Environmental and Economic Performance of Yacon (Smallanthus sonchifolius) Cultivated for Fructooligosaccharide Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope and Boundaries
2.2. Life-Cycle Inventory
2.3. Scenario Analysis
3. Results
3.1. Life-Cycle Cost Analysis
3.2. Life-Cycle Assessment
3.3. Hotspot Aanalysis
4. Discussion
4.1. Environmental and Economic Performance of Yacon-Based FOS Production
4.2. Guidelines for an Economically and Environmentally Sustainable Yacon-Based FOS Production
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zardini, E. Ethnobotanical notes on “Yacon,” Polymnia sonchifolia (Asteraceae). Econ. Bot. 1991, 45, 72–85. [Google Scholar] [CrossRef]
- Pedreschi, R.; Campos, D.; Noratto, G.; Chirinos, R.; Cisneros-Zevallos, L. Andean Yacon Root (Smallanthus sonchifolius Poepp. Endl) Fructooligosaccharides as a Potential Novel Source of Prebiotics. J. Agric. Food Chem. 2003, 51, 5278–5284. [Google Scholar] [CrossRef] [PubMed]
- Valentová, K.; Ulrichová, J. Smallanthus sonchifolius and lepidium meyenii–prospective andean crops for the prevention of chronic diseases. Biomed. Pap. 2003, 147, 119–130. [Google Scholar] [CrossRef]
- Bredemann, G. Über Polymnia sonchifolia Poepp. & Endl. (Polymnia edulis Wedd.), die Yacon—Erdbirne. Bot. Oeconomie. 1948, 1, 65–85. [Google Scholar]
- Ojansivu, I.; Ferreira, C.L.; Salminen, S. Yacon, a new source of prebiotic oligosaccharides with a history of safe use. Trends Food Sci. Technol. 2011, 22, 40–46. [Google Scholar] [CrossRef]
- Kamp, L.; Hartung, J.; Mast, B.; Graeff-Hönninger, S. Impact of Nitrogen Fertilization on Tuber Yield, Sugar Composition and Nitrogen Uptake of Two Yacon (Smallanthus sonchifolius Poepp. & Endl.) Genotypes. Agronomy 2019, 9, 151. [Google Scholar]
- Choque Delgado, G.T.; da Silva Cunha Tamashiro, W.M.; Maróstica Junior, M.R.; Pastore, G.M. Yacon (Smallanthus sonchifolius): A Functional Food. Plant Foods Hum. Nutr. 2013, 68, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.A.; Follett, J.M.; Douglas, M.H.; Deo, B.; Scheffer, J.J.C.; Littler, R.A.; Manley-Harris, M. Effect of environment and time of planting on the production and quality of yacon (Smallanthus sonchifolius) storage roots. N. Z. J. Crop Hortic. Sci. 2007, 35, 107–116. [Google Scholar] [CrossRef]
- Valentová, K.; Lebeda, A.; Doležalová, I.; Jirovský, D.; Simonovska, B.; Vovk, I.; Kosina, P.; Gasmanová, N.; Dziechciarková, M.; Ulrichová, J. The Biological and Chemical Variability of Yacon. J. Agric. Food Chem. 2006, 54, 1347–1352. [Google Scholar] [CrossRef]
- Graefe, S.; Hermann, M.; Manrique, I.; Golombek, S.; Buerkert, A. Effects of post-harvest treatments on the carbohydrate composition of yacon roots in the Peruvian Andes. Field Crops Res. 2004, 86, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Fernández, E.C.; Orsák, M. Yacon [Smallanthus sonchifolia (Poepp. et Endl.) H. Robinson] chemical composition and use—A review. Plant Soil Environ. 2003, 49, 283–290. [Google Scholar] [CrossRef]
- Campos, D.; Betalleluz-Pallardel, I.; Chirinos, R.; Aguilar-Galvez, A.; Noratto, G.; Pedreschi, R. Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem. 2012, 135, 1592–1599. [Google Scholar] [PubMed]
- Fernández, E.C.; Rajchl, A.; Lachman, J.; Čížková, H.; Kvasnička, F.; Kotíková, Z.; Milella, L.; Voldřich, M. Impact of yacon landraces cultivated in the Czech Republic and their ploidy on the short- and long-chain fructooligosaccharides content in tuberous roots. LWT Food Sci. Technol. 2013, 54, 80–86. [Google Scholar] [CrossRef]
- Kamp, L.; Hartung, J.; Mast, B.; Graeff-Hönninger, S. Plant growth, tuber yield formation and costs of three different propagation methods of yacon (Smallanthus sonchifolius). Ind. Crops Prod. 2019, 132, 1–11. [Google Scholar] [CrossRef]
- Kamp, L.; Hartung, J.; Mast, B.; Graeff-Hönninger, S. Tuber Yield Formation and Sugar Composition of Yacon Genotypes Grown in Central Europe. Agronomy 2019, 9, 301. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- ISO Environmental Management—Life Cycle Assessment—Principles and Framework; ISO 14040:2006; ISO: Geneva, Switzerland, 2006.
