Developing General Equations for Urban Tree Biomass Estimation with High-Resolution Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.1.1. Remote Sensing Imagery Data
2.1.2. Field Tree Measurement and Tree Species Selection
2.2. Tree Crown Projected Area Generation and Stand Cover Delineation
2.3. Dry Weight Biomass Estimation
2.4. Vegetation Index Derivation
2.5. Regression Analysis and Statistical Evaluation
3. Results
3.1. DWB–NDVI Relationships
3.2. Comparison of DWB Estimations
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nowak, D.J.; Greenfield, E.J. US urban forest statistics, values, and projections. J. For. 2018, 116, 164–177. [Google Scholar] [CrossRef]
- United Nations Population Division. World Urbanization Prospects; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Wilson, B.; Chakraborty, A. The environmental impacts of sprawl: Emergent themes from the past decade of planning research. Sustainability 2013, 5, 3302–3327. [Google Scholar] [CrossRef]
- Andersson, E. Urban landscapes and sustainable cities. Ecol. Soc. 2006, 11, 34:1–34:17. [Google Scholar] [CrossRef]
- Cohen, M. A systematic review of urban sustainability assessment literature. Sustainability 2017, 9, 2048. [Google Scholar] [CrossRef]
- Habitat III. New Urban Agenda 2016. Available online: https://habitat3.org/the-new-urban-agenda/ (accessed on 2 June 2019).
- Gómez, F.; Jabaloyes, J.; Montero, L.; De Vicente, V.; Valcuende, M. Green areas, the most significant indicator of the sustainability of cities: Research on their utility for urban planning. J. Urban Plan. Dev. 2011, 137, 311–328. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Xiao, Q.; Wu, C. Los Angeles 1-Million Tree Canopy Cover Assessment (General Technical Report PSW-GTR-207); USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2008.
- Grove, J.M.; O’Neil-Dunne, J.; Pelletier, K.; Nowak, D.; Walton, J. A Report on New York City’s Present and Possible Urban Tree Canopy; USDA Forest Service, Northern Research Station: Newtown Square, PA, USA, 2006.
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmiercak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using greenspace infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Salmond, J.J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 36:1–36:17. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Baggethun, E.; Gren, A.; Barton, D.N.; Langemeyer, J.; McPhearson, T.; O’Farrell, P.; Andersson, E.; Hamstead, Z.; Kremer, P. Urban ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: New York, NY, USA, 2013; pp. 175–251. ISBN 978-94-007-7087-4. [Google Scholar]
- Ordóñez, C.; Duinker, P.N. Interpreting sustainability for urban forests. Sustainability 2010, 2, 1510–1522. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1-59726-040-1. [Google Scholar]
- MacFarlane, D.W. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the USA. Biomass Bioenergy 2009, 33, 628–634. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdollahi, K.K.; Ning, Z.H.; Appeaning, A. Global Climate Change and the Urban Forest; GCRCC and Franklin Press: Baton Rouge, LA, USA, 2000; ISBN 978-193-012-962-7. [Google Scholar]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of landcover types for urban planning. Landsc. Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Chan, K.M.A.; Satterfield, T.; Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 2012, 74, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Engemann, K.; Pedersen, C.B.; Arge, L.; Tsirogiannis, C.; Mortensen, P.B.; Svenning, J.-C. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl. Acad. Sci. USA 2019, 116, 5188–5193. [Google Scholar] [CrossRef] [Green Version]
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- Buccolieri, R.; Santiago, J.; Rivas, E.; Sanchez, B. Review on urban tree modelling in CFD simulations: Aerodynamic, deposition and thermal effects. Urban For. Urban Green. 2018, 31, 212–220. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 2016, 45, 188–198. [Google Scholar] [CrossRef]
- Mitraka, Z.; Diamantakis, E.; Chrysoulakis, N.; Castro, E.A.; Jose, R.S.; Gonzalez, A.; Blecic, I. Incorporating bio-physical sciences into a decision support tool for sustainable urban planning. Sustainability 2014, 6, 7982–8006. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Lopes, M.; García, R.; Grimmond, C.; Jones, M.; Magliulo, V.; Klostermann, J.; Synnefa, A.; Mitraka, Z.; Castro, E.; et al. Sustainable urban metabolism as a link between bio-physical sciences and urban planning: The BRIDGE project. Landsc. Urban Plan. 2013, 112, 100–117. [Google Scholar] [CrossRef]
- MacKenzie, R.; Pugh, T.; Rogers, C. Sustainable cities: Seeing past the trees. Nature 2010, 468, 765. [Google Scholar] [CrossRef]
- Pataki, D.E. City trees: Urban greening needs better data. Nature 2013, 502, 624. [Google Scholar] [CrossRef]
- USDA Forest Service. Forest Inventory and Analysis, National Urban FIA Plot Field Guide: Field Data Collection Procedures for Urban FIA Plots, version 7.2.1; USDA Forest Service: Washington, DC, USA, 2018.
