D. Taguchi-Method-Based CFD Study and Optimisation of Personalised Ventilation Systems. Indoor Built Environ. 2011, 21, 690–702. [Google Scholar]
- Mazej, M.; Butala, V. Investigation in the Characteristics of the Personal Ventilation Using Computational Fluid Dynamics. Indoor Built Environ. 2011, 21, 749–771. [Google Scholar] [CrossRef]
- Adamu, Z.A.; Cook, M.J.; Price, A.D.F. Natural Personalised Ventilation—A Novel Approach. Int. J. Vent. 2011, 10, 263–275. [Google Scholar] [CrossRef]
- Ishiguro, R.; Chikamoto, T.; Hashimoto, S.; Inada, R.; Nishino, A.; Akimoto, T. Airflow Control for Personal Air-Conditioning in aPartly Unoccupied Zone using a Multi-Flow Ceiling Cassette Type Packaged Air-Conditioner. Int. J. Vent. 2011, 9, 393–403. [Google Scholar] [CrossRef]
- Russo, J.S.; Khalifa, E. Computational study of breathing methods for inhalation exposure. HVAC&R Res. 2011, 17, 419–431. [Google Scholar]
- Li, X.; Niu, J.; Gao, N. Co-occupant’s exposure to exhaled pollutants with two types of personalized ventilation strategies under mixing and displacement ventilation systems. Indoor Air 2012, 23, 162–171. [Google Scholar] [CrossRef]
- Kanaan, M.; Ghaddar, N.; Ghali, K. Quality of inhaled air in displacement ventilation systems assisted by personalized ventilation. HVAC&R Res. 2012, 18, 500–514. [Google Scholar]
- Makhoul, A.; Ghali, K.; Ghaddar, N. Desk fans for the control of the convection flow around occupants using ceiling mounted personalized ventilation. Build. Environ. 2013, 59, 336–348. [Google Scholar] [CrossRef]
- Makhoul, A.; Ghali, K.; Ghaddar, N. Thermal comfort and energy performance of a low-mixing ceiling-mounted personalized ventilator system. Build. Environ. 2013, 60, 126–136. [Google Scholar] [CrossRef]
- Makhoul, A.; Ghali, K.; Ghaddar, N.; Chakroun, W. Investigation of particle transport in offices equipped with ceiling-mounted personalized ventilators. Build. Environ. 2013, 63, 97–107. [Google Scholar] [CrossRef]
- Yang, J.; Sekhar, C.; Wai, D.C.K.; Raphael, B. Computational fluid dynamics study and evaluation of different personalized exhaust devices. HVAC&R Res. 2013, 19, 934–946. [Google Scholar]
- Cheong, D.K.W.; Huang, S. Performance evaluation of personalized ventilation system with two types of air terminal devices coupled with displacement ventilation in a mock-up office. HVAC&R Res. 2013, 19, 974–985. [Google Scholar]
- Makhoul, A.; Ghali, K.; Ghaddar, N. Low-mixing coaxial nozzle for effective personalized ventilation. Indoor Built Environ. 2013, 24, 225–243. [Google Scholar] [CrossRef]
- Yang, B.; Sekhar, C. Interaction of dynamic indoor environment with moving person and performance of ceiling mounted personalized ventilation system. Indoor Built Environ. 2014, 23, 920–932. [Google Scholar] [CrossRef]
- Russo, J.; Ezzat Khalifa, H. Effect of Chemical Reactions in the Personal Micro-environment on Inhaled Air Quality. ASHRAE Trans. 2014, 120, 1–8. [Google Scholar]
- Naumov, A.L.; Tabunshchikov, I.A.; Kapko, D.V.; Brodach, M.M. Research of the microclimate formed by the local DCV. Energy Build. 2015, 90, 1–5. [Google Scholar] [CrossRef]
- Shao, X.; Li, X. Evaluating the potential of airflow patterns to maintain a non-uniform indoor environment. Renew. Energy 2015, 73, 99–108. [Google Scholar] [CrossRef]
- Antoun, S.; Ghaddar, N.; Ghali, K. Coaxial personalized ventilation system and window performance for human thermal comfort in asymmetrical environment. Energy Build. 2016, 111, 253–266. [Google Scholar] [CrossRef]
- Abou Hweij, W.; Ghaddar, N.; Ghali, K.; Habchi, C. Optimized performance of displacement ventilation aided with chair fans for comfort and indoor air quality. Energy Build. 2016, 127, 907–919. [Google Scholar] [CrossRef]
- El-Fil, B.; Ghaddar, N.; Ghali, K. Optimizing performance of ceiling-mounted personalized ventilation system assisted by chair fans: Assessment of thermal comfort and indoor air quality. Sci. Technol. Built Environ. 2016, 22, 412–430. [Google Scholar] [CrossRef]
- Zhu, S.; Cai, W.; Spengler, J.D. Control of sleep environment of an infant by wide-cover type personalized ventilation. Energy Build. 2016, 129, 69–80. [Google Scholar] [CrossRef]
- Conceição, E.Z.E.; Santiago, C.I.M.; Awbi, H.B. Numerical study of different ceiling-mounted air distribution systems for a virtual classroom environment. Indoor Built Environ. 2016, 26, 1382–1396. [Google Scholar] [CrossRef]
- Habchi, C.; Chakroun, W.; Alotaibi, S.; Ghali, K.; Ghaddar, N. Effect of shifts from occupant design position on performance of ceiling personalized ventilation assisted with desk fan or chair fans. Energy Build. 2016, 117, 20–32. [Google Scholar] [CrossRef]
- Habchi, C.; Ghali, K.; Ghaddar, N.; Chakroun, W.; Alotaibi, S. Ceiling personalized ventilation combined with desk fans for reduced direct and indirect cross-contamination and efficient use of office space. Energy Conv. Manag. 2016, 111, 158–173. [Google Scholar] [CrossRef]
