Flexural-Fatigue Properties of Sustainable Pervious Concrete Pavement Material Containing Ground Tire Rubber and Silica Fume
Abstract
:1. Introduction
- Mix design and pervious concrete beams production for two mixes with same aggregate size, porosity, and water-to-binder ratio
- Conducting the static flexural tests and determination of the static flexural strength and flexural strain of two kinds of pervious concrete beams
- Selection of the stress level, loading frequency and stress ratio for flexural-fatigue tests
- Conducting the flexural-fatigue tests of two kinds of pervious concrete under different stress levels
- Analysis of the effect of stress level and modifier on the fatigue property of pervious concrete
- Fitting of fatigue-life distribution based on the Weibull distribution and conducting good-of-fit test
- Establishment of the fatigue-life equation
2. Materials and Methods
2.1. Materials and Mix Design
2.2. Specimen Preparation and Experiment Program
2.3. Determination of Flexural Strength and Flexural Stain
2.4. Flexural-Fatigue Tests
3. Results and Analysis
3.1. Experimental Results
3.1.1. Static Flexural Strength
3.1.2. Flexural Strain
3.1.3. Flexural-Fatigue Life
3.2. Fitting of Fatigue-Life Distribution
3.2.1. Graphical Method
3.2.2. Method of Maximum Likelihood
3.2.3. Method of Moments
3.3. Goodness-of-Fit Test
3.4. Fatigue-Life Distribution
3.5. Establishment of Fatigue-Life Equation
4. Conclusions
- The static flexural tests indicate that the addition of ground tire rubber and silica fume improves the deformability of pervious concrete without sacrificing strength.
- The flexural-fatigue tests indicate that the fatigue life decreases with the increasing stress level. The fatigue life of GTRSFPC is higher than that of CPC at the same stress level, which shows that the addition of ground tire rubber and silica fume improves the fatigue life of pervious concrete.
- The Kolmogorov–Smirnov test results show that the two-parameter Weibull distribution is suitable for the fatigue data fitting. The graphical method, maximum likelihood method and moment method can be used to determine the Weibull distribution parameters. With the increase of the stress level, the shape parameter α increases while the scale parameter u decreases. In general, the parameters α and u of GTRSFPC are higher than that of CPC at the same stress level.
- Based on the Weibull distribution, the fatigue equations with different survival probabilities for CPC and GTRSFPC are established. The fatigue equations indicate that the relationship of stress level S and fatigue life N better accords with ln-linear law. When the survival probability is the same, GTRSFPC has higher fatigue life.
- Compared with CPC, GTRSFPC not only performs well in terms of deformability and fatigue performance, but also plays an important role in waste utilization, environmental protection and sustainable development.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, T.; Wijesiri, B.; Jia, Z.L.; Li, Y.X.; Goonetilleke, X. Re-thinking classical mechanistic model for pollutant build-up on urban impervious surfaces. Sci. Total Environ. 2019, 651, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.R.; Edwards, P.J. Using water management infrastructure to address both flood risk and the urban heat island. Int. J. Water Resour. Dev. 2017, 34, 490–498. [Google Scholar] [CrossRef]
