Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Municipalities, Case Studies
2.1.1. Amalfi, Antioquia
2.1.2. Plato, Magdalena
2.1.3. Caucasia, Antioquia
2.2. Data Collection
2.3. Multiple Correspondence Analysis
3. Results
3.1. Slow-Onset Flood: Plato and Caucasia
3.2. Sudden Floods: Amalfi
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salas, M.A.; Jiménez, M. Inundaciones; Versión el Centro Nacional de Prevención de Desastres-CENAPRED: México, Mexico, 2013; ISBN 970-628-870-8. [Google Scholar]
- United Nations Organization. Naciones Unidas Rio+20 El Futuro que Queremos. Available online: https://www.un.org/es/sustainablefuture/disasters.shtml (accessed on 13 June 2019).
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding. A Guide to Integrated Urban Flood Risk Management for 21st Century; World Bank: Washington, DC, USA, 2012; ISBN 978-08213-8866-2. [Google Scholar]
- Centre for Research on the Epidemiology of Disasters-CRED. EM-DAT: The OFDA/CRED International Disaster Database. Available online: http://www.emdat.be/database (accessed on 13 June 2019).
- Hoyois, P.; Guha-sapir, D. Three Decades of Floods in Europe: A preliminary Analysis of EMDAT Data; WHO collaborating centre for research on the epidemiology of disasters (CRED); Catholique University of Louvain: Louvain, Belgium, 2003; pp. 1–15. [Google Scholar]
- World Health Organization WHO|Flooding and Communicable Diseases Fact Sheet; World Health Organization: Geneva, Switzerland, 2012.
- Jakubicka, T.; Vos, F.; Phalkey, R.; Marx, M. Health Impacts of Floods in Europe; Centre for Research on the Epidemiology of Disasters—CRED: Brussels, Belgium, 2010. [Google Scholar]
- UN Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; UN Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 535–612. [Google Scholar]
- Panel Intergubernamental de Cambio Climático—IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139177245. [Google Scholar]
- Perles Roselló, M.J.; Sortino Barrionuevo, J.F.; Cantarero Prados, F. Cartografía de la vulnerabilidad del territorio frente al riesgo de inundación. Propuesta adaptada a la directiva europea de inundaciones y normativas derivadas. Boletín Asoc. Geógrafos Españoles 2017, 75, 341–372. [Google Scholar] [CrossRef]
- Gouldby, B.; Samuels, P.; Klijn, F.; Messner, F.; Ad Van, O.; Sayers, P. Language of Risk; HR Wallingford: Wallingford, UK, 2005. [Google Scholar]
- Congreso de la República de Colombia. Ley 1523 de 2012. Por la Cual se Adopta la Política Nacional de Gestión del Riesgo de Desastres y se Dictan Otras Disposiciones; Congreso de la República de Colombia: Bogotá, Colombia, 2012; p. 16. [Google Scholar]
- Adger, W.; Brooks, N.; Bentham, G.; Agnew, M. New Indicators of Vulnerability and Adaptive Capacity; Tyndall Centre Technical Report 7; Tyndall Centre for Climate Change Research: Norwich, UK, 2004. [Google Scholar]
- Bankoff, G. Constructing vulnerability: The historical, natural and social generation of flooding in metropolitan Manila. Disasters 2003, 27, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Damm, M. Mapping Social-ecological Vulnerability to Flooding. Ph. D. Thesis, United Nations University, Tokyo, Japan, 2010. [Google Scholar]
- Fekete, A. Assessment of Social Vulnerability to River Floods in Germany. Ph. D. Thesis, United Nations University, Tokyo, Japan, 2010. [Google Scholar]
- García, C.E.; Hurtado, J.E. Modelo Basado en Lógica Difusa para la Construcción Indicadores Vulnerabilidad Frente de Indicador es de V ulnerabilidad Urbana Fr ente a Fenómenos Naturales. Gestión Ambient. 2003, 6, 1–22. [Google Scholar]
