Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review
Abstract
:1. Introduction
2. Key Concept of Pinch Analysis
2.1. Energy Pinch Analysis
2.2. Territorial Energy Plan ( Emission Targeting)
2.3. Design of Hydrogen Networks
2.4. Oxygen Pinch Analysis
2.5. Emergy Pinch
2.6. Budget-Time-Income
2.7. Summary and Discussion
3. Water Pinch Analysis
3.1. History of Water Pinch Development
3.2. Method Description
4. Water Pinch Analysis in the Food Industry
4.1. Current Practices for Water Management in the Food Industry
4.2. Potential of Water Pinch Analysis in the Food Industry (New Tools for New Approaches)
4.3. R&D Needs and Challenges
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Roman | Uppercase | Letters |
BOD | Biochemical Oxygen Demand | |
Brix | sugar content | Bx |
C | cold stream/concentration | |
COD | Chemical Oxygen Demand | |
Heat capacity flowrate | Kw/K | |
Specific heat | Kj/kg/K | |
EC | electrical conductivity | S/m |
GA | Genetic Algorithm | |
GAMS | General Algebraic Modeling System | |
H | Hot stream | |
ISO 14000 | Environmental standard management | |
ISO 50001 | Energy standard management | |
LP | Linear Programing | |
MATLAB | numerical computing environment | |
MILP | Mix Integer Linear Programing | |
MINLP | Mix Integer Non-Linear Programing | |
MSA | Mass Separating Agents | |
NLP | Non-Linear Programing | |
PSO | Particle Swarm Optimization | |
Python | Programming language | |
OG | Oils and Grease | |
T | Temperature | °C |
TDS | Total Dissolved Solids | |
TOC | Total Organic Carbon | |
TSS | Total Suspend Solid | |
AFI | Agro-Food Industry | |
WPA | Water Pinch Analysis | |
pH | Acidity Or Basicity | |
BOD5 | 5 Days Biological Oxygen Demand | |
R2A | Reasoner’s 2A Agar | |
DR | Dry Residues | |
NF | Nanofiltration Stage | |
RO | Reverse Osmosis | |
AOX | Absorbable Organic Halides | |
HP | Hardness Properties | |
POME | Palm Oil Mill Effluent | |
HC | Hydrocarbon | |
WIN | Water Use Index | |
EIN | Environmental Performance Index | |
AFI | Agro Food Industry | |
HEN | Heat Exchanger Network | |
MEN | Mass Exchanger Network | |
MSA | Mass Separating Agents | |
LCA | Life Cycle Assessment | |
FU | Functional Unit (e.g., kg of processed milk) | |
WEUI | Water And Energy Use Indicator | |
IPPC | Integrated Pollution Prevention and Control | |
U | unit | |
Roman | Lowercase | Letters |
Emergy | embodied solar energy | |
mass flowrate | kg/s | |
pH | acidity or basicity | |
Greek Letters | ||
Latent heat | kJ/kg | |
Temperature difference | °C | |
Subscripts | ||
in | input | |
min | minimum | |
o | output | |
s | supply | |
t | target | |
w | water |
References
- Linnhoff, B.; Flower, J.R. Synthesis of Heat Exchanger Networks: I. Systematic Generation of Energy Optimal Networks. AIChE J. 1978, 24, 633–642. [Google Scholar] [CrossRef]
- Wang, Y.P.; Smith, R. Wastewater Minimisation. Chem. Eng. Sci. 1994, 49, 981–1006. [Google Scholar] [CrossRef]
- El-Halwagi, M.M.; Gabriel, F.; Harell, D. Rigorous Graphical Targeting for Resource Conservation via Material Recycle/Reuse Networks. Ind. Eng. Chem. Res. 2003, 42, 4319–4328. [Google Scholar] [CrossRef]
- Prakash, R.; Shenoy, U.V. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chem. Eng. Sci. 2005, 60, 255–268. [Google Scholar] [CrossRef]
- Almató, M.; Sanmartí, E.; Espun, A.; Puigjaner, L. Rationalizing the Water Use in the Batch Process Industry. Comput. Chem. Eng. 1997, 21, 971–976. [Google Scholar] [CrossRef]
- Thevendiraraj, S.; Klemeš, J.; Paz, D.; Aso, G.; Cardenas, G.J. Water and wastewater minimisation study of a citrus plant. Resour. Conserv. Recycl. 2003, 37, 227–250. [Google Scholar] [CrossRef]
- Tokos, H.; Pintarič, Z.N. Synthesis of batch water network for a brewery plant. J. Clean. Prod. 2009, 17, 1465–1479. [Google Scholar] [CrossRef]
- Bavar, M.; Sarrafzadeh, M.H.; Asgharnejad, H.; Norouzi-Firouz, H. Water management methods in food industry: Corn refinery as a case study. J. Food Eng. 2018, 238, 78–84. [Google Scholar] [CrossRef]
- Klemes, J.; Friedler, F.; Bulatov, I.; Varbanov, P. Sustainibility in the Process Industry: Integration and Optimization (Green Manufacturing & Systems Engineering); McGraw-Hill Professional: New York, NY, USA, 2010. [Google Scholar]
- Alves, J. Analysis and Design of Refinery Hydrogen Distribution Systems. 1999. Available online: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.563097 (accessed on 19 August 2018).