- Brown, S.; Gillespie, A.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. Comprehensive Database of Diameter-based Biomass Regressions for North American Tree Species (General Technical Report NE-319); USDA Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2004.
- Chojnacky, D.C.; Heath, L.S.; Jenkins, J.C. Updated generalized biomass equations for North American tree species. Forestry 2014, 87, 129–151. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar] [CrossRef]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five North American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Pillsbury, N.H.; Reimer, J.L.; Thompson, R.P. Tree Volume Equations for Fifteen Urban Species in California (Technical Report No. 7); Urban Forest Ecosystems Institute, California Polytechnic State University: San Luis Obsipo, CA, USA, 1998. [Google Scholar]
- McHale, M.R.; Burke, I.C.; Lefsky, M.A.; Peper, P.J.; McPherson, E.G. Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst. 2009, 12, 95–113. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. The urban forest effects (UFORE) model: Quantifying urban forest structure and functions. In Integrated Tools for Natural Resources Inventories in the 21st Century (General Technical Report NC-212); Hansen, M., Burk, T., Eds.; USDA Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 2000; pp. 714–720. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Ibarra, M. Brooklyn’s Urban Forest (General Technical Report NE-290); USDA Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2002.
- Jo, H.-K.; McPherson, E.G. Carbon storage and flux in urban residential greenspace. J. Environ. Manag. 1995, 45, 109–133. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar]
- McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Maco, S.E.; Xiao, Q. Municipal forest benefits and costs in five US cities. J. For. 2005, 103, 411–416. [Google Scholar] [CrossRef]
- Aguaron, E.; Mcpherson, E.G. Comparison of methods for estimating carbon dioxide storage in Sacramento’s urban forest. In Carbon Sequestration in Urban Ecosystems; Lal, R., Augustin, B., Eds.; Springer: New York, NY, USA, 2012; pp. 43–71. ISBN 978-94-007-2365-8. [Google Scholar]
- Peper, P.J.; McPherson, E.G. Comparison of four foliar and woody biomass estimation methods applied to open-grown deciduous trees. J. Arboric. 1998, 24, 191–200. [Google Scholar]
- Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project (General Technical Report NE-186); McPherson, E.G., Nowak, D.J., Rowntree, R.A., Eds.; USDA Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1994; pp. 83–94. [Google Scholar]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Pastor, J.; Aber, J.D.; Melillo, J.M. Biomass prediction using generalized allometric regressions for some northeast tree species. For. Ecol. Manag. 1984, 7, 265–274. [Google Scholar] [CrossRef]
- Tigges, J.; Churkina, G.; Lakes, T. Modeling above-ground carbon storage: A remote sensing approach to derive individual tree species information in urban settings. Urban Ecosyst. 2017, 20, 97–111. [Google Scholar] [CrossRef]
- McPherson, E.G.; van Doorn, N.S.; Peper, P.J. Urban Tree Database and Allometric Equations (General Technical Report PSW-GTR-253); USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2016.