- Shariat, R.; Roozbahani, A.; Ebrahimian, A. Risk analysis of urban stormwater infrastructure systems using fuzzy spatial multi-criteria decision making. Sci. Total Environ. 2019, 647, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Byun, K.; Chiu, C.M.; Hamlet, A.F. Effects of 21st century climate change on seasonal flow regimes and hydrologic extremes over the Midwest and Great Lakes region of the US. Sci. Total Environ. 2019, 650, 1261–1277. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.; Costello, C.; Libecap, G.D. Expanding water markets in the western United States: Barriers and lessons from other natural resource markets. Rev. Environ. Econ. Policy 2019, 13, 43–61. [Google Scholar] [CrossRef]
- Al-Bakri, J.T.; Salahat, M.; Suleiman, A.; Suifan, M.; Hamdan, M.R.; Khresat, S.; Kandakji, T. Impact of climate and land use changes on water and food security in Jordan: Implications for transcending “the tragedy of the commons”. Sustainability 2013, 5, 724–748. [Google Scholar] [CrossRef]
- Chithra, S.V.; Nair, M.V.H.; Amarnath, A.; Anjana, N.S. Impacts of impervious surfaces on the environment. Int. J. Eng. Sci. Invent. 2015, 4, 27–31. [Google Scholar]
- Singh, R.; Goel, R. Pervious concrete—A review on its properties and applications. Sustain. Eng. Lect. Notes Civ. Eng. 2019, 30, 157–165. [Google Scholar]
- Yang, J.; Jiang, G.L. Experimental study on properties of pervious concrete pavement materials. Cem. Concr. Res. 2003, 33, 381–386. [Google Scholar] [CrossRef]
- Welker, A.L.; Barbis, J.D.; Jeffers, P.A. A side-by-side comparison of pervious concrete and porous asphalt. J. Am. Water Resour. Assoc. 2012, 48, 809–819. [Google Scholar] [CrossRef]
- Kabagire, K.D.; Yahia, A. Modelling the properties of pervious concrete using a full-factorial design. Road Mater. Pavement 2016, 19, 1–17. [Google Scholar] [CrossRef]
- Jennifer, M.; Terry, L. Practical review of pervious pavement designs. Clean-Soil Air Water 2014, 42, 111–124. [Google Scholar]
- Huang, B.S.; Wu, H.; Shu, X.; Burdette, E.G. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 2010, 24, 818–823. [Google Scholar] [CrossRef]
- Yeih, W.; Fu, T.C.; Chang, J.L.; Huang, R. Properties of pervious concrete made with air-cooling electric arc furnace slag as aggregates. Constr. Build. Mater. 2015, 93, 737–745. [Google Scholar] [CrossRef]
- Gaedicke, C.; Torres, A.; Huynh, K.C.T.; Marines, A. A method to correlate splitting tensile strength and compressive strength of pervious concrete cylinders and cores. Constr. Build. Mater. 2016, 125, 271–278. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Influence of mix parameters on pore properties and modulus of pervious concrete: An application of ultrasonic pulse velocity. Mater. Struct. 2016, 49, 5255–5271. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.J.; Wang, X.H.; Zhou, W.F. Strength, fracture and fatigue of pervious concrete. Constr. Build. Mater. 2013, 42, 97–104. [Google Scholar] [CrossRef]
- Lian, C.; Zhuge, Y.; Beecham, S. The relationship between porosity and strength for porous concrete. Constr. Build. Mater. 2011, 25, 4294–4298. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Sebaibi, N.; Boutouil, M.; Leleyter, L.; Baraud, F. A modified method for the design of pervious concrete mix. Constr. Build. Mater. 2014, 73, 271–282. [Google Scholar] [CrossRef]
- Torres, A.; Hu, J.; Ramos, A. The effect of the cementitious paste thickness on the performance of pervious concrete. Constr. Build. Mater. 2015, 95, 850–859. [Google Scholar] [CrossRef]
- Chang, J.J.; Yeih, W.; Chung, T.J.; Huang, R. Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement. Constr. Build. Mater. 2016, 109, 34–40. [Google Scholar] [CrossRef]
- Brake, N.A.; Allahdadi, H.; Adam, F. Flexural strength and fracture size effects of pervious concrete. Constr. Build. Mater. 2016, 113, 536–543. [Google Scholar] [CrossRef]