- Zhelev, T.; Ntlhakana, J. Energy-environment closed-loop through Oxygen Pinch. Comput. Chem. Eng. 1999, 23, S79–S83. [Google Scholar] [CrossRef]
- Odum, H.T. Systems Ecology: An Introduction; John Wiley and Sons: New York, NY, USA, 1983. [Google Scholar]
- Zhelev, T.K.; Ridolfi, R. Energy Recovery and Environmental Concerns Addressed through Emergy–Pinch Analysis. Energy 2006, 31, 2486–2498. [Google Scholar] [CrossRef]
- Linnhoff, B.; Dhole, V.R. Targeting for CO2 emissions for Total Sites. Chem. Eng. Technol. 1993, 16, 252–259. [Google Scholar] [CrossRef]
- Tan, R.R.; Foo, D.C. Pinch analysis approach to carbon-constrained energy sector planning. Energy 2007, 32, 1422–1429. [Google Scholar] [CrossRef]
- Zhelev, T.K. On the Integrated Management of Industrial Resources Incorporating Finances. J. Clean. Prod. 2005, 13, 469–474. [Google Scholar] [CrossRef]
- Linnhoff, B.; Hindmarsh, E. The pinch design method for heat exchanger networks. Chem. Eng. Sci. 1983, 38, 745–763. [Google Scholar] [CrossRef]
- El-Halwagi, M.M.; Manousiouthakis, V. Simultaneous synthesis of mass-exchange and regeneration networks. AIChE J. 1990, 36, 1209–1219. [Google Scholar] [CrossRef]
- Hallale, N.; Fraser, D. Capital cost targets for mass exchange networks A special case: Water minimisation. Chem. Eng. Sci. 1998, 53, 293–313. [Google Scholar] [CrossRef]
- Hallale, N.; Fraser, D.M. Capital and Total Cost Targets for Mass Exchange Networks: Part 1: Simple Capital Cost Models. Comput. Chem. Eng. 2000, 23, 1661–1679. [Google Scholar] [CrossRef]
- Akpomiemie, M.O.; Smith, R. Retrofit of heat exchanger networks without topology modifications and additional heat transfer area. Appl. Energy 2015, 159, 381–390. [Google Scholar] [CrossRef]
- Akpomiemie, M.O.; Smith, R. Retrofit of Heat Exchanger Networks with Heat Transfer Enhancement Based on an Area Ratio Approach. Appl. Energy 2015, 165, 22–35. [Google Scholar] [CrossRef]
- Akpomiemie, M.O.; Smith, R. Cost-Effective Strategy for Heat Exchanger Network Retrofit. Energy 2018, 146, 82–97. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, M.; Bulatov, I.; Smith, R.; Kim, J.K. Application of intensified heat transfer for the retrofit of heat exchanger network. Appl. Energy 2012, 89, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Shelley, J.D.; Doyle, S.; Smith, R. Heat exchanger network retrofit with a fixed network structure. Appl. Energy 2014, 127, 25–33. [Google Scholar] [CrossRef]
- Gadalla, M.A. A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration. Energy 2015, 81, 159–174. [Google Scholar] [CrossRef]
- Zhang, H.; Rangaiah, G. One-step approach for heat exchanger network retrofitting using integrated differential evolution. Comput. Chem. Eng. 2013, 50, 92–104. [Google Scholar] [CrossRef]
- Lee, S.C.; Ng, D.K.S.; Foo, D.C.Y.; Tan, R.R. Extended pinch targeting techniques for carbon-constrained energy sector planning. Appl. Energy 2009, 86, 60–67. [Google Scholar] [CrossRef]