- Mao, N.; Song, M.; Deng, S.; Pan, D.; Chen, S. Experimental and numerical study on air flow and moisture transport in sleeping environments with a task/ambient air conditioning (TAC) system. Energy Build. 2016, 133, 596–604. [Google Scholar] [CrossRef]
- Taheri, M.; Schuss, M.; Fail, A.; Mahdavi, A. A performance assessment of an office space with displacement, personal, and natural ventilation systems. Build. Simul. 2016, 9, 89–100. [Google Scholar] [CrossRef]
- Zhu, S.; Dalgo, D.; Srebric, J.; Kato, S. Cooling efficiency of a spot-type personalized air-conditioner. Build. Environ. 2017, 121, 35–48. [Google Scholar] [CrossRef]
- Conceição, E.Z.E.; Farinho, J.P.; Lúcio, M.M.J.R. Numerical and experimental study of personalized ventilation installed in a double occupation desk placed nearby a window subjected to solar radiation. Int. J. Vent. 2017, 17, 1–21. [Google Scholar] [CrossRef]
- Mao, N.; Pan, D.; Li, Z.; Xu, Y.; Song, M.; Deng, S. A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort. Appl. Energy 2017, 192, 213–221. [Google Scholar] [CrossRef]
- Mao, N.; Pan, D.; Song, M.; Li, Z.; Xu, Y.; Deng, S. Operating optimization for improved energy consumption of a TAC system affected by nighttime thermal loads of building envelopes. Energy 2017, 133, 491–501. [Google Scholar] [CrossRef]
- Ahmed, A.Q.; Gao, S.; Kareem, A.K. Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms. Appl. Therm. Eng. 2017, 110, 821–834. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.Q.; Gao, S. Numerical investigation of height impact of local exhaust combined with an office work station on energy saving and indoor environment. Build. Environ. 2017, 122, 194–205. [Google Scholar] [CrossRef]
- Al Assaad, D.; Ghali, K.; Ghaddar, N.; Habchi, C. Mixing ventilation coupled with personalized sinusoidal ventilation: Optimal frequency and flow rate for acceptable air quality. Energy Build. 2017, 154, 569–580. [Google Scholar] [CrossRef]
- Du, J.; Chan, M.; Pan, D.; Deng, S. A numerical study on the effects of design/operating parameters of the radiant panel in a radiation-based task air conditioning system on indoor thermal comfort and energy saving for a sleeping environment. Energy Build. 2017, 151, 250–262. [Google Scholar] [CrossRef]
- Kong, M.; Dang, T.Q.; Zhang, J.; Khalifa, H.E. Micro-environmental control for efficient local cooling. Build. Environ. 2017, 118, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Tan, S.; Zhen, L. Working parameter selection and analysis of radiant floor cooling combined with desk-based task/ambient conditioning (TAC) system. Build. Serv. Eng. Res. Technol. 2017, 38, 104–120. [Google Scholar]
- Alotaibi, S.; Chakroun, W.; Habchi, C.; Ghali, K.; Ghaddar, N. Effectiveness of contaminant confinement in office spaces equipped with ceiling personalized ventilation system. Build. Simul. 2018, 11, 773–786. [Google Scholar] [CrossRef]
- Alsaad, H.; Voelker, C. Performance assessment of a ductless personalized ventilation system using a validated CFD model. J. Build. Perf. Simul. 2018, 11, 689–704. [Google Scholar] [CrossRef]
- Al Assaad, D.; Ghali, K.; Ghaddar, N. Effectiveness of intermittent personalized ventilation assisting a chilled ceiling for enhanced thermal comfort and acceptable indoor air quality. Build. Environ. 2018, 144, 9–22. [Google Scholar] [CrossRef]
- Al Assaad, D.; Habchi, C.; Ghali, K.; Ghaddar, N. Effectiveness of intermittent personalized ventilation in protecting occupant from indoor particles. Build. Environ. 2018, 128, 22–32. [Google Scholar] [CrossRef]
- Conceição, Z.E.; Santiago, I.C.; Lúcio, M.M.; Awbi, B.H. Predicting the Air Quality, Thermal Comfort and Draught Risk for a Virtual Classroom with Desk-Type Personalized Ventilation Systems. Buildings 2018, 8, 35. [Google Scholar] [CrossRef]
- Gao, R.; Wang, C.; Li, A.; Yu, S.; Deng, B. A novel targeted personalized ventilation system based on the shooting concept. Build. Environ. 2018, 135, 269–279. [Google Scholar] [CrossRef]
- Rahmati, B.; Mohammad Jadidi, A.; Heidarian, A. Investigation in performance of a hybrid under-floor air distribution with improved desk displacement ventilation system in a small office. Appl. Therm. Eng. 2018, 138, 861–872. [Google Scholar] [CrossRef]
- Sekhar, C.; Zheng, L. Study of an integrated personalized ventilation and local fan-induced active chilled beam air conditioning system in hot and humid climate. Build. Simul. 2018, 11, 787–801. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, X.; Chen, Q. Comparison of STAR-CCM+ and ANSYS Fluent for simulating indoor airflows. Build. Simul. 2018, 11, 165–174. [Google Scholar] [CrossRef]
- Greenshields, C.J. OpenFOAM User Guide. Version 3; Openfoam Foundation Ltd.: London, UK, 2015. [Google Scholar]
- Kaczmarczyk, J.; Melikov, A.; Bolashikov, Z.; Nikolaev, L.; Fanger, P.O. Human Response to Five Designs of Personalized Ventilation. HVAC&R Res. 2006, 12, 367–384. [Google Scholar]
