Combining Marine Ecology and Economy to Roadmap the Integrated Coastal Management: A Systematic Literature Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Training Data Acquisition
2.2. Topic Model Construction
2.3. Topic and Paper Clustering
2.4. Paper Network Assembly
2.5. Paper Network Visualization and Analyses
2.6. Extended Dataset Acquisition
2.7. Code
3. Results and Discussion
3.1. Marine Protection as a Bridge Between Ecological and Economic Issues within the Integrated Coastal Management
3.2. The Isolation of Harmful Algal Blooms: Weak Perception of the Associated Economic Risks?
3.3. The Mature Socio-Ecologic Fingerprint of the Management of Commercial Fishery
3.4. Inclusive Economy Is Markedly Peripheral Within the Coastal Management
3.5. Road-Mapping the Costal Management: Systems Ecology and Citizen Science as Potential Integration Nodes
4. Conclusions
- (i)
- Exploiting the utility of marine protection as a bridge between ecological and economic concepts and approaches, and between ecological economics sectors,
- (ii)
- Improving the role of systems ecology as an integration node, in the frame of inter-disciplinary scientific initiatives,
- (iii)
- Complementing systems ecology with citizen science, in the frame of inclusive economic initiatives, such as ecotourism.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patterson, M.; Glavovic, B. From frontier economics to an ecological economics of the oceans and coasts. Sustain. Sci. 2013, 8, 11–24. [Google Scholar] [CrossRef]
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social-ecological resilience and sustainability. Ecol. Soc. 2016, 21, 41. [Google Scholar] [CrossRef]
- Levin, S. Fragile Dominion; Basic Books: New York, NY, USA, 2007. [Google Scholar]
- Partelow, S. A review of the social-ecological systems framework: Applications, methods, modifications, and challenges. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Beatley, T. Blue Urbanism: Exploring Connections between Cities and Oceans; Island Press: Washington, DC, USA, 2014. [Google Scholar]
- Turner, R.K. Integrating natural and socio-economic science in coastal management. J. Mar. Syst. 2000, 25, 447–460. [Google Scholar] [CrossRef]
- Ye, G.; Chou, L.M.; Yang, S.; Wu, J.; Liu, P.; Jin, C. Is integrated coastal management an effective framework for promoting coastal sustainability in China’s coastal cities? Mar. Policy 2015, 56, 48–55. [Google Scholar] [CrossRef]
- Leslie, H.M.; Basurto, X.; Nenadovic, M.; Sievanen, L.; Cavanaugh, K.C.; Cota-Nieto, J.J.; Erisman, B.E.; Finkbeiner, E.; Hinojosa-Arango, G.; Moreno-Báez, M.; et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 5979–5984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Assche, K.; Hornidge, A.K.; Schlüter, A.; Vaidianu, N. Governance and the coastal condition: Towards new modes of observation, adaptation and integration. Mar. Policy 2019, 1–10. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Elmqvist, T.; Wittmer, H.; Ring, I.; Hansju, B.; Sukhdev, P. Challenges in framing the economics of ecosystems and biodiversity: The TEEB initiative. Curr. Opin. Environ. Sustain. 2010, 2, 15–26. [Google Scholar]
- Cicin-Sain, B. Sustainable development and integrated coastal management. Ocean Coast. Manag. 1993, 21, 11–43. [Google Scholar] [CrossRef]
- Long, R.D.; Charles, A.; Stephenson, R.L. Key principles of marine ecosystem-based management. Mar. Policy 2015, 57, 53–60. [Google Scholar] [CrossRef]