- Diamante, J.A.R.; Tan, R.R.; Foo, D.C.; Ng, D.K.S.; Aviso, K.B.; Bandyopadhyay, S. Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions. J. Clean. Prod. 2014, 71, 67–74. [Google Scholar] [CrossRef]
- Ooi, R.E.; Foo, D.C.; Ng, D.K.S.; Tan, R.R. Planning of carbon capture and storage with pinch analysis techniques. Chem. Eng. Res. Des. 2013, 91, 2721–2731. [Google Scholar] [CrossRef]
- Ho, W.S.; Tan, S.T.; Hashim, H.; Lim, J.S.; Lee, C.T. Waste Management Pinch Analysis (WAMPA) for Carbon Emission Reduction. Energy Procedia 2015, 75, 2448–2453. [Google Scholar] [CrossRef] [Green Version]
- Crilly, D.; Zhelev, T. Emissions targeting and planning: An application of CO2 emissions pinch analysis (CEPA) to the Irish electricity generation sector. Energy 2008, 33, 1498–1507. [Google Scholar] [CrossRef]
- Atkins, M.J.; Morrison, A.S.; Walmsley, M.R. Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector. Appl. Energy 2010, 87, 982–987. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.R.; Aviso, K.B.; Foo, D.C. Carbon emissions pinch analysis of economic systems. J. Clean. Prod. 2018, 182, 863–871. [Google Scholar] [CrossRef]
- Hallale, N.; Liu, F. Refinery hydrogen management for clean fuels production. Adv. Environ. Res. 2001, 6, 81–98. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, X.; Chu, K.H. Optimization of hydrogen distribution systems with pressure constraints. J. Clean. Prod. 2011, 19, 204–211. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Moon, I. Optimization of a hydrogen supply chain under demand uncertainty. Int. J. Hydrogen Energy 2008, 33, 4715–4729. [Google Scholar] [CrossRef]
- Jiao, Y.; Su, H.; Hou, W. Improved optimization methods for refinery hydrogen network and their applications. Control. Eng. Pract. 2012, 20, 1075–1093. [Google Scholar] [CrossRef]
- Jiao, Y.; Su, H.; Hou, W.; Liao, Z. Optimization of refinery hydrogen network based on chance constrained programming. Chem. Eng. Res. Des. 2012, 90, 1553–1567. [Google Scholar] [CrossRef]
- Deng, C.; Zhou, Y.; Jiang, W.; Feng, X. Optimal design of inter-plant hydrogen network with purification reuse/recycle. Int. J. Hydrogen Energy 2017, 42, 19984–20002. [Google Scholar] [CrossRef]
- Alves, J.J.; Towler, G.P. Analysis of Refinery Hydrogen Distribution Systems. Ind. Eng. Chem. Res. 2002, 41, 5759–5769. [Google Scholar] [CrossRef]
- Zhelev, T.K.; Bhaw, N. Combined water-oxygen pinch analysis for better wastewater treatment management. Waste Manag. 2000, 20, 665–670. [Google Scholar] [CrossRef]
- Zhelev, T. Wastewater Treatment Management Using Combined Water-Oxygen-Thermal Pinch Analysis. Comput. Aided Chem. Eng. 2002, 10, 391–396. [Google Scholar] [CrossRef]
- Marchettini, N.; Ridolfi, R.; Rustici, M. An environmental analysis for comparing waste management options and strategies. Waste Manag. 2007, 27, 562–571. [Google Scholar] [CrossRef]
- Seider, W.D.; Seader, J.D.; Lewin, D.R. Process Design Principles: Synthesis, Analysis, and Evaluation. 1999. Available online: https://scholar.google.fr/scholar?hl=fr&as_sdt=0%2C5&q=%28Seider%2C+Seader+et+al.+1999%29&btnG= (accessed on 19 August 2018).