- Liu, J.; Xie, X.; Qin, F.; Song, S.; Lv, D. A case study of ground source direct cooling system integrated with water storage tank system. Build. Simul. 2016, 9, 659–668. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Jones, W.P.; Launder, B.E. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 1972, 15, 301–314. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Xu, W. A zero-equation turbulence model for indoor airflow simulation. Energy Build. 1998, 28, 137–144. [Google Scholar] [CrossRef]
- Leschziner, M.A. Modelling engineering flows with Reynolds stress turbulence closure. J. Wind Eng. Ind. Aerodyn. 1990, 35, 21–47. [Google Scholar] [CrossRef]
- Yuce, B.E.; Pulat, E. Forced, natural and mixed convection benchmark studies for indoor thermal environments. Int. Commun. Heat Mass Transf. 2018, 92, 1–14. [Google Scholar] [CrossRef]
- Murakami, S.; Kato, S.; Zeng, J. Combined simulation of airflow, radiation and moisture transport for heat release from a human body. Build. Environ. 2000, 35, 489–500. [Google Scholar] [CrossRef]
- Zhu, S.; Kato, S.; Murakami, S.; Hayashi, T. Study on inhalation region by means of CFD analysis and experiment. Build. Environ. 2005, 40, 1329–1336. [Google Scholar] [CrossRef]
- Davidson, L.; Nielsen, P.; Sveningsson, A. Modification of the v2f model for computing the flow in a 3D wall jet. Turbulence Heat and Mass Transfer 2003, 4, 577–584. [Google Scholar]
- Wang, M.; Chen, Q. Assessment of Various Turbulence Models for Transitional Flows in an Enclosed Environment (RP-1271). HVAC&R Res. 2009, 15, 1099–1119. [Google Scholar]
- Berrouk, A.S.; Lai, A.C.K.; Cheung, A.C.T.; Wong, S.L. Experimental measurements and large eddy simulation of expiratory droplet dispersion in a mechanically ventilated enclosure with thermal effects. Build. Environ. 2010, 45, 371–379. [Google Scholar] [CrossRef]
- Taghinia, J.H.; Rahman, M.M.; Lu, X. Effects of different CFD modeling approaches and simplification of shape on prediction of flow field around manikin. Energy Build. 2018, 170, 47–60. [Google Scholar] [CrossRef]
- Taghinia, J.; Rahman, M.M.; Siikonen, T. Numerical simulation of airflow and temperature fields around an occupant in indoor environment. Energy Build. 2015, 104, 199–207. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Airpak User Guide; ANSYS Inc.: Canonsburg, PA, USA, 2007. [Google Scholar]
- Srebric, J.; Vukovic, V.; He, G.; Yang, X. CFD boundary conditions for contaminant dispersion, heat transfer and airflow simulations around human occupants in indoor environments. Build. Environ. 2008, 43, 294–303. [Google Scholar] [CrossRef]
- Li, X.; Yan, Y.; Tu, J. The simplification of computer simulated persons (CSPs) in CFD models of occupied indoor spaces. Build. Environ. 2015, 93, 155–164. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Tu, J. Effects of manikin model simplification on CFD predictions of thermal flow field around human bodies. Indoor Built Environ. 2017, 26, 1185–1197. [Google Scholar] [CrossRef]
- Yang, J.; Ni, S.; Weng, W. Modelling heat transfer and physiological responses of unclothed human body in hot environment by coupling CFD simulation with thermal model. Int. J. Therm. Sci. 2017, 120, 437–445. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS FLUENT Theory Guide, Release 16.1; ANSYS Inc.: Canonsburg, PA, USA, 2014. [Google Scholar]
- Visser, D.C.; Houkema, M.; Siccama, N.B.; Komen, E.M.J. Validation of a FLUENT CFD model for hydrogen distribution in a containment. Nucl. Eng. Des. 2012, 245, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, M.; Wang, M.; Wang, Y. Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building. Build. Environ. 2018, 144, 349–356. [Google Scholar] [CrossRef]
- CD-Adapco Inc. STAR-CCM+ 11.0 User Guide; CD-Adapco Inc.: Melville, NY, USA, 2016. [Google Scholar]
- ANSYS Inc. ANSYS CFX-Solver Theory Guide (Release 15.0); ANSYS Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Li, X.; Yan, Y.; Tu, J. Evaluation of models and methods to simulate thermal radiation in indoor spaces. Build. Environ. 2018, 144, 259–267. [Google Scholar] [CrossRef]
- Gilani, S.; Montazeri, H.; Blocken, B. CFD simulation of stratified indoor environment in displacement ventilation: Validation and sensitivity analysis. Build. Environ. 2016, 95, 299–313. [Google Scholar] [CrossRef]
- Zhu, S.; Kato, S.; Ooka, R.; Sakoi, T. Development of a Computational Thermal Manikin Applicable in a Nonuniform Thermal Environment—Part 1: Coupled Simulation of Convection, Radiation, and Smith’s Human Thermal Physiological Model for Sensible Heat Transfer from a Seated Human Body in Radiant Environment. HVAC&R Res. 2007, 13, 661–679. [Google Scholar]
- Zhu, S.; Kato, S.; Ooka, R.; Sakoi, T.; Tsuzuki, K. Development of a Computational Thermal Manikin Applicable in a Non-Uniform Thermal Environment—Part 2: Coupled Simulation Using Sakoi’s Human Thermal Physiological Model. HVAC&R Res. 2008, 14, 545–564. [Google Scholar]