- Patterson, M.G.; Glavovic, B.C. Ecological Economics of the Oceans and Coasts; Edward Elgar Publishing: Cheltenham, UK, 2008. [Google Scholar]
- Harris, R. The Semantics of Science; A&C Black: London, UK, 2005. [Google Scholar]
- Syed, S.; Borit, M.; Spruit, M. Narrow lenses for capturing the complexity of fisheries: A topic analysis of fisheries science from 1990 to 2016. Fish Fish. 2018, 19, 643–661. [Google Scholar] [CrossRef]
- Suris-Regueiro, J.C.; Garza-Gil, M.D.; Varela-Lafuente, M.M. Marine economy: A proposal for its definition in the European Union. Mar. Policy 2013, 42, 111–124. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2013. Available online: http://softlibre.unizar.es/manuales/aplicaciones/r/fullrefman.pdf (accessed on 24 June 2019).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. ICWSM 2009, 8, 361–362. [Google Scholar]
- Fruchterman, T.M.J.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 2014, 9, e98679. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 16, 3747–3752. [Google Scholar] [CrossRef]
- Dale, P.; Sporne, I.; Knight, J.; Sheaves, M.; Eslami-Andergoli, L.; Dwyer, P. A conceptual model to improve links between science, policy and practice in coastal management. Mar. Policy 2019, 103, 42–49. [Google Scholar] [CrossRef]
- Limburg, K.E.; Hughes, R.M.; Jackson, D.C.; Czech, B. Human population increase, economic growth, and fish conservation: Collision course or savvy stewardship? Fisheries 2011, 36, 27–35. [Google Scholar] [CrossRef]
- Koschinsky, A.; Heinrich, L.; Boehnke, K.; Cohrs, J.C.; Markus, T.; Shani, M.; Singh, P.; Smith Stegen, K.; Werner, W. Deep-sea mining: Interdisciplinary research on potential environmental, legal, economic, and societal implications. Integr. Environ. Assess. Manag. 2018, 14, 672–691. [Google Scholar] [CrossRef]
- Heyman, W.D.; Granados-Dieseldorff, P. The voice of the fishermen of the Gulf of Honduras: Improving regional fisheries management through fisher participation. Fish. Res. 2012, 125–126, 129–148. [Google Scholar] [CrossRef]
- Griffith, D.R. The ecological implications of individual fishing quotas and harvest cooperatives. Front. Ecol. Environ. 2008, 6, 191–198. [Google Scholar] [CrossRef]
- Voss, R.; Quaas, M.F.; Schmidt, J.O.; Tahvonen, O.; Lindegren, M.; Möllmann, C. Assessing social-ecological trade-offs to advance ecosystem-based fisheries management. PLoS ONE 2014, 9, e107811. [Google Scholar] [CrossRef]
- Calvo-Ugarteburu, G.; Raemaekers, S.; Halling, C. Rehabilitating mussel beds in Coffee Bay, South Africa: Towards fostering cooperative small-scale fisheries governance and enabling community upliftment. Ambio 2017, 46, 214–226. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Castilla, J.C.; White, A.T.; Defeo, O. Healing small-scale fisheries by facilitating complex socio-ecological systems. Rev. Fish Biol. Fish. 2009, 19, 33–47. [Google Scholar] [CrossRef]
- Himes-Cornell, A.; Hoelting, K. Resilience strategies in the face of short- and long-term change: Out-migration and fisheries regulation in Alaskan fishing communities. Ecol. Soc. 2015, 20, 9. [Google Scholar] [CrossRef]
- Raycraft, J. Marine protected areas and spatial fetishism: A viewpoint on destructive fishing in coastal Tanzania. Mar. Pollut. Bull. 2018, 133, 478–480. [Google Scholar] [CrossRef]