- Kuhlicke, C.; Scolobig, A.; Tapsell, S.; Steinführer, A.; Marchi, B. Contextualizing social vulnerability: Findings from case studies across Europe. Nat. Hazards 2011, 58, 789–810. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. Vulnerabilidad. El Entorno Social, Político y Económico de los Desastres; LA RED/ITDG: Bogotá, Colombia, 1996. [Google Scholar]
- Turner, B.L.; Kasperson, R.E.; Matsone, P.A.; McCarthy, J.J.; Corell, R.W.; Christensene, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, T. Vulnerability analysis and disasters. Floods 2000, 1, 45–55. [Google Scholar]
- Cupples, J. Gender and Hurricane Mitch: Reconstructing subjectivities after disaster. Disasters 2007, 31, 155–175. [Google Scholar] [CrossRef]
- Kubal, C.; Haase, D.; Meyer, V.; Scheuer, S. Integrated urban flood risk assessment—Adapting a multicriteria approach to a city. Nat. Hazards Earth Syst. Sci. 2009, 9, 1881–1895. [Google Scholar] [CrossRef]
- Zhang, Y.; Lindell, M.K.; Prater, C.S. Vulnerability of community businesses to environmental disasters. Disasters 2009, 33, 38–57. [Google Scholar] [CrossRef]
- Birkmann, J. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; United Nations University: New York, NY, USA, 2006; ISBN 92-808-1135-5. [Google Scholar]
- Secretaría Interinstitucional de la Estrategia Internacional para la Reducción de Desastres. Vivir con el Riesgo. Informe Mundial Sobre Iniciativas para la Reducción de Desastres; Secretaría Interinstitucional de la Estrategia Internacional para la Reducción de Desastres: Geneva, Switzerland, 2004; ISBN 92-1-300228-9. [Google Scholar]
- Rodríguez-Gaviria, E.M. Diseño Metodológico Para La Evaluación Del Riesgo Por Inundación A Nivel Local Con Información Escasa; Universidad Nacional de Colombia-Sede Medellín: Medellín, Colombia, 2016. [Google Scholar]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2012; Volume 9781107025, pp. 25–64. ISBN 9781139177245. [Google Scholar]
- Apel, A.; Thieken, A.H.; Merz, B.; Blösch, G. Flood risk assessment and associated uncertainties. Nat. Hazards Earth Syst. Sci. 2004, 4, 295–308. [Google Scholar] [CrossRef]
- Villagrán de León, J.C. Vulnerability. A Conceptual and Methodological Review; United Nations University Institute for Environment and Human Security (UNU-EHS): Bonn, Germany, 2006; ISBN 3981058240. [Google Scholar]
- Federal Emergency Management Agency (FEMA). Technical Manual FLOOD MODEL; Federal Emergency Management Agency (FEMA): Washington, DC, USA, 2004. [Google Scholar]
- Fekete, A.; Lauwe, P.; Geier, W. Risk management goals and identification of critical infrastructures. Int. J. Crit. Infrastruct. 2012, 8, 336–353. [Google Scholar] [CrossRef]
- Zahran, S.; Brody, S.D.; Peacock, W.G.; Vedlitz, A.; Grover, H. Social vulnerability and the natural and built environment: A model of flood casualties in Texas. Disasters 2008, 32, 537–560. [Google Scholar] [CrossRef] [PubMed]
- Chingombe, W.; Pedzisai, E.; Manatsa, D.; Mukwada, G.; Taru, P. A participatory approach in GIS data collection for flood risk management, Muzarabani district, Zimbabwe. Arab. J. Geosci. 2014, 8, 1029–1040. [Google Scholar] [CrossRef]
- Kienberger, S. Participatory mapping of flood hazard risk in Munamicua, District of Búzi, Mozambique. J. Maps 2014, 10, 269–275. [Google Scholar] [CrossRef]
- Tran, P.; Shaw, R.; Chantry, G.; Norton, J. GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam. Disasters 2009, 33, 152–169. [Google Scholar] [CrossRef] [PubMed]
- White, I.; Kingston, R.; Barker, A. Participatory geographic information systems and public engagement within flood risk management. J. Flood Risk Manag. 2010, 3, 337–346. [Google Scholar] [CrossRef]
- Peters-Guarín, G.; McCall, M.K.; van Westen, C. Coping strategies and risk manageability: Using participatory geographical information systems to represent local knowledge. Disasters 2012, 36, 1–27. [Google Scholar] [CrossRef]