- Mohammadi, Y.; Kaushik, S.K. Flexural Fatigue-life distributions of plain and fibrous concrete at various stress levels. J. Mater. Civ. Eng. 2005, 17, 650. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Flexural-fatigue characteristics of pervious concrete: Statistical distributions and model development. Constr. Build. Mater. 2017, 153, 1–15. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zheng, M.L.; Wang, Q.; Yang, J.G.; Lin, T.F. Flexural fatigue behavior of polymer-modified pervious concrete with single sized aggregates. Constr. Build. Mater. 2016, 124, 897–905. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Effect of pore structure on fatigue of pervious concrete. Road Mater. Pavement Des. 2018, 21, 1–23. [Google Scholar] [CrossRef]
- Pindado, M.A.; Aguado, A.; Josa, A. Fatigue behavior of polymer-modified porous concretes. Cem. Concr. Res. 1999, 29, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.F.; Zheng, M.L.; Wang, B.G. Formulation and application of fatigue equation for porous cement concrete. J. Chin. Ceram. Soc. 2005, 33, 827. [Google Scholar]
- Liu, H.B.; Luo, G.B.; Gong, Y.F.; Wei, H.B. Mechanical properties, permeability, and freeze-thaw resistance of pervious concrete modified by waste ground tire rubbers. Appl. Sci. 2018, 8, 1843. [Google Scholar] [CrossRef]
- Liu, H.B.; Luo, G.B.; Wang, L.H.; Wang, W.S.; Li, W.J.; Gong, Y.F. Laboratory evaluation of eco-friendly pervious concrete pavement material containing silica fume. Appl. Sci. 2019, 9, 73. [Google Scholar] [CrossRef]
- Liu, H.B.; Luo, G.B.; Wei, H.B.; Yu, H. Strength, permeability, and freeze-thaw durability of pervious concrete with different aggregate sizes, porosities, and water-binder ratios. Appl. Sci. 2018, 8, 1217. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Technical Specification for Pervious Cement Concrete Pavement; Ministry of Housing and Urban-Ural Construction of the People’s Republic of China: Beijing, China, 2009. (In Chinese)
- American Society for Testing and Materials (ASTM). A Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data; ASTM Special Publication 91-A: Philadelphia, PA, USA, 1963. [Google Scholar]
Mix ID. | Coarse Aggregate | Cement | Ground Tire Rubber | Silica Fume | Water | Superplasticizer |
---|---|---|---|---|---|---|
CPC 1 | 1503.3 | 479.9 | 0 | 0 | 144.0 | 3.84 |
GTRSFPC 2 | 1503.3 | 413.0 | 28.2 | 56.3 | 140.8 | 3.75 |
Mix ID | Static Flexural Strength | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average | Standard Deviation | |
CPC | 4.39 | 4.35 | 4.85 | 4.59 | 4.47 | 4.53 | 0.20 |
GTRSFPC | 4.91 | 4.88 | 4.21 | 4.76 | 4.58 | 4.67 | 0.29 |
Mix ID | Static Flexural Stain | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Average | Standard Deviation | |
CPC | 0.51% | 0.49% | 0.36% | 0.48% | 0.39% | 0.45% | 0.06% |
GTRSFPC | 0.60% | 0.63% | 0.45% | 0.49% | 0.59% | 0.55% | 0.07% |
Type | Stress Level S | |||
---|---|---|---|---|
0.70 | 0.75 | 0.80 | 0.85 | |
CPC | 37,115 | 6354 | 1350 | 340 |
75,473 | 12,852 | 2248 | 579 | |
156,631 | 19,457 | 3600 | 879 | |
214,759 | 32,656 | 5479 | 1187 | |
337,462 | 50,560 | 7778 | 1642 | |
GTRSFPC | 51,621 | 9589 | 1721 | 398 |
84,797 | 18,752 | 3284 | 625 | |
193,306 | 32,147 | 4576 | 970 | |
267,857 | 45,423 | 7452 | 1240 | |
435,779 | 72,780 | 9785 | 1793 |
Stress Level S | CPC | GTRSFPC | ||
---|---|---|---|---|
α | u | α | u | |
0.85 | 1.4381 | 1106 | 1.5058 | 1197 |
0.80 | 1.2697 | 4901 | 1.2888 | 6454 |
0.75 | 1.0971 | 29,192 | 1.1266 | 42,975 |
0.70 | 1.0096 | 198,569 | 1.0157 | 248,441 |