- Kunwar, K.S.; Chen, G.; McCarter, J.B.; Meentemeyer, R.K. Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS J. Photogramm. Remote Sens. 2015, 101, 310–322. [Google Scholar] [CrossRef] [Green Version]
- McPherson, E.G.; Xiao, Q.; Aguaron, E. A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landsc. Urban Plan. 2013, 120, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Raciti, S.M.; Hutyra, L.R.; Newell, J.D. Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods. Sci. Total Environ. 2014, 500–501, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar] [CrossRef]
- Wilkes, P.; Disney, M.I.; Vicari, M.B.; Calders, K.; Burt, A. Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance Manag. 2018, 13, 10:1–10:20. [Google Scholar] [CrossRef] [PubMed]
- Alonzo, M.; McFadden, J.P.; Nowak, D.J.; Roberts, D.A. Mapping urban forest structure and function using hyperspectral imagery and LiDAR data. Urban For. Urban Green. 2016, 17, 135–147. [Google Scholar] [CrossRef]
- Shrestha, R.; Wynne, R.H. Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging LiDAR. Remote Sens. 2012, 4, 484–508. [Google Scholar] [CrossRef]
- Lee, J.-H.; Ko, Y.; McPherson, E.G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 2016, 16, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ye, C.; Li, J.; Chapman, M.A. Quantifying the carbon storage in urban trees using multispectral ALS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3358–3365. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and LiDAR data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Voss, M.; Sugumaran, R. Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 2008, 8, 3020–3036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qiu, F. Mapping individual tree species in an urban forest using airborne LiDAR data and hyperspectral imagery. Photogramm. Eng. Remote Sens. 2012, 78, 1079–1087. [Google Scholar] [CrossRef]
- Liu, L.; Coops, N.C.; Aven, N.W.; Pang, Y. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens. Environ. 2017, 200, 170–182. [Google Scholar] [CrossRef]
- Zhang, Z.; Kazakova, A.; Moskal, M.L.; Styers, M.D. Object-based tree species classification in urban ecosystems using LiDAR and hyperspectral data. Forests 2016, 7, 122. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.J.; Grossman-Clarke, S. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Wu, J.; Bauer, M.E. Estimating net primary production of turfgrass in an urban-suburban landscape with quickbird imagery. Remote Sens. 2012, 4, 849–866. [Google Scholar] [CrossRef]
- Wu, J.; Bauer, M.E. Evaluating the effects of shadow detection on Quickbird image classification and spectroradiometric restoration. Remote Sens. 2013, 5, 4450–4469. [Google Scholar] [CrossRef]
- Richardson, J.; Moskal, L. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban For. Urban Green. 2014, 13, 152–157. [Google Scholar] [CrossRef]
- Chen, G.; Ozelkan, E.; Singh, K.K.; Zhou, J.; Brown, M.R.; Meentemeyer, R.K. Uncertainties in mapping forest carbon in urban ecosystems. J. Environ. Manag. 2017, 187, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myeong, S.; Nowak, D.J.; Hopkins, P.F.; Brock, R.H. Urban cover mapping using digital high-spatial resolution aerial imagery. Urban Ecosyst. 2001, 5, 243–256. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-based urban tree species classification using bi-temporal WorldView-2 and WorldView-3 images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef]
- Shojanoori, R.; Shafri, H.Z.M. Review on the Use of Remote Sensing for Urban Forest Monitoring. Arboric. Urban For. 2016, 42, 400–417. [Google Scholar]
- Wulder, M.; Niemann, K.O.; Goodenough, D. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens. Environ. 2000, 73, 103–114. [Google Scholar] [CrossRef]
- Xiao, Q.; Ustin, S.L.; McPherson, E.G. Using AVIRIS data and multiple-masking techniques to map urban forest species. Int. J. Remote Sens. 2004, 25, 5637–5654. [Google Scholar] [CrossRef]
- Wu, J.; Wang, D.; Bauer, M.E. Image-based atmospheric correction of QuickBird imagery of Minnesota cropland. Remote Sens. Environ. 2005, 99, 315–325. [Google Scholar] [CrossRef]
- Updike, T.; Comp, C. Radiometric use of WorldView-2 imagery. In DigitalGlobe Technical Note; DigitalGlobe, Inc.: Westminster, CO, USA, 2010. [Google Scholar]
- Shensky, M.G., Jr. Designing Field Data Collection Methods for Developing a University Enterprise GIS Database: An Assessment of the California State University, Fullerton Tree Inventory. Master’s Thesis, California State University, Fullerton, CA, USA, 2013. [Google Scholar]
- Wilkinson, D.M. Modelling tree crowns as geometric solids. Arboric. J. 1995, 19, 387–393. [Google Scholar] [CrossRef]
- Beyer, H.L. Geospatial Modelling Environment, version 0.7.4.0. Available online: http://www.spatialecology.com/gme (accessed on 11 October 2018).