- McClenachan, L.; Lovell, S.; Keaveney, C. Social benefits of restoring historical ecosystems and fisheries: Alewives in Maine. Ecol. Soc. 2015, 20, 31. [Google Scholar] [CrossRef]
- Angermeier, P.L. The role of fish biologists in helping society build ecological sustainability. Fisheries 2007, 32, 9–20. [Google Scholar] [CrossRef]
- Edwards, R.; Evans, A. The challenges of marine spatial planning in the Arctic: Results from the ACCESS programme. Ambio 2017, 46, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Bennett, N.J.; Dearden, P.; Murray, G.; Kadfak, A. The capacity to adapt?: Communities in a changing climate, environment, and economy on the northern Andaman coast of Thailand. Ecol. Soc. 2014, 19, 5. [Google Scholar] [CrossRef]
- Huang, Y.F.; Cui, S.H.; Ouyang, Z.Y. Integrated ecological assessment as the basis for management of a coastal urban protected area: A case study of Xiamen, China. Int. J. Sustain. Dev. 2012, 15, 389–394. [Google Scholar] [CrossRef]
- Evans, S.M.; Birchenough, A.C. Community-based management of the environment: Lessons from the past and options for the future. Aquat. Conserv. Mar. Freshw. Ecosyst. 2001, 11, 137–147. [Google Scholar] [CrossRef]
- Fouqueray, T.; Trommetter, M.; Frascaria-Lacoste, N. Managed retreat of settlements and infrastructures: ecological restoration as an opportunity to overcome maladaptive coastal development in France. Restor. Ecol. 2018, 26, 806–812. [Google Scholar] [CrossRef]
- Vince, J.; Hardesty, B.D. Plastic pollution challenges in marine and coastal environments: From local to global governance. Restor. Ecol. 2017, 25, 123–128. [Google Scholar] [CrossRef]
- Rogers, S.I.; Tasker, M.L.; Earll, R.; Gubbay, S. Ecosystem objectives to support the UK vision for the marine environment. Mar. Pollut. Bull. 2007, 54, 128–144. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, Y.C.; Song, M.L. Construction and analogue simulation of TERE model for measuring marine bearing capacity in Qingdao. J. Clean. Prod. 2018, 167, 1303–1313. [Google Scholar] [CrossRef]
- Ke, L.; Wang, Q.; Gai, M.; Zhou, H. Assessing seawater quality with a variable fuzzy recognition model. Chin. J. Oceanol. Limnol. 2014, 32, 645–655. [Google Scholar] [CrossRef]
- Reiblich, J.; Hartge, E.; Wedding, L.M.; Killian, S.; Verutes, G.M. Bridging climate science, law, and policy to advance coastal adaptation planning. Mar. Policy 2019, 104, 125–134. [Google Scholar] [CrossRef]
- Pittman, S.J.; Rodwell, L.D.; Shellock, R.J.; Williams, M.; Attrill, M.J.; Bedford, J.; Curry, K.; Fletcher, S.; Gall, S.C.; Lowther, J.; et al. Marine parks for coastal cities: A concept for enhanced community well-being, prosperity and sustainable city living. Mar. Policy 2019, 103, 160–171. [Google Scholar] [CrossRef]
- Kamikawa, R.; Nagai, S.; Hosoi-Tanabe, S.; Itakura, S.; Yamaguchi, M.; Uchida, Y.; Baba, T.; Sako, Y. Application of real-time PCR assay for detection and quantification of Alexandrium tamarense and Alexandrium catenella cysts from marine sediments. Harmful Algae 2007, 6, 413–420. [Google Scholar] [CrossRef]
- Bebianno, M.J. Effects of pollutants in the Ria Formosa Lagoon, Portugal. Sci. Total Environ. 1995, 171, 107–115. [Google Scholar] [CrossRef]
- Zahran, H.H. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soils 1997, 25, 211–223. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Gobler, C.J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 2011, 10, 480–488. [Google Scholar] [CrossRef]