Stress Level S | CPC | GTRSFPC | ||
---|---|---|---|---|
α | u | α | u | |
0.85 | 2.1761 | 1049 | 2.2235 | 1140 |
0.80 | 1.8780 | 4630 | 1.9622 | 6074 |
0.75 | 1.6138 | 27,331 | 1.6831 | 40,186 |
0.70 | 1.5686 | 183,266 | 1.5319 | 230,273 |
Stress Level S | CPC | GTRSFPC | ||
---|---|---|---|---|
α | u | α | u | |
0.85 | 1.8968 | 1043 | 1.9351 | 1133 |
0.80 | 1.6437 | 4574 | 1.7206 | 6016 |
0.75 | 1.4235 | 26,813 | 1.4868 | 39,545 |
0.70 | 1.4165 | 180,579 | 1.3705 | 225,971 |
Stress Level S | CPC | GTRSFPC | ||
---|---|---|---|---|
α | u | α | u | |
0.85 | 1.8370 | 1066 | 1.8881 | 1157 |
0.80 | 1.5971 | 4702 | 1.6572 | 6181 |
0.75 | 1.3781 | 27,779 | 1.4322 | 40,902 |
0.70 | 1.3316 | 187,471 | 1.3060 | 234,895 |
Stress Level S | |||||
---|---|---|---|---|---|
0.70 | 1 | 37,115 | 0.2000 | 0.1093 | 0.0907 |
2 | 75,473 | 0.4000 | 0.2575 | 0.1425 * | |
3 | 156,631 | 0.6000 | 0.5449 | 0.0551 | |
4 | 214,759 | 0.8000 | 0.6983 | 0.1017 | |
5 | 337,462 | 1.0000 | 0.8878 | 0.1122 |
Stress Level S | D | |
---|---|---|
CPC | GTRSFPC | |
0.70 | 0.1425 | 0.1677 |
0.75 | 0.1422 | 0.1209 |
0.80 | 0.1351 | 0.1447 |
0.85 | 0.1219 | 0.1315 |
Survival Probability | Stress Level S | |||||||
---|---|---|---|---|---|---|---|---|
CPC | GTRSFPC | |||||||
0.85 | 0.80 | 0.75 | 0.70 | 0.85 | 0.80 | 0.75 | 0.70 | |
0.95 | 212 | 732 | 3219 | 20,147 | 240 | 1030 | 5141 | 24,164 |
0.90 | 313 | 1149 | 5427 | 34,593 | 351 | 1590 | 8499 | 41,932 |
0.85 | 396 | 1507 | 7432 | 47,901 | 442 | 2065 | 11,502 | 58,434 |
0.80 | 471 | 1838 | 9355 | 60,777 | 523 | 2500 | 14,352 | 74,488 |
0.75 | 541 | 2155 | 11,248 | 73,551 | 598 | 2914 | 17,137 | 90,483 |
0.70 | 608 | 2466 | 13,147 | 86,437 | 670 | 3318 | 19,913 | 106,672 |
0.65 | 674 | 2775 | 15,077 | 99,603 | 741 | 3718 | 22,718 | 123,261 |
0.60 | 740 | 3088 | 17,062 | 113,202 | 811 | 4121 | 25,589 | 140,443 |
0.55 | 806 | 3407 | 19,125 | 127,395 | 881 | 4532 | 28,559 | 158,418 |
0.50 | 873 | 3738 | 21,292 | 142,363 | 953 | 4955 | 31,667 | 177,417 |
Survival Probability | CPC | GTRSFPC | ||
---|---|---|---|---|
b | c | b | c | |
0.95 | −0.0425 | 1.0624 | −0.0419 | 1.0700 |
0.90 | −0.0411 | 1.0725 | −0.0404 | 1.0778 |
0.85 | −0.0404 | 1.0783 | −0.0395 | 1.0821 |
0.80 | −0.0398 | 1.0824 | −0.0289 | 1.0852 |
0.75 | −0.0394 | 1.0856 | −0.0384 | 1.0876 |
0.70 | −0.0390 | 1.0883 | −0.0380 | 1.0896 |
0.65 | −0.0387 | 1.0906 | −0.0377 | 1.0913 |
0.60 | −0.0384 | 1.0926 | −0.0374 | 1.0929 |
0.55 | −0.0382 | 1.0945 | −0.0371 | 1.0943 |
0.50 | −0.0379 | 1.0961 | −0.0369 | 1.0956 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Luo, G.; Zhou, P.; Wei, H.; Li, W.; Yu, D. Flexural-Fatigue Properties of Sustainable Pervious Concrete Pavement Material Containing Ground Tire Rubber and Silica Fume. Sustainability 2019, 11, 4467. https://doi.org/10.3390/su11164467
Liu H, Luo G, Zhou P, Wei H, Li W, Yu D. Flexural-Fatigue Properties of Sustainable Pervious Concrete Pavement Material Containing Ground Tire Rubber and Silica Fume. Sustainability. 2019; 11(16):4467. https://doi.org/10.3390/su11164467
Chicago/Turabian StyleLiu, Hanbing, Guobao Luo, Peilei Zhou, Haibin Wei, Wenjun Li, and Di Yu. 2019. "Flexural-Fatigue Properties of Sustainable Pervious Concrete Pavement Material Containing Ground Tire Rubber and Silica Fume" Sustainability 11, no. 16: 4467. https://doi.org/10.3390/su11164467
APA StyleLiu, H., Luo, G., Zhou, P., Wei, H., Li, W., & Yu, D. (2019). Flexural-Fatigue Properties of Sustainable Pervious Concrete Pavement Material Containing Ground Tire Rubber and Silica Fume. Sustainability, 11(16), 4467. https://doi.org/10.3390/su11164467