- Russo, J. A Detailed and Systematic Investigation of Personal Ventilation Systems. Ph.D. Thesis, Syracuse University, Syracuse, NY, USA, 2011. [Google Scholar]
- Martinho, N.; Lopes, A.; Gameiro da Silva, M. Evaluation of errors on the CFD computation of air flow and heat transfer around the human body. Build. Environ. 2012, 58, 58–69. [Google Scholar] [CrossRef]
- Al-Othmani, M.; Ghaddar, N.; Ghali, K. A multi-segmented human bioheat model for transient and asymmetric radiative environments. Int. J. Heat Mass Transf. 2008, 51, 5522–5533. [Google Scholar] [CrossRef]
- Sideroff, C.N. Detailed Examinations of the Human Micro-Environment by CFD. Ph.D. Thesis, Syracuse University, Syracuse, NY, USA, 2009. [Google Scholar]
- Voelker, C.; Alsaad, H. Simulating the human body’s microclimate using automatic coupling of CFD and an advanced thermoregulation model. Indoor Air 2018, 28, 415–425. [Google Scholar] [CrossRef]
- Rim, D.; Novoselac, A. Transport of particulate and gaseous pollutants in the vicinity of a human body. Build. Environ. 2009, 44, 1840–1849. [Google Scholar] [CrossRef]
- Fu, M.; Weng, W.; Chen, W.; Luo, N. Review on modeling heat transfer and thermoregulatory responses in human body. J. Therm. Biol. 2016, 62, 189–200. [Google Scholar] [CrossRef]
- Zhang, H.; Huizenga, C.; Arens, E.; Yu, T. Considering individual physiological differences in a human thermal model. J. Therm. Biol. 2001, 26, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Huizenga, C.; Hui, Z.; Arens, E. A model of human physiology and comfort for assessing complex thermal environments. Build. Environ. 2001, 36, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Kato, S.; Yang, L. Examination of Thermal Adaptive Effect of Postural and Positional Adjustment of a Seated Human Body Exposed to Spot Airflow. ASHRAE Trans. 2007, 113, 300–312. [Google Scholar]
- Dixit, A.; Gade, U. A case study on human bio-heat transfer and thermal comfort within CFD. Build. Environ. 2015, 94, 122–130. [Google Scholar] [CrossRef]
- Cropper, P.C.; Yang, T.; Cook, M.; Fiala, D.; Yousaf, R. Coupling a model of human thermoregulation with computational fluid dynamics for predicting human–environment interaction. J. Build. Perf. Simul. 2010, 3, 233–243. [Google Scholar] [CrossRef]
- Katić, K.; Li, R.; Zeiler, W. Thermophysiological models and their applications: A review. Build. Environ. 2016, 106, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Koelblen, B.; Psikuta, A.; Bogdan, A.; Annaheim, S.; Rossi, R.M. Human simulator—A tool for predicting thermal sensation in the built environment. Build. Environ. 2018, 143, 632–644. [Google Scholar] [CrossRef]
- Psikuta, A.; Allegrini, J.; Koelblen, B.; Bogdan, A.; Annaheim, S.; Martínez, N.; Derome, D.; Carmeliet, J.; Rossi, R.M. Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research—A review. Renew. Sust. Energ. Rev. 2017, 78, 1315–1330. [Google Scholar] [CrossRef]
- Cheng, Y.; Niu, J.; Gao, N. Thermal comfort models: A review and numerical investigation. Build. Environ. 2012, 47, 13–22. [Google Scholar] [CrossRef]
- Wang, H.; Zhai, Z. Analyzing grid independency and numerical viscosity of computational fluid dynamics for indoor environment applications. Build. Environ. 2012, 52, 107–118. [Google Scholar] [CrossRef]
- ANSYS Inc. Gambit Version 2.4; ANSYS Inc.: Canonsburg, PA, USA, 2007. [Google Scholar]
- ANSYS Inc. ICEM CFD Guide, Release 16.1; ANSYS Inc.: Canonsburg, PA, USA, 2014. [Google Scholar]
- Roache, P.J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Nielsen, P.V.; Murakami, S.; Kato, S.; Topp, C.; Yang, J.-H. Benchmark Tests for a Computer Simulated Person; Aalborg University: Aalborg, Denmark; Indoor Environmental Engineering: San Francisco, CA, USA, 2003; Available online: https://Www.Cfd-Benchmarks.Com/ (accessed on 7 July 2019).
- Khalifa, H.E.; Janos, M.; Russo, J. Benchmark Tests for a Computer Simulated Person with Personal Ventilation; Aalborg University: Aalborg, Denmark; Indoor Environmental Engineering: San Francisco, CA, USA, 2008; Available online: https://Www.Cfd-Benchmarks.Com/ (accessed on 7 July 2019).
- Khalifa, H.E.; Janos, M.I.; Dannenhoffer, J.F. Experimental investigation of reduced-mixing personal ventilation jets. Build. Environ. 2009, 44, 1551–1558. [Google Scholar] [CrossRef]
- Bogdan, A.; Chludzińska, M.; Koelblen, B.; Ogłodzinski, K.; Młynarczyk, M. Sensitivity of personalized ventilation air terminal device geometry with regard to a human thermal sensation. Sci. Technol. Built Environ. 2017, 23, 1105–1112. [Google Scholar] [CrossRef]
- Zhang, T.; Lee, K.; Chen, Q. A simplified approach to describe complex diffusers in displacement ventilation for CFD simulations. Indoor Air 2009, 19, 255–267. [Google Scholar] [CrossRef]
- Srebric, J.; Chen, Q. Simplified numerical models for complex air supply diffusers. HVAC&R Res. 2002, 8, 277–294. [Google Scholar]
- Nielsen, P.V.; Allard, F.; Awbi, H.B.; Davidson, L.; Schälin, A. Computational Fluid Dynamics in Ventilation Design REHVA Guidebook No 10; Taylor & Francis: Didcot, UK, 2007. [Google Scholar]