- Lu, S.; Mei, P.; Wang, J.; Zhang, H. Fatality and influence factors in high-casualty fires: A correspondence analysis. Saf. Sci. 2012, 50, 1019–1033. [Google Scholar] [CrossRef]
- Dodgson, J.S.; Spackman, M.; Pearman, A.; Phillips, L.D. Multi-Criteria Analysis: A Manual; Department for Communities and Local Government: London, UK, 2009; Volume 11, ISBN 9781409810230. [Google Scholar]
- Abdi, H.; Valentin, D. Multiple correspondence analysis. Encycl. Meas. Stat. 2007, 95, 116–128. [Google Scholar]
- Conte, J.C.; Rubio, E.; García, A.I.; Cano, F. Occupational accidents model based on risk–injury affinity groups. Saf. Sci. 2011, 49, 306–314. [Google Scholar] [CrossRef]
- Abad, J.; Blanco, P.; García, A. Análisis de Correspondencias y estudio de historias de vida: Una aplicación a la Encuesta de Transición Educativo-Formativa e Inserción Laboral. Pecvnia 2008, 6, 1–27. [Google Scholar] [CrossRef]
- Reis, A.P.; Patinha, C.; Ferreira da Silva, E.; Sousa, A.; Figueira, R.; Sérgio, C.; Novais, V. Assessment of human exposure to environmental heavy metals in soils and bryophytes of the central region of Portugal. Int. J. Environ. Health Res. 2010, 20, 87–113. [Google Scholar] [CrossRef] [PubMed]
- United Nations Department of Economic and Social Affairs (UN/DESA); United Nations Conference on Trade and Development (UNCTAD); Economic Commission for Africa (ECA); Economic Commission for Europe (ECE); Economic Commission for Latin America and the Caribbean (ECLAC); Economic and Social Commission for Asia and the Pacific (ESCAP); Economic and Social Commission for Western Asia (ESCWA); The United Nations World Tourism Organization (UNWTO). World Economic Situation and Prospects 2018; United Nations Publication: New York, NY, USA, 2018; ISBN 9789211091779. [Google Scholar]
- Congreso de la República de Colombia. Ley 617 de 2000; Congreso de la República de Colombia: Bogotá, Colombia, 2000; p. 280. [Google Scholar]
- Contaduría General de la Nación. Categorización Municipios y Departamentos; Contaduría General de la Nación: Bogotá, Colombia, 2018. [Google Scholar]
- Brakenridge, R. Global Active Archive of Large Flood Events. Available online: http://floodobservatory.colorado.edu/Archives/ (accessed on 1 october 2015).
- Guha-Sapir, D.; Vos, F.; Below, R. Annual Disaster Statistical Review 2011-The Numbers and Trends; Centre for Research on the Epidemiology of Disasters (CRED), Centre for Research on the Epidemiology of Disasters (CRED), Université Catholique de Louvain: Brussels, Belgium, 2012. [Google Scholar]
- Congreso de Colombia. Ley 1523 de 2012; Congreso de Colombia: Bogotá, Colombia, 2012; p. 30. [Google Scholar]
- Ministerio de Vivienda Sociedad y Territorio. Decreto 1807 de 2014 en lo Relativo a la Incorporación de la Gestión del Riesgo en los Planes de Ordenamiento; Ministerio de Vivienda Sociedad y Territorio: Bogotá, Colombia, 2014. [Google Scholar]
- Instituto de Hidrología y Metereología y Estudios Ambientales-IDEAM. Clasificaciones Climáticas de Colombia. Available online: http://www.ideam.gov.co/documents/21021/21789/climas+%5BModo+de+compatibilidad%5D.pdf/d8c85704-a07a-4290-ba65-f2042ce99ff9 (accessed on 5 August 2019).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Institución Universitaria Colegio Mayor de Antioquia; Universidad Nacional de Colombia; Municipio de Amalfi. Propuesta Metodológica Para Evaluar El Riesgo Por Inundaciones Súbitas De La Quebrada Tequendamita (Amalfi, Antioquia); Colegio Mayor de Antioquia: Amalfi, Colombia, 2018. [Google Scholar]
- Estadística, D.A. Necesidades Básicas Insatisfechas (NBI) por Municipio. Available online: http://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbi (accessed on 14 June 2019).