- Jones, K.L.; Mikulski, C.M.; Barnhorst, A.; Doucette, G.J. Comparative analysis of bacterioplankton assemblages from Karenia brevis bloom and nonbloom water on the west Florida shelf (Gulf of Mexico, USA) using 16S rRNA gene clone libraries. FEMS Microbiol. Ecol. 2010, 73, 468–485. [Google Scholar] [CrossRef]
- Kubanek, J.; Hicks, M.K.; Naar, J.; Villareal, T.A. Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol. Oceanogr. 2005, 50, 883–895. [Google Scholar] [CrossRef]
- Hardison, D.R.; Sunda, W.G.; Shea, D.; Litaker, R.W. Increased toxicity of Karenia brevis during phosphate limited growth: Ecological and evolutionary implications. PLoS ONE 2013, 8, e58545. [Google Scholar] [CrossRef]
- McQuatters-Gollop, A.; Johns, D.G.; Bresnan, E.; Skinner, J.; Rombouts, I.; Stern, R.; Aubert, A.; Johansen, M.; Bedford, J.; Knights, A. From microscope to management: The critical value of plankton taxonomy to marine policy and biodiversity conservation. Mar. Policy 2017, 83, 1–10. [Google Scholar] [CrossRef]
- Tweddle, J.F.; Gubbins, M.; Scott, B.E. Should phytoplankton be a key consideration for marine management? Mar. Policy 2018, 97, 1–9. [Google Scholar] [CrossRef]
- Rodríguez Rodríguez, G.; Villasante, S.; do Carme García-Negro, M. Are red tides affecting economically the commercialization of the Galician (NW Spain) mussel farming? Mar. Policy 2011, 35, 252–257. [Google Scholar] [CrossRef]
- Monkman, G.G.; Kaiser, M.J.; Hyder, K. Heterogeneous public and local knowledge provides a qualitative indicator of coastal use by marine recreational fishers. J. Environ. Manag. 2018, 228, 495–505. [Google Scholar] [CrossRef]
- Mazzocchin, S.; Cipriano, S. The fishing economy in ancient times: Goods and amphorae for the Adriatic trade. Reg. Stud. Mar. Sci. 2018, 21, 17–20. [Google Scholar] [CrossRef]
- Meltzer, L.; Blinick, N.S.; Fleishman, A.B. Management implications of the biodiversity and socio-economic impacts of shrimp trawler by-catch in Bahía de Kino, Sonora, México. PLoS ONE 2012, 7, e35609. [Google Scholar] [CrossRef]
- Babali, N.; Kacher, M.; Belhabib, D.; Louanchi, F.; Pauly, D. Recreational fisheries economics between illusion and reality: The case of Algeria. PLoS ONE 2018, 13, e0201602. [Google Scholar] [CrossRef]
- Chen, Y.; Hunter, M. Assessing the green sea urchin (Strongylocentrotus drobachiensis) stock in Maine, USA. Fish. Res. 2003, 60, 527–537. [Google Scholar] [CrossRef]
- Bellquist, L.F.; Graham, J.B.; Barker, A.; Ho, J.; Semmens, B.X. Long-term dynamics in “trophy” sizes of pelagic and coastal pelagic fishes among California recreational fisheries (1966–2013). Trans. Am. Fish. Soc. 2016, 145, 977–989. [Google Scholar] [CrossRef]
- Stage, J.; Kirchner, C.H. An economic comparison of the commercial and recreational linefisheries in Namibia. Afr. J. Mar. Sci. 2005, 27, 577–584. [Google Scholar] [CrossRef]
- Kasapoglu, N.; Duzgunes, E. The common problem in the Black Sea fisheries: By-catch and its effects on the fisheries economy. Turk. J. Fish. Aquat. Sci. 2017, 17, 387–394. [Google Scholar] [CrossRef]
- Rao, G.S.; Sathianandan, T.V.; Kuriakose, S.; Mini, K.G.; Najmudeen, T.M.; Jayasankar, J.; Mathew, W.T. Demographic and socio-economic changes in the coastal fishing community of India. Indian J. Fish. 2016, 63, 1–9. [Google Scholar]