- Bragança, P.; Sodjavi, K.; Meslem, A.; Serres, L. Airflow characteristics and thermal comfort generated by a multi-cone ceiling diffuser with and without inserted lobes. Build. Environ. 2016, 108, 143–158. [Google Scholar] [CrossRef]
- Awwad, A.; Mohamed, M.H.; Fatouh, M. Optimal design of a louver face ceiling diffuser using CFD to improve occupant’s thermal comfort. J. Build. Eng. 2017, 11, 134–157. [Google Scholar] [CrossRef]
- Yau, Y.H.; Poh, K.S.; Badarudin, A. A numerical airflow pattern study of a floor swirl diffuser for UFAD system. Energy Build. 2018, 158, 525–535. [Google Scholar] [CrossRef]
- Chludzińska, M.; Bogdan, A. The role of the front pattern shape in modelling personalized airflow and its capacity to affect human thermal comfort. Build. Environ. 2017, 126, 373–381. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, S.; Sun, G.; Xu, L.; Takaoka, D. Flow impact of an air conditioner to portable air cleaning. Build. Environ. 2010, 45, 2047–2056. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, M.; Ouyang, Q.; Huang, L.; Cao, B. Dynamic characteristics and comfort assessment of airflows in indoor environments: A review. Build. Environ. 2015, 91, 5–14. [Google Scholar] [CrossRef]
- Huang, L.; Ouyang, Q.; Zhu, Y. Perceptible airflow fluctuation frequency and human thermal response. Build. Environ. 2012, 54, 14–19. [Google Scholar] [CrossRef]
- Yang, J.; Melikov, A.K.; Fanger, P.O.; Li, X.; Yan, Q. Impact of Personalized Ventilation on Human Response: Comparison between Constant and Fluctuating Airflows under Warm Condition. In Proceedings of the Roomvent-8th International Conference on Air Distribution in Rooms, Copenhagen, Denmark, 8–11 September 2002; pp. 305–308. [Google Scholar]
- Zhou, G.; Melikov, A.K. Equivalent frequency-a new parameter for description of frequency characteristics of airflow fluctuations. In Proceedings of the Roomvent-8th International Conference on Air Distribution in Rooms, Copenhagen, Denmark, 8–11 September 2002; pp. 357–363. [Google Scholar]
- Melikov, A.; Popiolek, Z. Comparison of different methods for the determination of dynamic characteristics of low velocity thermal anemometers. Meas. Sci. Technol. 2004, 15, 1709. [Google Scholar] [CrossRef]
- Uğursal, A.; Culp, C.H. The effect of temperature, metabolic rate and dynamic localized airflow on thermal comfort. Appl. Energy 2013, 111, 64–73. [Google Scholar] [CrossRef]
- Kato, S.; Yang, J.-H. Study on inhaled air quality in a personal air-conditioning environment using new scales of ventilation efficiency. Build. Environ. 2008, 43, 494–507. [Google Scholar] [CrossRef]
- Zhang, H.; Arens, E.; Huizenga, C.; Han, T. Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts. Build. Environ. 2010, 45, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Arens, E.; Huizenga, C.; Han, T. Thermal sensation and comfort models for non-uniform and transient environments, part II: Local comfort of individual body parts. Build. Environ. 2010, 45, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Arens, E.; Huizenga, C.; Han, T. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort. Build. Environ. 2010, 45, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments; University of California: Berkeley, CA, USA, 2003. [Google Scholar]
- Tanabe, S.; Arens, E.A.; Bauman, F.; Zhang, H.; Madsen, T. Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. ASHRAE Trans. 1994, 100, 39–48. [Google Scholar]
- Nilsson, H.; Holmér, I. Comfort climate evaluation with thermal manikin methods and computer simulation models. Indoor Air 2003, 13, 28. [Google Scholar] [CrossRef]
- ISO/TS. Ergonomics of the Thermal Environment-Evaluation of Thermal Environments in Vehicles; ISO/TS 14505; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2004. [Google Scholar]
- ISO Standard 7730. Ergonomics of the Thermal Environment e Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Melikov, A.; Ivanova, T.; Stefanova, G. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality. Build. Environ. 2012, 47, 100–108. [Google Scholar] [CrossRef]
- Melikov, A.K. Human body micro-environment: The benefits of controlling airflow interaction. Build. Environ. 2015, 91, 70–77. [Google Scholar] [CrossRef]
- Al Assaad, D.; Habchi, C.; Ghali, K.; Ghaddar, N. Simplified model for thermal comfort, IAQ and energy savings in rooms conditioned by displacement ventilation aided with transient personalized ventilation. Energy Conv. Manag. 2018, 162, 203–217. [Google Scholar] [CrossRef]
- Cheng, Y.; Niu, J.; Gao, N. Stratified air distribution systems in a large lecture theatre: A numerical method to optimize thermal comfort and maximize energy saving. Energy Build. 2012, 55, 515–525. [Google Scholar] [CrossRef]
Author & Year | PV with BV | CFD Code | Turb. | Rad. | BC (no.) | NWT | Target Parameters |
---|---|---|---|---|---|---|---|
Gao and Niu 2004 [36] | PV with DV | NS | SKE | NO | Tsk(1) | SWF | AT, AV, CHTC, CO2, PER, PPD, PUE |
