Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Methods
2.2. Methods
2.2.1. Methods of Disaster Risk Assessment
2.2.2. Normalization of Indicators
2.2.3. Fuzzy Analytic Hierarchy Process (AHP)
3. Research Area
4. Results
4.1. Drought Risk Assessment
4.2. Drought Risk Estimate
4.2.1. Estimation of Future Hazard
4.2.2. Estimation of Future Vulnerability
4.2.3. Estimation of Future Exposure
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Statistics | Pr (mm mon−1) | Evaporation (mm mon−1) | T (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
Observation | MRI-CGCM3 | Error | Observation | MRI-CGCM3 | Error | Observation | MRI-CGCM3 | Error | |
Mean | 70.8258 | 58.2089 | −20.6169 | 12.1496 | 45.3955 | 33.2459 | 11.6572 | 6.0697 | −5.5875 |
median | 61.4500 | 47.1123 | −14.3377 | 11.3837 | 38.9522 | 27.5685 | 12.8151 | 6.9891 | −5.826 |
Mode | 1.3905 | 7.7494 | 6.3589 | 2.2233 | 15.3962 | 13.1729 | −6.0305 | −12.9264 | −6.8959 |
Standard deviation | 48.1565 | 37.5733 | −0.5831 | 6.4183 | 20.8258 | 14.4075 | 9.3843 | 10.6533 | 1.269 |
References
- Chou, J.; Xian, T.; Dong, W.; Xu, Y. Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years. Sustainability 2019, 11, 55. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 204–216. [Google Scholar] [CrossRef]
- Wu, H.; Wilhite, D.A. An operational agricultural drought risk assessment model for Nebraska, USA. Nat. Hazards 2004, 33, 1–21. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, J.; Deng, Y. Risk analysis and evaluation of agricultural drought disaster in the major grain-producing areas, China. Geomat. Nat. Hazards Risk 2016, 7, 1691–1706. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Z. Assessment of drought during corn growing season in Northeast China. Theor. Appl. Climatol. 2018, 133, 1315–1321. [Google Scholar] [CrossRef]
- Passioura, J.B. Roots and Drought Resistance. Agric. Water Manag. 1983, 7, 265–280. [Google Scholar] [CrossRef]
- Rind, D.; Goldberg, R.; Hansen, J.; Rosenzweig, C.; Ruedy, R. Potential Evapotranspiration and the Likelihood of Future Drought. J. Geophys. Res.-Atmos. 1990, 95, 9983–10004. [Google Scholar] [CrossRef]
- Adger, W.N. Social vulnerability to climate change and extremes in coastal Vietnam. World Dev. 1999, 27, 249–269. [Google Scholar] [CrossRef]
- Hewitt, K. Seismic Risk And Mountain Environments—The Role of Surface Conditions in Earthquake Disaster. Mt. Res. Dev. 1983, 3, 27–44. [Google Scholar] [CrossRef]
- Gregoric, G.; Susnik, A. Drought Management Centre for South Eastern Europe. In Global Environmental Change: Challenges to Science and Society in Southeastern Europe; Springer: Berlin, Germany, 2010; pp. 237–242. [Google Scholar]
- Kelman, I. Linking disaster risk reduction, climate change, and the sustainable development goals. Disaster Prev. Manag. 2017, 26, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Cheung, N.K.-W. At risk: Natural hazards, people’s vulnerability and disasters. Geogr. J. 2007, 173, 189–190. [Google Scholar] [CrossRef]
- Dilley, M. Setting priorities: Global patterns of disaster risk. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2217–2229. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Ma, D.; Bao, Y.; Tong, Z.; Liu, X. Dynamic risk assessment of drought disaster for maize based on integrating multi-sources data in the region of the northwest of Liaoning Province, China. Nat. Hazards 2013, 65, 1393–1409. [Google Scholar] [CrossRef]
- Zhang, J.-Q.; Zhang, Q.; Yan, D.-H.; Liu, X.-P.; Tong, Z.-J. A Study on Dynamic Risk Assessment of Maize Drought Disaster in Northwestern Liaoning Province, China. Beyond Exp. Risk Anal. Crisis Response 2011, 16, 196–206. [Google Scholar]
- Wilhite, D.A. Managing drought risk in a changing climate. Climate Res. 2016, 70, 99–102. [Google Scholar] [CrossRef]
- Jenkins, K. Indirect economic losses of drought under future projections of climate change: A case study for Spain. Nat. Hazards 2013, 69, 1967–1986. [Google Scholar] [CrossRef]
- Young, G.; Zavala, H.; Wandel, J.; Smit, B.; Salas, S.; Jimenez, E.; Fiebig, M.; Espinoza, R.; Diaz, H.; Cepeda, J. Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. Clim. Chang. 2010, 98, 245–276. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H. A hierarchical Bayesian approach for the analysis of climate change impact on runoff extremes. Hydrol. Process. 2014, 28, 6292–6308. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of Cmip5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 Years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117–161. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Gruebler, A.; O’Neill, B.; Riahi, K.; Chirkov, V.; Goujon, A.; Kolp, P.; Prommer, I.; Scherbov, S.; Slentoe, E. Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol. Forecast. Soc. Chang. 2007, 74, 980–1029. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Smirnov, O.; Zhang, M.; Xiao, T.; Orbell, J.; Lobben, A.; Gordon, J. The relative importance of climate change and population growth for exposure to future extreme droughts. Clim. Chang. 2016, 138, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Davin, E.L.; de Noblet-Ducoudre, N. Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes. J. Clim. 2010, 23, 97–112. [Google Scholar] [CrossRef]