- Hau, J.L.; Bakshi, B.R. Promise and problems of emergy analysis. Ecol. Model. 2004, 178, 215–225. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, X.; Wu, J.; Zhang, Y.; Lin, L.; Yang, G.; Deng, S.; Li, L.; Yu, X.; Qi, H.; et al. Sustainability evaluation of a steel production system in China based on emergy. J. Clean. Prod. 2016, 112, 1498–1509. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, X.; Ding, Y.; Liu, C. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 2018, 183, 1207–1215. [Google Scholar] [CrossRef]
- Arya, D.; Santanu, B. Iterative Pinch Analysis to Address Non-Linearity in a Stochastic Pinch Problem. J. Clean. Prod. 2019, 227, 543–553. [Google Scholar] [CrossRef]
- Roychaudhuri, P.S.; Kazantzi, V.; Foo, D.C.; Tan, R.R.; Bandyopadhyay, S. Selection of energy conservation projects through Financial Pinch Analysis. Energy 2017, 138, 602–615. [Google Scholar] [CrossRef]
- Roychaudhuri, P.S.; Bandyopadhyay, S. Financial Pinch Analysis: Minimum opportunity cost targeting algorithm. J. Environ. Manag. 2018, 212, 88–98. [Google Scholar] [CrossRef]
- Linnhoff, B.; Flower, J.R. Synthesis of Heat Exchanger Networks: II. Evolutionary Generation of Networks with Various Criteria of Optimality. AIChE J. 1978, 24, 642–654. [Google Scholar] [CrossRef]
- Takama, N.; Kuriyama, T.; Shiroko, K.; Umeda, T. Optimal water allocation in a petroleum refinery. Comput. Chem. Eng. 1980, 4, 251–258. [Google Scholar] [CrossRef]
- Wang, Y.P.; Smith, R. Design of Distributed Effluent Treatment Systems. Chem. Eng. Sci. 1994, 49, 3127–3145. [Google Scholar] [CrossRef]
- Wang, Y.P.; Smith, R. Waste-Water Minimization with Flow-Rate Constraints. Chem. Eng. Res. Des. 1995, 73, 889–904. [Google Scholar]
- Bagajewicz, M. A review of recent design procedures for water networks in refineries and process plants. Comput. Chem. Eng. 2000, 24, 2093–2113. [Google Scholar] [CrossRef] [Green Version]
- Olesen, S.; Polley, G. A Simple Methodology for the Design of Water Networks Handling Single Contaminants. Chem. Eng. Res. Des. 1997, 75, 420–426. [Google Scholar] [CrossRef]
- Kuo, W.C.; Smith, R. Design of Water-Using Systems Involving Regeneration. Process Saf. Environ. Prot. 1998, 76, 94–114. [Google Scholar] [CrossRef]
- Kuo, W.C.; Smith, R. Designing for the Interactions Between Water-Use and Effluent Treatment. Chem. Eng. Res. Des. 1998, 76, 287–301. [Google Scholar] [CrossRef]
- Kuo, W.C.J.; Smith, R. Effluent Treatment System Design. Chem. Eng. Sci. 1997, 52, 4273–4290. [Google Scholar] [CrossRef]
- Castro, P.; Matos, H.; Fernandes, M.C.; Nunes, C.P. Improvements for Mass-Exchange Networks Design. 1999. Available online: http://www.academia.edu/download/45687885/s0009-2509_2898_2900526-020160516-25031-1ykyyg8.pdf (accessed on 8 October 2018).
- Dhole, V.R.; Ramchandani, N.; Tainsh, R.A.; Wasilewski, M. Make Your Process Water Pay for Itself. 1996. Available online: http://search.proquest.com/openview/35cd541d1e076333c359811a0ebb512f/1.pdf?pq-origsite=gscholar&cbl=41910 (accessed on 8 October 2018).