Gao and Niu 2005 [69] | PV with DV | Fluent | RNG | NS | Tsk(1) | EWT | AT, AV, CHTC, CO2, PER |
Gao et al. 2006 [37] | DMPV or CBPV with DV, RMP | Fluent | RNG | YES | Tsk(16) | EWT | ACE, AT, AV, AVV, CHTC, LTC, LTS, OTC, OTS, PER |
Nielsen et al. 2007 [70] | PV with MV | NS | k-ε | NS | q(1) | NS | ACH, AV, AVV, PEI |
Gao et al. 2007 [71] | PV with DV or MV | Fluent | SKE | YES | Tsk(16) | NS | AT, AV, AVV, Cinh, LTC, LTS, OTC, OTS, PER |
Zhao and Guan 2007 [72] | PV | STACH-3 | ZEQ | NS | q(1) | No | AT, AV, AVV, PC |
Yang and Sekhar 2008 [73] | PV or CMPV with MV | Fluent | SKE | NO | NO | NS | AV, AVV, FAP, PEE |
Russo et al. 2009 [74] | PV with UFAD | ANSYS Fluent | RKE | NS | Tsk(20) | EWT | AT, AV, PEE, TI |
Dygert et al. 2009 [75] | PV with UFAD | Fluent | SKE, RKE, RNG, SKW, SST | NO | Tsk(1) | EWT | AQI, AV, AT |
Russo and Ezzat Khalifa 2010 [76] | PV | NS | NS | NS | Tsk(1) | EWT | IF, PEE, Sct |
Russo and Khalifa 2010 [77] | PV | Fluent | RKE | NS | Tsk(1) | EWT | IF, Ozone |
Conceição et al. 2010 [78] | DMPV | NS | k-ε | NS | Tsk(15) | NS | AT, AV, DR, PMV |
Tham and Pantelic 2010 [79] | DMPV and DF with MV | Fluent | SKE | NO | Tsk(26) | EWT | AV, CHF, PEE, Teq |
He et al. 2011 [80] | RMP with DV, MV, UFAD | Fluent | RNG | S2S | q(1) | SWF | AV, AVV, IF, PC, Rc, TGC |
Zhai and Metzger 2011 [81] | PV with MV | PHOENICS | RNG | NO | NS | NS | AGE, ES, PMV |
Mazej and Butala 2011 [82] | MSDP with UFAD | ANSYS Fluent | RNG | S2S | Tsk(16) | EWT | AV, AT, AVV, CHTC, CO2, PEE, RHTC, RIE, Teq, TGC |
Adamu et al. 2011 [83] | NPV | PHOENICS | RNG | NS | Q(1) | NS | AGE, AT, ATT, AV, CRE, LACH, MACE |
Ishiguro et al. 2011 [84] | CMPV | NS | NS | NO | Q(1) | NS | AV, AT, AVV, PMV, Qc |
Russo and Khalifa 2011 [85] | PV | NS | NS | NS | Tsk(1) | NS | AV, AT, AQI, IF, TGC |
Li et al. 2012 [86] | CBPV or DMPV with MV or DV | Fluent | RNG | NS | q(1) | SWF | ACE, AT, AV, AVV, IF, PC |
Kanaan et al. 2012 [87] | PV with DV | Airpak | SKE | YES | Q(1) | NS | AT, AV, AVV, CO2, PEE |
Shen et al. 2013 [38] | RMP or VDG with DV, MV or UFAD | ANSYS Fluent | SKE | S2S | q(1) | SWF | AT, AV, AVV, MFP, TGC, VE |
Makhoul et al. 2013 [88] | CMPV and DF | ANSYS Fluent | RKE | NS | Tsk(11) | EWT | AV, AT, AVV, CO2, ES, LTC, OTC, PEE |
Makhoul et al. 2013 [89] | CMPV | ANSYS Fluent | RKE | NS | Tsk(11) | EWT | LTC, LTS, OTC, OTS, PEE, Qc |
Makhoul et al. 2013 [90] | CMPV | ANSYS Fluent | RKE | NS | Tsk(-) | NS | AT, IF, PC, PVV |
Yang et al. 2013 [91] | DMPV or VDG with MV | ANSYS Fluent | SKE | NS | Tsk(1) | EWT | CO2, IF, PEE |
Cheong and Huang 2013 [92] | RMP or DMPV with DV | Fluent | RNG | NS | Tsk(26) | NS | AV, AT, AVV, PEIc |
Makhoul et al. 2013 [93] | CMPV | ANSYS Fluent | RKE | NS | Tsk(11) | EWT | AV, AT, CO2, PEE |
Yang and Sekhar 2014 [94] | CMPV with MV | Fluent | SKE | NO | NO | NS | AV, AVV, PEE, PAP, TGC |
Russo and Ezzat Khalifa 2014 [95] | PV with UFAD | Fluent | RKE | NO | Tsk(1) | EWT | Ozone, IF |
Kong et al. 2015 [39] | PV with UFAD | STAR-CCM+ | RKE | NS | Tsk(20) | TLWT | AT, AV, AVV, PEE, Teq, TGC |
Naumov et al. 2015 [96] | PV | ANSYS | NS | NS | Tsk(-) | NS | AV, AT, EXT, ES |
Shao and Li 2015[97] | PV | Airpak | ZEQ | NS | Q(1) | NO | DPSA, TACS, TAIC, TASA |
Antoun et al. 2016 [98] | CMPV | ANSYS Fluent | RKE | S2S | Tsk(11) | EWT | AV, LTC, LTS, OTS, OTC, Qc, RHF, TI, Tsk |
Abou Hweij et al. 2016 [99] | CF with DV | ANSYS Fluent | SKE | NS | Tsk(11) | EWT | AT, AV, LTC, LTS, OTC, OTS, Tsk, PEE |
El-Fil et al. 2016 [100] | CMPV and CF | ANSYF Fluent | RKE | NO | Tsk(11) | EWT | AT, AV, CO2, LTC, LTS, OTC, OTS, PEE, Qc |
Zhu et al. 2016 [101] | WCPV with MV | STAR-CD | RNG | NO | q(1)&Tsk(1) | SWF | AT, AV, DR, PEE, SVE3, SVE3*, SVE4 |
Conceição et al. 2016 [102] | CMPV | NS | RNG | YES | Tsk(25) | NS | AQN, AT, AV, CO2, ADI, DR, PPD, Tsk |
Habchi et al. 2016 [103] | CMPV and CF or DF | ANSYS Fluent | RKE | NO | Tsk(11) | EWT | AT, AV, CO2, DFr, IF, LTC, OTC, PC, PEE, Qc |
Habchi et al. 2016 [104] | CMPV and DF | ANSYS Fluent | RKE | NO | q(20) | EWT | AT, AV, DFr, IF, PC, Qc |
Mao et al. 2016 [105] | BTAC | ANSYS Fluent | SST | S2S | Tsk(16) | NS | AV, AT, AVV, RH, Tsk |
Taheri et al. 2016 [106] | PV with DV | NS | NS | NS | NS | NS | AT, AV, CO2, PMV, TSV |
Zhu et al. 2017 [107] | RPAC with MV | Fluent | RNG | YES | Tsk(17) | EWT | AT, AV, AVV, CE, DR, OTS, Tsk, ΔPMV |
Conceição et al. 2017 [108] | DMPV | NS | RNG | NS | Tsk(15) | NS | AV, AT, CO2, DR, MRT, PMV, PPD, Tclo, Tsk, TI |
Mao et al. 2017 [109] | BTAC | ANSYS Fluent | SST | S2S | Tsk(1) | NS | AT, AV, PMV, Qc |
Mao et al. 2017 [110] | BTAC | ANSYS Fluent | SST | S2S | Tsk(1) | NS | AT, AV, PMV, Qc |
Ahmed et al. 2017 [111] | LEVO with DV | ANSYS Fluent | RNG | DO | q(1) | EWT | AV, AT, PC, PMV, PPD, Qc, VATD |
Ahmed and Gao 2017 [112] | LEVO with DV | ANSYS Fluent | RNG | DO | q(1) | EWT | AV, AT, DR, PC, Qc, VTAD |