- De Bruijn, K.; de Frans, K.; Ölfert, A.; Penning-Rowsell, E.; Simm, J.; Wallis, M. Flood Risk Assessment and Flood Risk Management; HR Wallingford: Wallingford, UK, 2009. [Google Scholar]
- Instituto de Hidrología y Metereología y Estudios Ambientales-IDEAM. Inundaciones. Available online: http://www.ideam.gov.co/web/agua/amenazas-inundacion (accessed on 15 May 2019).
- Unidad Nacional de Gestión del Riesgo Inundaciones. Available online: http://www.sigpad.gov.co/sigpad/paginas_detalle.aspx?idp=144 (accessed on 17 February 2019).
- Universidad Nacional de Colombia. Criterios Metodológicos Mínimos Para La Elaboración E Interpretación Cartográfica De Zonificaciones De Amenaza Por Inundaciones Fluviales Para El Territorio Colombiano Con Una Aplicación Práctica De Dos Áreas Piloto (Inundaciones Lentas Y Súbitas) Fase I.; Universidad Nacional de Colombia: Medellín, Colombia, 2010. [Google Scholar]
- Corporación OSSO. Base de Datos DAPARD, Colombia—Inventario de Desastres Antioquia; Corporación OSSO: Cali, Colombia, 2015. [Google Scholar]
- Unidad Nacional de Gestión del Riesgo. Reporte de Emergencias; Unidad Nacional de Gestión del Riesgo: Bogotá, Colombia, 2015. [Google Scholar]
- NOAA Center for Weather and Climate Prediction. Historical El Niño/La Niña Episodes (1950-Present). Available online: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml (accessed on 9 July 2015).
- Berariu, R.; Fikar, C.; Gronalt, M.; Hirsch, P. Understanding the impact of cascade effects of natural disasters on disaster relief operations. Int. J. Disaster Risk Reduct. 2015, 12, 350–356. [Google Scholar] [CrossRef]
- Alcaldía Municipal de Amalfi. Plan de Desarrollo Municipal Amalfi Antioquia 2016–2019 “Amalfi, Amor y Pasión de Todos”; Alcaldía Municipal de Amalfi: Amalfi, Colombia, 2016. [Google Scholar]
- Alcaldía de Plato. Plan de Desarrollo Plato 2016–2019; Alcaldía de Plato: Plato, Colombia, 2016. [Google Scholar]
- Alcaldía de Caucasia. Plan de Desarrollo Caucasia 2016–2019; Alcaldía de Caucasia: Caucasia, Colombia, 2017. [Google Scholar]
- Botero, V. Geo-Information for Measuring Vulnerability to Earthquakes: A Fitness for Use Approach; University of Utrecht: Utrecht, The Netherlands, 2009. [Google Scholar]
- Martínez, J. The use of GIS and indicators to monitor intra-urban inequalities. A case study in Rosario, Argentina. Habitat Int. 2009, 33, 387–396. [Google Scholar] [CrossRef]
- Hartung, C.; Lerer, A.; Anokwa, Y.; Tseng, C.B.W. Open data kit: Tools to build information services for developing regions. In Proceedings of the 4th International Conference on Information and Communication Technologies and Development, London, UK, 13–16 December 2010. [Google Scholar]
- Buckle, P.; Mars, G.; Smale, R.S. New approaches to assessing vulnerability and resilience. Aust. J. Emerg. Manag. 2000, 15, 8–14. [Google Scholar]
- Thouret, J.C.; Ettinger, S.; Guitton, M.; Santoni, O.; Magill, C.; Martelli, K.; Zuccaro, G.; Revilla, V.; Charca, J.A.; Arguedas, A. Assessing physical vulnerability in large cities exposed to flash floods and debris flows: The case of Arequipa (Peru). Nat. Hazards 2014, 73, 1771–1815. [Google Scholar] [CrossRef]
- Universidad de Washington, Department of Computer Science and Engineering. Open Data Kit—ODK; Universidad de Washington, Department of Computer Science and Engineering: Washington, DC, USA, 2015. [Google Scholar]
- Caceres, A.; Basagaña, X.; Gonzalez, J.R. Multiple correspondence discriminant analysis: An application to detect stratification in copy number variation. Stat. Med. 2010, 29, 3284–3293. [Google Scholar] [CrossRef]
- Pinti, A.; Rambaud, F.; Griffon, J.-L.; Ahmed, A.T. A tool developed in Matlab for multiple correspondence analysis of fuzzy coded data sets: Application to morphometric skull data. Comput. Methods Programs Biomed. 2010, 98, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Greenacre, M. Correspondence analysis of raw data. Ecology 2010, 91, 958–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista-Foguet, J.M.; Revilla, M.; Saris, W.E.; Boyatzis, R.; Serlavós, R. Reassessing the Effect of Survey Characteristics on Common Method Bias in Emotional and Social Intelligence Competencies Assessment. Struct. Equ. Model. 2014, 21, 596–607. [Google Scholar] [CrossRef]
- Husson, F.; Lê, S.; Mazet, J. Factor Analysis and Data Mining with R. 2006. Available online: http://ftp.auckland.ac.nz/software/CRAN/doc/packages/FactoMineR.pdf (accessed on 10 August 2019).