- Wen, Q.H.; Zhang, X.; Xu, Y.; Wang, B. Detecting human influence on extreme temperatures in China. Geophys. Res. Lett. 2013, 40, 1171–1176. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. ClineCole. In At risk: Natural Hazards, People’s Vulnerability and Disasters; Routledge: Abingdon, UK, 1997; Volume 21, pp. 185–186. [Google Scholar]
- Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.M.; Petaja, T.; Su, H.; Cheng, Y.F.; Yang, X.Q.; Wang, M.H.; et al. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy-Programming and the Pareto Optimal Set. Fuzzy Sets Syst. 1983, 10, 57–63. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Chen, W.-C.; Chang, C.-J. A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert Syst. Appl. 2008, 34, 96–107. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. An integrated fuzzy AHP-ELECTRE methodology for environmental impact assessment. Expert Syst. Appl. 2011, 38, 8553–8562. [Google Scholar] [CrossRef]
- Schimel, D.S.; Braswell, B.H.; Holland, E.A.; McKeown, R.; Ojima, D.S.; Painter, T.H.; Parton, W.J.; Townsend, A.R. Climatic, Edaphic, and Biotic Controls over Storage and Turnover of Carbon in Soils. Glob. Biogeochem. Cycles 1994, 8, 279–293. [Google Scholar] [CrossRef]
- Schimel, D.; Melillo, J.; Tian, H.Q.; McGuire, A.D.; Kicklighter, D.; Kittel, T.; Rosenbloom, N.; Running, S.; Thornton, P.; Ojima, D.; et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 2000, 287, 2004–2006. [Google Scholar] [CrossRef]
- Qian, H.; Joseph, R.; Zeng, N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Chang. Biol. 2010, 16, 641–656. [Google Scholar] [CrossRef]
- Shao, P.; Zeng, X.; Sakaguchi, K.; Monson, R.K.; Zeng, X. Terrestrial Carbon Cycle: Climate Relations in Eight CMIP5 Earth System Models. J. Clim. 2013, 26, 8744–8764. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Caemmerer, S.V.; Berry, J.A. A Biochemical-Model of Photosynthetic CO2 Assimilation in Leaves of C-3 Species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Ryan, M.G. Effects of Climate Change on Plant Respiration. Ecol. Appl. 1991, 1, 157–167. [Google Scholar] [CrossRef]
- Thum, T.; Raisanen, P.; Sevanto, S.; Tuomi, M.; Reick, C.; Vesala, T.; Raddatz, T.; Aalto, T.; Jarvinen, H.; Altimir, N.; et al. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates. J. Geophys. Res.-Biogeosci. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Ma, D.; Wu, S. Climate change risk to forests in China associated with warming. Sci. Rep. 2018, 8, 493. [Google Scholar] [CrossRef]
- Cabrera Cabrera, J.W.; Castillo Navarro, L.F. Climate change and debris flow: Hazards maps in Matucana village Peru under IPCC scenarios. Hydrology In a Changing World: Environmental And Human Dimensions. Proceeding of the FRIEND-Water 2014, Montpellier, France, 11 September 2014; 363, pp. 234–238. [Google Scholar]
- Mainali, J.; Pricope, N.G. High-resolution spatial assessment of population vulnerability to climate change in Nepal. Appl. Geogr. 2017, 82, 66–82. [Google Scholar] [CrossRef]
- Yin, S.; Sun, C.; Li, J. Determinants of Disaster Risk and Disaster Risk Management. Progress. Inquisitiones Mutatione Clim. 2012, 8, 84–89. [Google Scholar]
- Yuan, W. Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations. Adv. Atmos. Sci. 2013, 30, 1679–1694. [Google Scholar] [CrossRef]
Types | Index Name | Historical Period | Source |
---|---|---|---|
Meteorological data | Temperature, precipitation, etc. | 1988–2017 | National Meteorological Information Center |
Social statistics | Population, GDP, etc. | 1988–2017 | China Statistical Yearbook |
Model | Index Name | Horizontal Resolution (Lat Lon) | Selected References |
---|---|---|---|
MRI-CGCM3 | Temperature, precipitation, evaporation | 1.125° 1.125° | Sillmann et al., 2013 [21] |
Global Land-Use Models (GLMs) | Crop, pasture, primary land, second land, urban | 0.5° 0.5° | Hurtt et al., 2011 [22] Moss et al., 2010 [23] |
International Institute for Applied System Analysis (IIASA) | Population, GDP | 0.5° 0.5° | Grubler et al., 2007 [24] Hawkins et al., 2011 [25] |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Province | Main Risk Factors | |
---|---|---|
Gansu | Hazard | Vulnerability |
Ningxia | Hazard | Vulnerability |
Inner Mongolia | Hazard | Exposure |
Xinjiang | Hazard | Vulnerability |
Guangdong | Vulnerability | Exposure |
Qinghai | Hazard | |
Shanxi | Vulnerability | |
Guangxi | Exposure | |
Yunnan | Exposure |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, J.; Xian, T.; Zhao, R.; Xu, Y.; Yang, F.; Sun, M. Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change. Sustainability 2019, 11, 4463. https://doi.org/10.3390/su11164463
Chou J, Xian T, Zhao R, Xu Y, Yang F, Sun M. Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change. Sustainability. 2019; 11(16):4463. https://doi.org/10.3390/su11164463
Chicago/Turabian StyleChou, Jieming, Tian Xian, Runze Zhao, Yuan Xu, Fan Yang, and Mingyang Sun. 2019. "Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change" Sustainability 11, no. 16: 4463. https://doi.org/10.3390/su11164463
APA StyleChou, J., Xian, T., Zhao, R., Xu, Y., Yang, F., & Sun, M. (2019). Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change. Sustainability, 11(16), 4463. https://doi.org/10.3390/su11164463