- Hallale, N. A new graphical targeting method for water minimisation. Adv. Environ. Res. 2002, 6, 377–390. [Google Scholar] [CrossRef]
- Doyle, S.; Smith, R. Targeting Water Reuse with Multiple Contaminants. Process. Saf. Environ. Prot. 1997, 75, 181–189. [Google Scholar] [CrossRef]
- Alva-Argáez, A.; Kokossis, A.; Smith, R. Wastewater minimisation of industrial systems using an integrated approach. Comput. Chem. Eng. 1998, 22, 741–744. [Google Scholar] [CrossRef]
- Galan, B.; Grossmann, I.E. Optimal Design of Distributed Wastewater Treatment Networks. Ind. Eng. Chem. Res. 1998, 37, 4036–4048. [Google Scholar] [CrossRef]
- Huang, C.H.; Chang, C.T.; Ling, H.C.; Chang, H.C. A Mathematical Programming Model for Water Usage and Treatment Network Design. Ind. Eng. Chem. Res. 1999, 38, 2666–2679. [Google Scholar] [CrossRef]
- Jödicke, G.; Fischer, U.; Hungerbühler, K. Wastewater reuse: A new approach to screen for designs with minimal total costs. Comput. Chem. Eng. 2001, 25, 203–215. [Google Scholar] [CrossRef]
- Feng, X.; Chu, K. Cost Optimization of Industrial Wastewater Reuse Systems. Process. Saf. Environ. Prot. 2004, 82, 249–255. [Google Scholar] [CrossRef]
- Manan, Z.; Alwi, S.W.; Ujang, Z.; Alwi, S.R.W. Water pinch analysis for an urban system: A case study on the Sultan Ismail Mosque at the Universiti Teknologi Malaysia (UTM). Desalination 2006, 194, 52–68. [Google Scholar] [CrossRef]
- Tan, Y.; Manan, Z.; Foo, D.; Foo, D. Retrofit of Water Network with Regeneration Using Water Pinch Analysis. Process. Saf. Environ. Prot. 2007, 85, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Mohammadnejad, S.; Bidhendi, G.N.; Mehrdadi, N. Water pinch analysis in oil refinery using regeneration reuse and recycling consideration. Desalination 2011, 265, 255–265. [Google Scholar] [CrossRef]
- Boix, M.; Montastruc, L.; Pibouleau, L.; Azzaro-Pantel, C.; Domenech, S. A multiobjective optimization framework for multicontaminant industrial water network design. J. Environ. Manag. 2011, 92, 1802–1808. [Google Scholar] [CrossRef] [Green Version]
- Almaraz, S.D.L.; Boix, M.; Montastruc, L.; Azzaro-Pantel, C.; Liao, Z.; Domenech, S. Design of a water allocation and energy network for multi-contaminant problems using multi-objective optimization. Process. Saf. Environ. Prot. 2016, 103, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Mughees, W.; Al-Ahmad, M. Application of water pinch technology in minimization of water consumption at a refinery. Comput. Chem. Eng. 2015, 73, 34–42. [Google Scholar] [CrossRef]
- Buabeng-Baidoo, E.; Mafukidze, N.; Pal, J.; Tiwari, S.; Srinivasan, B.; Majozi, T.; Srinivasan, R. Study of water reuse opportunities in a large-scale milk processing plant through process integration. Chem. Eng. Res. Des. 2017, 121, 81–91. [Google Scholar] [CrossRef]
- Li, Y.; Guan, J.; Ying, L.; Jintao, G. A stepwise optimal design of water network. Chin. J. Chem. Eng. 2016, 24, 787–794. [Google Scholar] [CrossRef]
- Feng, X.; Bai, J.; Wang, H.; Zheng, X. Grass-roots design of regeneration recycling water networks. Comput. Chem. Eng. 2008, 32, 1892–1907. [Google Scholar] [CrossRef]
- Skouteris, G.; Ouki, S.; Foo, D.; Saroj, D.; Altini, M.; Melidis, P.; Cowley, B.; Ells, G.; Palmer, S.; O’Dell, S. Water footprint and water pinch analysis techniques for sustainable water management in the brick-manufacturing industry. J. Clean. Prod. 2018, 172, 786–794. [Google Scholar] [CrossRef]
- Casani, S.; Knøchel, S. Application of HACCP to water reuse in the food industry. Food Control. 2002, 13, 315–327. [Google Scholar] [CrossRef]
- Casani, S.; Rouhany, M.; Knøchel, S. A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Res. 2005, 39, 1134–1146. [Google Scholar] [CrossRef]
- Lu, J.; Pua, X.H.; Liu, C.T.; Chang, C.L.; Cheng, K.C. ScienceDirect The Implementation of HACCP Management System in a Chocolate Ice Cream Plant. J. Food Drug Anal. 2013, 22, 391–398. [Google Scholar] [CrossRef]
- Jie, W.; Fei, Z.; Xu, J. The Influence of Water Quality on Food Quality and the Treatment of Water for Food Processing. Procedia Environ. Sci. 2011, 10, 2671–2676. [Google Scholar] [CrossRef] [Green Version]