- R Core Team. R: A language and environment for statistical computing. Available online: http://www.r-project.org/ (accessed on 29 May 2019).
Vulnerability | ||
---|---|---|
Exposure | Susceptibility | Resilience |
People with permanent disabilities | Evacuation procedures | Educational level reached of the inhabitants of the home |
Household inhabitants’ gender | Access to public services | Participation in associative organizations |
Age of the inhabitants of the household | Impact on the provision of public services | Access to health services |
Family structure | Employment level—Labor situation | Housing availability after evacuations during floods (R) |
Overcrowding | Income per household | Access to warning systems |
Angle of the building with respect to the river channel | Economically dependent household members | Access to humanitarian aid |
Household height with respect to the base level of the river channel | Family debts | Access to media |
Protective elements | Loss of housing contents | Acceptance and result of the processes of prevention, attention, and education against risk |
Number of windows and doors on the most exposed façade | Investment on home repairs to avoid damage and losses due to floods | Trust in the government institutions response in case of an event. |
Typology of the building—Material of walls and floors | Population density per block and homes | Awareness of the relationship between environmental management and risk reduction |
Distance to the nearest drainage or river | State of preservation of the structure | Awareness of the ability of institutions to react to a risk situation |
Building area | Year of construction of the building | Self-awareness of being under risk |
Construction density of the block | House tenure | |
Loss of flood energy considering block form | Existence of insurance culture and savings among the inhabitants of the municipality | |
Road density per block | ||
Type of structural foundation |
Variable | Typology of the Building—Material of Walls and Floors | ||
---|---|---|---|
Possible outcomes of the variable | Block, brick, stone, polished wood, stepped wall and adobe. | Bahareque, prefabricated material, rough wood, board, plank. | Guadua, cane, mat, other vegetable, zinc, cloth, cardboard, cans, waste, plastics. |
Qualification (qualitative) | Low (L) | Medium (M) | High (H) |
Qualification (quantitative) | (0.2) | (0.3) | (0.5) |
Vi | Vi+1 | Vi+2 | …….. | Vn | |
---|---|---|---|---|---|
Household 1 | M | H | M | H | |
Household 2 | L | L | M | L | |
... | |||||
Household n | H | H | M | H |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Gaviria, E.M.; Ochoa-Osorio, S.; Builes-Jaramillo, A.; Botero-Fernández, V. Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas. Sustainability 2019, 11, 4341. https://doi.org/10.3390/su11164341
Rodríguez-Gaviria EM, Ochoa-Osorio S, Builes-Jaramillo A, Botero-Fernández V. Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas. Sustainability. 2019; 11(16):4341. https://doi.org/10.3390/su11164341
Chicago/Turabian StyleRodríguez-Gaviria, Edna M., Sol Ochoa-Osorio, Alejandro Builes-Jaramillo, and Verónica Botero-Fernández. 2019. "Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas" Sustainability 11, no. 16: 4341. https://doi.org/10.3390/su11164341
APA StyleRodríguez-Gaviria, E. M., Ochoa-Osorio, S., Builes-Jaramillo, A., & Botero-Fernández, V. (2019). Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas. Sustainability, 11(16), 4341. https://doi.org/10.3390/su11164341