Al Assaad et al. 2017 [113] | PV with MV | ANSYS Fluent | RNG | NS | Tsk(11) | EWT | AT, AV, CO2, FRF, OTC, PEE, Qc, Tsk |
Du et al. 2017 [114] | BTAC with radiant panel | ANSYS Fluent | SST | S2S | Tsk(1) | NS | AT, AV, EUC, DR, PMV, To |
Kong et al. 2017 [115] | RMP or DMPV with MV | STAR-CCM+ | SKE | YES | Tsk(20) | TLWT | AT, AV, CHF, CHTC, To, Tsk |
Sun et al. 2017 [116] | DMPV with cooling ceiling | Airpak | SKE | DO | Q(1) | NS | AT, DR, PMV, PPD, To, ES |
Alotaibi et al. 2018 [117] | CMPV and DF or CF | ANSYS Fluent | RKE | NS | q(1) | NS | AV, AT, CI, PC, Qc, ΔC |
Alsaad and Voelker 2018 [118] | DPV with DV | ANSYS Fluent | SKE, RKE, RNG | S2S | Tsk(16) | EWT | AT, AV, CO2, LTC, LTS, OTC, OTS, PEIc, |
Al Assaad et al. 2018 [119] | PV with cooling ceiling | ANSYS Fluent | RNG | S2S | Tsk(10) | EWT | AT, CO2, OTC, OTS, PEE, Qc, TI |
Al Assaad et al. 2018 [120] | DMPV with MV | ANSYS Fluent | RNG | NS | q(1) | EWT | AT, AV, CO2, DFr, FRF, IF, PC |
Conceição et al. 2018 [121] | DMPV | NS | RNG | NS | Tsk(25) | NS | ADI, AQN, AT, AV, CO2, DR, PPD |
Gao et al. 2018 [122] | TPV | NS | RSM | NS | NS | NS | AV, AT, Qc, Ts, Tr |
Rahmat et al. 2018 [123] | DF and DMPV with UFAD | Airpak | ZEQ | S2S | Q(1) | NO | AT, AV, PMV, PPD, Qc, VATD |
Sekhar and Zheng 2018 [124] | PV with ACB | ANSYS Fluent | RKE | NS | q(1) | SWF | AT, AV, AVV, PPD, PMV, Qc, |
Authors and Year | CDD | TCN(LCN) | TCNP | FLH(NBL) | MSCS | y+ | MSA | Grid Type |
---|---|---|---|---|---|---|---|---|
Gao and Niu 2004 [36] | 2.6 × 2.2 × 2.7 | 1.81(1.59) | 0.12 | 1.57 | Hex/Tet | |||
Gao and Niu 2005 [69] | 2.6 × 2.2 × 2.7 | 1.75(1.06) | 0.11 | most < 1 | 1.59 | Hex/Tet | ||
Russo, Dang et al. 2009 [74] | 2.0 × 2.6 × 2.5 | 4.2 | 0.32 | 1.5(4) | <12 | <3 | Hex/Tet | |
Tham and Pantelic 2010 [79] | 5.55 × 3.7 × 2.6 | 2.64(2.08) | 0.05 | 2(15) | <1 | Hex/Tet | ||
Shen, Gao et al. 2013 [38] | 5.4 × 4.8 × 2.6 | 1.08 | 0.02 | |||||
Makhoul, Ghali et al. 2013 [88] | 1.7 × 3.4 × 2.8(half) | 1.2 | 0.07 | 1.5(4) | 10 | 0.8–4 | 1.78 | |
Makhoul, Ghali et al. 2013 [89] | 1.7 × 3.4 × 2.8(half) | 1.21 | 0.07 | 1.5(4) | 20 | 0.8–4 | 1.78 | |
Makhoul, Ghali et al. 2013 [90] | 1.7 × 3.4 × 2.6(half) | 1.21 | 0.08 | - | - | |||
Makhoul, Ghali et al. 2013 [93] | 1.7 × 3.4 × 2.6(half) | 1.21 | 0.08 | 1.5 | 0.8–4 | 1.78 | ||
Cheong and Huang 2013 [92] | 6.6 × 3.7 × 2.7 | 2.71(2.16) | 0.04 | most < 1 | 1.57 | Hex/Tet | ||
Yang, Sekhar et al. 2013 [91] | 6.6 × 3.7 × 2.6 | 4.61 | 0.07 | 2.2(2) | 0.5–4 | |||
Kong, Zhang et al. 2015 [39] | 1.9 × 1.8 × 1.7 | 0.34 | 0.06 | (5) | 50 | 1.58 | Hon | |
Antoun, Ghaddar et al. 2016 [98] | 1.7 × 2.7 × 2.6 (half) | 1.42 | 0.12 | (3) | 0.8–4 | |||
Abou Hweij, Ghaddar et al. 2016 [99] | 2.5 × 2.75 × 2.8 | 3.52 | 0.18 | 0.8–4 | ||||
El-Fil, Ghaddar et al. 2016 [100] | 3.4 × 3.4 × 2.8 | 2.83 | 0.09 | 1.8(3) | 20 | 0.9–4.5 | ||
Al Assaad, Ghali et al. 2017 [113] | 2.8 × 2.75 × 2.5 | 1.06 | 0.06 | 1.5 | ||||
Ahmed, Gao et al. 2017 [111] | 4.0 × 2.7 × 3.0 | 2.75 | 0.08 | 1.5 | 0.7–4.5 | |||
Ahmed and Gao 2017 [112] | 4.0 × 2.7 × 3.0 | 2.75 | 0.08 | 1.5 | 0.7–4.5 | |||
Du, Chan et al. 2017 [114] | 3.7 × 2.6 × 3.29 | 2.44(1.45) | 0.08 | 0.4 | Hex/Tet | |||
Kong, Dang et al. 2017 [115] | 4.8 × 3.66 × 3.05 | 5.0 | 0.09 | 1(10) | 2.5-10 | <0.8 | 1.8 | Hon |
Alsaad and Voelker 2018 [118] | 3.0 × 3.0 × 2.4 | 5.77 | 0.27 | most < 1 | ||||
Al Assaad, Habchi et al. 2018 [120] | 3.4 × 3.4 × 2.8 | 6.5 | 0.20 | 15 | 0.8–4 | Tet | ||
Al Assaad, Ghali et al. 2018 [119] | 2.5 × 2.75 × 2.8 | 2.11 | 0.11 | 15 | 0.8–4 | Tet | ||
Alotaibi, Chakroun et al. 2018 [117] | 3.4 × 3.4 × 2.6 | 2.84 | 0.09 | |||||
Gao, Wang et al. 2018 [122] | 3 × 1.5 × 3 (half) | 1.6 | 0.12 |
Authors and Year | PV System | Background Ventilation System | Distance (m) | ||||
---|---|---|---|---|---|---|---|
Flow Rate (L/s) | Tin (°C) | Ti (%) | Flow Rate (L/s) | Tin (°C) | Ti (%) | ||
Gao and Niu 2004 [36] | PV0~3 | 20 | 0.5 | DV14 | 22 | 5 | <0.1 |
Kong, Zhang et al. 2015 [39] | PV7.1, 9.4 | 21.7 | UFAD48.8 | 24.3 | |||
Gao and Niu 2005 [69] | PV0.8~1.6 | 18~24 | 5,10,20 | DV14 | 22 | 10 | <0.1 |
Gao, Zhang et al. 2007 [71] | PV10~20 | 17~21 | 20 | MV/DV/31~51 | 17~21 | MV30, DV15 | |
Russo, Dang et al. 2009 [74] | Pri0.6~4.8, Se1.7~13.4 | Pri23.5 | Pri/Se1.7~10 | UFAD0.7~16.6 | 21 | 0.4 | |
Russo and Khalifa 2010 [76,77] | PV2.4, Sec6.7 | 21 | 1.7 | UFAD10.1 | 21 | 1.7 | 0.4 |
He, Niu et al. 2011 [80] | RMP7~15 | 20 | DV/MV/UFAD25~40 | 20 | 0.586 | ||
Mazej and Butala 2011 [82] | PV5,10 | 20,23 | 5 | DV120 | 20,23,26 | 10 | |
Russo and Khalifa 2011 [85] | PV2.4, Sec6.7 | 21 | 1.7 | UFAD10.1 | 21 | 1.7 | 0.4 |
Li, Niu et al. 2012 [86] | CBPV/DMPV0.8~6.5 | 18 | DV/MV22~28 | 20 | |||
Kanaan, Ghaddar et al. 2012 [87] | PV4~10 | 18~22 | DV116 | 18 | 0.3~0.5 | ||
Cheong and Huang 2013 [92] | PV5, 10, 15, 20 | 19~23 | 5, 10 | DV60 | 23 | 10 | |
Makhoul, Ghali et al. 2013 [89,93] | Pri5~10, Sec10~20 | Pri16~24, Sec26~28 | Dif10~20, 40~57 | 16 | 2.7 | 1.49 | |
Shen, Gao et al. 2013 [38] | RMP/VDG7,15 | 17 | 10 | DV/MV/UFAD10~23 | 17 | DV5, MV/UFAD15 | |