- Compton, M.; Willis, S.; Rezaie, B.; Humes, K. Food Processing Industry Energy and Water Consumption in the Paci Fi c Northwest. Innov. Food Sci. Emerg. Technol. 2018, 47, 371–383. [Google Scholar] [CrossRef]
- Lee, W.; Okos, M.R. Sustainable food processing systems–Path to a zero discharge: Reduction of water, waste and energy. Procedia Food Sci. 2011, 1, 1768–1777. [Google Scholar] [CrossRef]
- Meneses, Y.E.; Stratton, J.; Flores, R.A. Water reconditioning and reuse in the food processing industry: Current situation and challenges. Trends Food Sci. Technol. 2017, 61, 72–79. [Google Scholar] [CrossRef]
- Suárez, A.; Fidalgo, T.; Riera, F.A. Recovery of Dairy Industry Wastewaters by Reverse Osmosis. Sep. Purif. Technol. 2014, 133, 204–211. [Google Scholar] [CrossRef]
- Suárez, A.; Riera, F.A. Production of High-Quality Water by Reverse Osmosis of Milk Dairy Condensates. J. Ind. Eng. Chem. 2015, 21, 1340–1349. [Google Scholar] [CrossRef]
- Ensinas, A.V.; Nebra, S.A.; Lozano, M.A.; Serra, L.M. Analysis of process steam demand reduction and electricity generation in sugar and ethanol production from sugarcane. Energy Convers. Manag. 2007, 48, 2978–2987. [Google Scholar] [CrossRef]
- Žbontar, Z.L.; Glavič, P. Water minimization in process industries: Case study in beet sugar plant. Resour. Conserv. Resour. Conserve. Recycl. 2005, 43, 133–145. [Google Scholar] [CrossRef]
- Li, B.-H.; Chang, C.-T. A Mathematical Programming Model for Discontinuous Water-Reuse System Design. Ind. Eng. Chem. Res. 2006, 45, 5027–5036. [Google Scholar] [CrossRef]
Hot Streams | Cold Streams | ||||||
---|---|---|---|---|---|---|---|
200 | 100 | 20 | 80 | 120 | 80 | ||
150 | 60 | 40 | 50 | 220 | 15 |
Energy Resources | Energy Demands | ||||
---|---|---|---|---|---|
Available Resources | Emission Factor | Expected Demands | Emission Quota | ||
Coal | 600,000 | 105 | Region 1 | 1,000,000 | 20 |
Oil | 800,000 | 75 | Region 2 | 400,000 | 20 |
Natural gas | 200,000 | 55 | Region 3 | 600,000 | 60 |
Others a | >400,000 | 0 |
Sinks | Sources | ||
---|---|---|---|
2495.0 | 80.6 | 350.0 | 95.0 |
180.2 | 78.9 | 623.8 | 93.0 |
554.4 | 77.6 | 415.8 | 80.0 |
720.7 | 75.1 | 1940.5 | 75.0 |
346.5 | 73.0 | ||
457.4 | 70.0 |
Heat Transfer-Based (Energy Pinch) | Mass Transfer-Based (Water Pinch) |
---|---|
Heat Exchanger network design | Water network design |
Temperature | Purity of water |
Heat capacity flowrate | Water flowrate |
Heat flow | Pollutant flowrate |
Cold stream | Sink water |
Hot stream | Source water |
Heat-Pump | Purification Unit (Regeneration) |
Unit | Pollutant Threshold | ||
---|---|---|---|
U1 | 0 | 100 | 20 |
U2 | 50 | 100 | 100 |
U3 | 50 | 800 | 40 |
U4 | 400 | 800 | 10 |
Operation | Indicator | Fresh Water | Savings | Payback | Reference | |
---|---|---|---|---|---|---|
Citrus plant | continues | COD | 2500 à 4000 m3/month/2500 à 4000 + water from pressing | 30% | 4 months | [6] |
Beet sugar factory Capacity: 200 t/h beet sugar | continues | pH, COD, Brix | 240/246 t/h | 69% | 5 days | [90] |
Fruit juice | Batch | PINCH monocontaminant | 96 m3/35 m3 | 64% | - | [5,91] |
Brewery | Batch | PINCH monocontaminant | 653,300 m3/year | 23% | 4 months | [7] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemati-Amirkolaii, K.; Romdhana, H.; Lameloise, M.-L. Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review. Sustainability 2019, 11, 4492. https://doi.org/10.3390/su11164492
Nemati-Amirkolaii K, Romdhana H, Lameloise M-L. Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review. Sustainability. 2019; 11(16):4492. https://doi.org/10.3390/su11164492
Chicago/Turabian StyleNemati-Amirkolaii, Keivan, Hedi Romdhana, and Marie-Laure Lameloise. 2019. "Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review" Sustainability 11, no. 16: 4492. https://doi.org/10.3390/su11164492
APA StyleNemati-Amirkolaii, K., Romdhana, H., & Lameloise, M. -L. (2019). Pinch Methods for Efficient Use of Water in Food Industry: A Survey Review. Sustainability, 11(16), 4492. https://doi.org/10.3390/su11164492