- Navodaru, I.; Staras, M.; Cernisencu, I. The challenge of sustainable use of the Danube delta fisheries, Romania. Fish. Manag. Ecol. 2001, 8, 323–332. [Google Scholar] [CrossRef]
- Belhabib, D.; Koutob, V.; Sall, A.; Lam, V.W.Y.; Pauly, D. Fisheries catch misreporting and its implications: The case of Senegal. Fish. Res. 2014, 151, 1–11. [Google Scholar] [CrossRef]
- Clua, E.; Buray, N.; Legendre, P.; Mourier, J.; Planes, S. Business partner or simple catch? The economic value of the sicklefin lemon shark in French Polynesia. Mar. Freshw. Res. 2011, 62, 764–770. [Google Scholar] [CrossRef] [Green Version]
- Stévant, P.; Rebours, C.; Chapman, A. Seaweed aquaculture in Norway: Recent industrial developments and future perspectives. Aquac. Int. 2017, 25, 1373–1390. [Google Scholar] [CrossRef]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Kabir Chowdhury, M.A.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 2018, 30, 197–213. [Google Scholar] [CrossRef]
- Vianna, G.M.S.; Meekan, M.G.; Rogers, A.A.; Kragt, M.E.; Alin, J.M.; Zimmerhackel, J.S. Shark-diving tourism as a financing mechanism for shark conservation strategies in Malaysia. Mar. Policy 2018, 94, 220–226. [Google Scholar] [CrossRef]
- Sutcliffe, S.R.; Barnes, M.L. The role of shark ecotourism in conservation behaviour: Evidence from Hawaii. Mar. Policy 2018, 97, 27–33. [Google Scholar] [CrossRef]
- Zimmerhackel, J.S.; Kragt, M.E.; Rogers, A.A.; Ali, K.; Meekan, M.G. Evidence of increased economic benefits from shark-diving tourism in the Maldives. Mar. Policy 2019, 100, 21–26. [Google Scholar] [CrossRef]
- Yoopetch, C.; Nimsai, S. Science mapping the knowledge base on sustainable tourism development, 1990–2018. Sustainability 2019, 11, 3631. [Google Scholar] [CrossRef]
- Rountos, K.J.; Peterson, B.J.; Karakassis, I. Indirect effects of fish cage aquaculture on shallow Posidonia oceanica seagrass patches in coastal greek waters. Aquac. Environ. Interact. 2012, 2, 105–115. [Google Scholar] [CrossRef]
- Dumbauld, B.R.; McCoy, L.M. Effect of oyster aquaculture on seagrass Zostera marina at the estuarine landscape scale in Willapa Bay, Washington (USA). Aquac. Environ. Interact. 2015, 7, 29–47. [Google Scholar] [CrossRef]
- Odum, H.T. Systems Ecology: An Introduction; John Wiley and Sons: New York, NY, USA, 1983. [Google Scholar]
- Vann-Sander, S.; Clifton, J.; Harvey, E. Can citizen science work? Perceptions of the role and utility of citizen science in a marine policy and management context. Mar. Policy 2016, 72, 82–93. [Google Scholar] [CrossRef]
- Hyder, K.; Townhill, B.; Anderson, L.G.; Delany, J.; Pinnegar, J.K. Can citizen science contribute to the evidence-base that underpins marine policy? Mar. Policy 2015, 59, 112–120. [Google Scholar] [CrossRef]
- Miloslavich, P.; Bax, N.J.; Simmons, S.E.; Klein, E.; Appeltans, W.; Aburto-Oropeza, O.; Andersen Garcia, M.; Batten, S.D.; Benedetti-Cecchi, L.; Checkley, D.M.; et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Chang. Biol. 2018, 24, 2416–2433. [Google Scholar] [CrossRef]
- D’Alelio, D.; Eveillard, D.; Coles, V.J.; Caputi, L.; Ribera d’Alcalà, M.; Iudicone, D. Modelling the complexity of plankton communities exploiting omics potential: From present challenges to an integrative pipeline. Curr. Opin. Syst. Biol. 2019, 19, 68–74. [Google Scholar] [CrossRef]