- ESRI. ArcGIS Desktop, Release 10.3.1; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Climate Action Reserve. Urban Forest Project Protocol, version 1.1; Climate Action Reserve: Los Angeles, CA, USA, 2010. [Google Scholar]
- Markwardt, L.J.; Wilson, T.R. Strength and Related Properties of Woods Grown in the United States (Technical Bulletin No. 479); USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1935.
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardnerl, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
- Husch, B.; Beers, T.W.; Kershaw, J.A., Jr. Forest Mensuration, 4th ed.; Wiley: New York, NY, USA, 2002; ISBN 978-0-471-01850-6. [Google Scholar]
- Rouse, J.W.; Haas, R.H., Jr.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS-1 Symposium; NASA SP-351; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Brandtberg, T.; Walter, F. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Mach. Vis. Appl. 1998, 11, 64–73. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar] [CrossRef]
- Baskerville, G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 1972, 2, 49–53. [Google Scholar] [CrossRef]
- IBM Corporation. IBM SPSS Statistics for Windows; Release 25.0; IBM Corporation: Armonk, NY, USA, 2017. [Google Scholar]
- Crow, T.R.; Schlaegel, B.E. A guide to using regression equations for estimating tree biomass. North. J. Appl. For. 1988, 5, 15–22. [Google Scholar] [CrossRef]
- Rao, P.; Hutyra, L.R.; Raciti, S.M.; Finzi, A.C. Field and remotely sensed measures of soil and vegetation carbon and nitrogen across an urbanization gradient in the Boston metropolitan area. Urban Ecosyst. 2013, 16, 593–616. [Google Scholar] [CrossRef]
- Beauchamp, J.J.; Olson, J.S. Corrections for bias in regression estimates after logarithmic transformation. Ecology 1973, 54, 1403–1407. [Google Scholar] [CrossRef]
- Sprugel, D.G. Correcting for bias in long-transformed allometric equations. Ecology 1983, 64, 209–210. [Google Scholar] [CrossRef]
- Shaw, J.D. Models for estimation and simulation of crown and canopy cover. In Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium (General Technical Report WO-69), New Orleans, LA, USA, 18–20 November 2003; pp. 183–191. [Google Scholar]
- Lang, M.; Kurvits, V. Restoration of tree crown shape for canopy cover estimation. For. Stud. 2007, 46, 23–34. [Google Scholar]
- Johnson, A.D.; Gerhold, H.D. Carbon storage by urban tree cultivars, in roots and above-ground. Urban For. Urban Green. 2003, 2, 65–72. [Google Scholar] [CrossRef]
- Nyakuengama, J.G.; Downes, G.M.; Ng, J. Growth and wood density responses to later-age fertilizer application in Pinus radiata. IAWA J. 2002, 23, 431–448. [Google Scholar] [CrossRef]
Tree Type | Species | Common Name | n | DBH (cm) | Height (m) | ||
---|---|---|---|---|---|---|---|
Range | Mean | Range | Mean | ||||
Evergreen | Cinnamomum camphora | Camphor Tree | 8 | 13.2–68.8 | 23.2 | 5.2–17.1 | 7.8 |