Yang, Sekhar et al. 2013 [91] | PV4, 8 | 23 | 10 | MV(-) | 23 | 10 | 0.15~0.55 |
Antoun, Ghaddar et al. 2016 [98] | Pri8.5, Sec(-) | 16, Sec(-) | 3 | Dif50, 55, 60 | 16, 18, 19 | 2 | 1.6 |
El-Fil, Ghaddar et al. 2016 [100] | CMPV8.5, CF2.5 | 16, CF(-) | 2.5 | Dif50 | 16 | 2.5 | 1.4 |
Habchi, Chakroun et al. 2016 [103] | Pri8.5,11, CF10, DF10 | 16 | Dif35 | 16 | 1.4 | ||
Habchi, Ghali et al. 2016 [104] | Pri10, DF5,10,15 | 16 | Dif35 | 16 | 1.4 m | ||
Zhu, Cai et al. 2016 [101] | WCPV2.5,5 | 18,19 | 10 | AC24 | 24 | 10 | |
Al Assaad, Ghali et al. 2017 [113] | PV3.5,5,7.5 | 22 | MV63 | 20 | 0.4 | ||
Kong, Dang et al. 2017 [115] | PV8~38 | 21~25 | 10 | MV75 | 27.8, 28.3 | 10 | 0.2~0.61 |
Zhu, Dalgo et al. 2017 [107] | RPAC11.8~59 | 19~24.6 | 10 | MV52.5 | 26 | 10 | |
Alsaad and Voelker 2018 [118] | DPV5,6.5 | DV16,24,43 | 19,22 | 0.4 | |||
Alotaibi, Chakroun et al. 2018 [117] | CMPV8.5, DF10, CF10 | 16 | 2.5 | Dif35 | 16 | 2.5 | 1.4 |
Al Assaad, Ghali et al. 2018 [119] | PV3.5,5,7.5 | 22 | MV63 | 15 | 0.4 |
Index | Definition | Explanation for Parameters | Purpose of the Evaluation Index | Typical References |
---|---|---|---|---|
EV1 | Ce tracer gas concentration at the exhaust duct CS tracer gas concentration at the supply duct Cj tracer gas concentration at the simulated point (e.g., mouth of the exposure manikin) | Assess the air distribution efficiency in rooms and around a human body | [80,118] | |
EV2 | Cp pollutant concentration at simulated point (inhalation zone) Ce pollutant concentration at the exhaust opening CS pollutant concentration at the supply air | Evaluate the effect of PV on inhaled air quality and trace gas pollutant transport characteristics around a polluting occupant | [38] | |
EV3 | Cr tracer gas concentration of the recirculated air or at outlet Cf tracer gas concentration of the fresh air Cb tracer gas concentration at the breathing zone defined as a small sphere of 1 cm radius, at 2.5 cm from the occupant nose | Assess the mixing level of recirculated air and delivered fresh air supplied by second nozzle and diffuser and primary nozzle, respectively, using the tracer gas | [88,103,113,119] | |
PEI | Cj pollutant concentration at the simulated point CS pollutant concentration at the supply air Csf pollutant concentration on the surface of pollutant source | Assess the extent of the measuring location affected by the polluting source | [92] | |
PER | CL tracer gas concentration of inhaled air Cf tracer gas concentration of personalized air Ca tracer gas concentration of ambient air. | Expressed as the fraction of personalized air in inhaled air | [36,37,69,71] | |
PEE | CI,0 concentration of pollution in the inhaled air without PV CI concentration of pollution in the inhaled air CPV concentration of pollution in personalized air | Estimate personal exposure effectiveness for PV in inhaled air, means that PV provides clean air with no pollutants | [82,87,91,101] | |
PEEc | CRS6 SF6 concentration in the re-circulated air duct CPV,SF6 SF6 concentration of the supplying fresh air CI,SF6 SF6 concentration at the breathing zone | Estimate personal exposure effectiveness for SF6 in inhaled air | [73,94] | |
AQI | Cb tracer gas concentration at a point in the breathing zone Cpri tracer gas concentration at the primary nozzle exit Ce tracer gas concentration in the exhaust | Evaluate inhaled air quality in the floor diffuser and the secondary nozzle that supplied tracer gas, while primary air was kept free of tracer gas | [39,74,76,85] | |
IF | Mbr Particle concentration at breathing level of healthy person, or pollutant mass exposed to person Mge Particle generation concentration, or pollutant mass emitted from a source/polluting person | Represent the proportion of contaminants generated by the infected occupant that is inhaled by the exposed occupant | [77,85,95,103,104,120] | |
DFr | Nbr Number of particles deposited at the vicinity of the exposed person Nge Number of particles generated by the infected person | Assess the cross-infection by the monitoring the particles deposited at the human body of the exposed person and other facilities in the room | [103,104,120] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhu, S.; Kim, M.K.; Srebric, J. A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments. Sustainability 2019, 11, 4166. https://doi.org/10.3390/su11154166
Liu J, Zhu S, Kim MK, Srebric J. A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments. Sustainability. 2019; 11(15):4166. https://doi.org/10.3390/su11154166
Chicago/Turabian StyleLiu, Jiying, Shengwei Zhu, Moon Keun Kim, and Jelena Srebric. 2019. "A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments" Sustainability 11, no. 15: 4166. https://doi.org/10.3390/su11154166
APA StyleLiu, J., Zhu, S., Kim, M. K., & Srebric, J. (2019). A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments. Sustainability, 11(15), 4166. https://doi.org/10.3390/su11154166