- Hughes, B.B.; Beas-Luna, R.; Barner, A.K.; Brewitt, K.; Brumbaugh, D.R.; Cerny-Chipman, E.B.; Close, S.L.; Coblentz, K.E.; De Nesnera, K.L.; Drobnitch, S.T.; et al. Long-Term Studies Contribute Disproportionately to Ecology and Policy. Bioscience 2017, 67, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Zingone, A.; D’Alelio, D.; Mazzocchi, M.G.; Sarno, D. Time series and beyond: Multifaceted plankton research at a marine Mediterranean LTER site. Nat. Conserv. 2019, 310, 273–310. [Google Scholar] [CrossRef]
- Cianelli, D.; D’Alelio, D.; Uttieri, M.; Sarno, D.; Zingone, A.; Zambianchi, E.; Ribera d’Alcalà, M. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system. Sci. Rep. 2017, 7, 15868. [Google Scholar] [CrossRef]
- Ruggiero, M.V.; D’Alelio, D.; Ferrante, M.I.; Santoro, M.; Vitale, L.; Procaccini, G.; Montresor, M. Clonal expansion behind a marine diatom bloom. ISME J. 2018, 12, 463–472. [Google Scholar] [CrossRef]
- D’Alelio, D.; Libralato, S.; Wyatt, T.; Ribera d’Alcalà, M. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 2016, 6, 21806. [Google Scholar] [CrossRef] [Green Version]
- Byron, C.; Bengtson, D.; Costa-Pierce, B.; Calanni, J. Integrating science into management: Ecological carrying capacity of bivalve shellfish aquaculture. Mar. Policy 2011, 35, 363–370. [Google Scholar] [CrossRef]
- Siano, R.; Chapelle, A.; Antoine, V.; Michel-Guillou, E.; Rigaut-Jalabert, F.; Guillou, L.; Hégaret, H.; Leynaert, A.; Curd, A. Citizen participation in monitoring phytoplankton seawater discolorations. Mar. Policy 2018. [Google Scholar] [CrossRef]
- Franzese, P.P.; Russo, G.F.; Ulgiati, S. Modelling the interplay of environment, economy and resources in Marine Protected Areas. A case study in Southern Italy. Ecol. Quest. 2008, 10, 91–97. [Google Scholar]
- Tulloch, A.I.T.; Possingham, H.P.; Joseph, L.N.; Szabo, J.; Martin, T.G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 2013, 165, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Delaney, D.G.; Sperling, C.D.; Adams, C.S.; Leung, B. Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biol. Invasions 2008, 10, 117–128. [Google Scholar] [CrossRef]
- Eikeset, A.M.; Mazzarella, A.B.; Davíðsdóttir, B.; Klinger, D.H.; Levin, S.A.; Rovenskaya, E.; Stenseth, N.C. What is blue growth? The semantics of “Sustainable Development” of marine environments. Mar. Policy 2018, 87, 177–179. [Google Scholar] [CrossRef]
- Alvisi, F.; D’Alelio, D. Present and future of aquatic sciences: The perspective of AIOL scientific community for a priority roadmap over the next five years. Adv. Oceanogr. Limnol. 2018, 9, 19–35. [Google Scholar] [CrossRef]
- Xavier, L.Y.; Jacobi, P.R.; Turra, A. On the advantages of working together: Social Learning and knowledge integration in the management of marine areas. Mar. Policy 2018, 88, 139–150. [Google Scholar] [CrossRef]
- Battaglia, P.; Romeo, T.; Consoli, P.; Scotti, G.; Andaloro, F. Characterization of the artisanal fishery and its socio-economic aspects in the central Mediterranean Sea (Aeolian Islands, Italy). Fish. Res. 2010, 102, 87–97. [Google Scholar] [CrossRef]
- D’Alelio, D. The Mesothalassia Bike-Tour: (Re)discovering water by riding with scientists. Limnol. Oceanogr. Bull. 2016, 25, 1–7. [Google Scholar] [CrossRef]
- Adger, W.N.; Brown, K.; Tompkins, E.L. The political economy of cross-scale networks in resource co-management. Ecol. Soc. 2006, 10, 9. [Google Scholar] [CrossRef]