Magnolia grandiflora | Southern Magnolia | 19 | 14.5–74.2 | 33.3 | 5.8–18.9 | 9.8 | |
Deciduous | Jacaranda mimosifolia | Jacaranda | 58 | 17.3–59.7 | 38.6 | 6.9–17.5 | 11.6 |
Liquidambar styraciflua | American Sweet Gum | 27 | 14.0–54.4 | 30.2 | 7.3–20.0 | 11.6 | |
Platanus × acerifolia | London Planetree | 47 | 15.5–73.9 | 24.2 | 7.9–27.9 | 10.4 | |
Ulmus parvifolia | Chinese Elm | 9 | 17.3–55.9 | 42.4 | 7.6–18.9 | 15.2 | |
Pistacia chinensis | Chinese Pistache | 23 | 12.7–51.3 | 16.7 | 6.7–15.8 | 7.2 |
Species | Local Volume Equation | Standard Volume Equation |
---|---|---|
Cinnamomum camphora | ||
Magnolia grandiflora | ||
Jacaranda mimosifolia | ||
Liquidambar styraciflua | ||
Platanus × acerifolia | ||
Ulmus parvifolia | ||
Pistacia chinensis |
Location Level | Crown Level | Stand Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Evergreen | t* | Deciduous | t* | Evergreen | t* | Deciduous | t* | t* | ||
n | 21 | 131 | 21 | 131 | 108 | |||||
b1−5 | 7.88 | 4.95 | 4.19 | 10.97 | 0.86 | 9.15 | 1.04 | 23.64 | 0.81 | 15.88 |
(1.38) | (0.38) | (0.09) | (0.04) | (0.05) | ||||||
a1−5 | 0.15 | 0.16 | 2.65 | 11.47 | 3.95 | 21.35 | 3.63 | 45.95 | 4.04 | 35.44 |
(0.93) | (0.23) | (0.19) | (0.08) | (0.11) | ||||||
R2 | 0.56 | 0.48 | 0.81 | 0.82 | 0.70 | |||||
SE | 0.83 | 1.09 | 0.58 | 0.66 | 0.61 |
Location Level | Crown Level | Stand Level | |||
---|---|---|---|---|---|
Evergreen | Deciduous | Evergreen | Deciduous | ||
αi | 1.16 | 14.15 | 51.94 | 37.71 | 56.83 |
βi | 7.88 | 4.19 | 0.86 | 1.04 | 0.81 |
Tree Type | n | W | tp | b | R2 | t* | RMSE (kg) | MRD (%) | |
---|---|---|---|---|---|---|---|---|---|
Location Level | Evergreen | 6 | 0.98 + | 3.19 + | 0.55 | 0.47 | 4.35 | 269.18 | −39.57 |
Deciduous | 33 | 0.91 + | 4.20 + | 0.51 | 0.63 | 12.69 | 403.79 | −29.58 | |
Crown Level | Evergreen | 6 | 0.84 + | 1.74 | 0.77 | 0.83 | 10.39 | 148.51 | −23.25 |
Deciduous | 33 | 0.95 + | 1.25 | 0.86 | 0.84 | 20.91 | 193.48 | −12.60 | |
Stand Level | 27 | 0.89 + | 2.75 + | 0.62 | 0.81 | 16.97 | 471.51 | −13.16 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J. Developing General Equations for Urban Tree Biomass Estimation with High-Resolution Satellite Imagery. Sustainability 2019, 11, 4347. https://doi.org/10.3390/su11164347
Wu J. Developing General Equations for Urban Tree Biomass Estimation with High-Resolution Satellite Imagery. Sustainability. 2019; 11(16):4347. https://doi.org/10.3390/su11164347
Chicago/Turabian StyleWu, Jindong. 2019. "Developing General Equations for Urban Tree Biomass Estimation with High-Resolution Satellite Imagery" Sustainability 11, no. 16: 4347. https://doi.org/10.3390/su11164347
APA StyleWu, J. (2019). Developing General Equations for Urban Tree Biomass Estimation with High-Resolution Satellite Imagery. Sustainability, 11(16), 4347. https://doi.org/10.3390/su11164347