- Barbesgaard, M. Blue growth: Savior or ocean grabbing? J. Peasant Stud. 2018, 45, 130–149. [Google Scholar] [CrossRef]
- Smith, M.D.; Lynham, J.; Sanchirico, J.N.; Wilson, J.A. Political economy of marine reserves: Understanding the role of opportunity costs. Proc. Natl. Acad. Sci. USA 2010, 107, 18300–18305. [Google Scholar] [CrossRef] [Green Version]
- L’Astorina, A.; Bergami, C.; D’Alelio, D.; Dattolo, E.; Pugnetti, A. What is at stake for scientists when communicating ecology? Insight from the informal communication initiative “Cammini LTER”. Vis. Sustain. 2018, 19–37. [Google Scholar] [CrossRef]
Term | TF |
---|---|
climate change | 124 |
small scale | 69 |
coral reefs | 66 |
long term | 58 |
fisheries management | 57 |
marine resources | 53 |
protected areas | 49 |
ecosystem services | 47 |
socio economic | 44 |
fish species | 40 |
Term | TF |
---|---|
marine | 808 |
species | 664 |
fisheries | 521 |
coastal | 516 |
economy | 494 |
management | 471 |
fish | 435 |
economic | 418 |
sea | 354 |
fishing | 324 |
Code | Topic | Coherence | Prevalence | Top Five Terms |
---|---|---|---|---|
IS | invasive species | 0.062 | 4.949 | species, marine, sea, native, invasive |
SE | systems ecology | 0.068 | 10.59 | social, environmental, fisheries, economic, research |
BGC | biogeochemical cycles | 0.15 | 5.657 | oxygen, water, nitrogen, concentrations, bay |
LI | local impacts | 0.048 | 10.02 | spatial, study, data, important, analysis |
HAB | harmful algal blooms | 0.33 | 5.884 | blooms, algal, species, harmful, health |
CR | coral reefs | 0.426 | 3.846 | coral, reefs, reef, coral reefs, mangrove |
AQ | aquaculture | 0.138 | 5.428 | aquaculture, production, shrimp, farming, seaweed |
CC | climate change | 0.273 | 5.52 | change, climate, climate change, ocean, impacts |
FS | fish species | 0.058 | 6.824 | fish, species, populations, population, salmon |
ET | ecotourism | 0.113 | 4.277 | tourism, economic, whale, million, industry |
EP | ecophysiology | 0.081 | 5.642 | increased, growth, rate, effects, conditions |
ES | ecosystem services | 0.094 | 7.746 | ecosystem, model, ecological, restoration, services |
MPA | marine Protected Areas | 0.069 | 7.331 | management, marine, conservation, areas, resources |
FI | Fisheries | 0.186 | 8.007 | fisheries, fishing, fishery, catch, management |
SD | sustainable development | 0.043 | 8.278 | coastal, marine, development, environmental, water |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hay Mele, B.; Russo, L.; D’Alelio, D. Combining Marine Ecology and Economy to Roadmap the Integrated Coastal Management: A Systematic Literature Review. Sustainability 2019, 11, 4393. https://doi.org/10.3390/su11164393
Hay Mele B, Russo L, D’Alelio D. Combining Marine Ecology and Economy to Roadmap the Integrated Coastal Management: A Systematic Literature Review. Sustainability. 2019; 11(16):4393. https://doi.org/10.3390/su11164393
Chicago/Turabian StyleHay Mele, Bruno, Luca Russo, and Domenico D’Alelio. 2019. "Combining Marine Ecology and Economy to Roadmap the Integrated Coastal Management: A Systematic Literature Review" Sustainability 11, no. 16: 4393. https://doi.org/10.3390/su11164393
APA StyleHay Mele, B., Russo, L., & D’Alelio, D. (2019). Combining Marine Ecology and Economy to Roadmap the Integrated Coastal Management: A Systematic Literature Review. Sustainability, 11(16), 4393. https://doi.org/10.3390/su11164393