- ISO Environmental Management—Life cycle Assessment—Requirements and Guidelines; ISO 14044:2006; ISO: Geneva, Switzerland, 2006.
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Wagner, M.; Kiesel, A.; Hastings, A.; Iqbal, Y.; Lewandowski, I. Novel Miscanthus Germplasm-Based Value Chains: A Life Cycle Assessment. Front. Plant Sci. 2017, 8, 990. [Google Scholar] [CrossRef]
- Swarr, T.E.; Hunkeler, D.; Klopffer, W.; Pesonen, H.-L.; Ciroth, A.; Brent, A.C.; Pagan, R. Environmental Life Cycle Costing: A Code of Practice; Society of Environmental Toxicology and Chemistry: Pensacola, FL, USA, 2011; ISBN 978-1-880611-87-6. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- KTBL. KTBL-Feldarbeitsrechner; Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL): Darmstadt, Germany, 2018. [Google Scholar]
- Lebeda, A.; Dolezalová, I.; Fernández, E.; Viehmannová, I. Genetic Resources, Chromosome Engineering, and Crop Improvement. Medicinal Plants; Singh, R.J., Ed.; Taylor & Francis: Boca Raton, FL, USA; New York, NY, USA, 2012; Volume 6, ISBN 978-1-4200-7384-3. [Google Scholar]
- Zhang, W.; Liu, X.; Wang, Q.; Zhang, H.; Li, M.; Song, B.; Zhao, Z. Effects of potassium fertilization on potato starch physicochemical properties. Int. J. Biol. Macromol. 2018, 117, 467–472. [Google Scholar] [CrossRef]
- Scheffer, J.J.C.; Douglas, J.A.; Triggs, C.M. Evaluation of some pre- and post-emergence herbicides for weed control in yacon. N. Z. Plant Prot. 2002, 55, 228–234. [Google Scholar]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Modeling global annual N2O and NO emissions from fertilized fields. Glob. Biogeochem. Cycles 2002, 16, 28-1–28-9. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Prepared by the National Greenhouse Gas Inventories Programme; IPCC: Hayama, Japan, 2006; ISBN 978-4-88788-032-0. [Google Scholar]
- EMEP/CORINAIR. Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook, 3rd ed.; European Environment Agency: Copenhagen, Denmark, 2001. [Google Scholar]
- Nemecek, T.; Kägi, T. Life Cycle Inventories of Swiss and European Agricultural Production Systems; Final report ecoinvent V2.0 No. 15a; Ecoinvent: Zürich, Switzerland; Dübendorf, Switzerland, 2007. [Google Scholar]
- Nemecek, T.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems: Data v3.0 2011; Agroscope Reckenholz-Tänikon Research Station (ART): Zürich, Switzerland, 2011. [Google Scholar]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis: Mitigation options for n2o and no emissions. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Díez López, J.A.; Hernaiz, P. Effect of a nitrification inhibitor (DMPP) [3,4-dimethylpyrazole phosphate] on nitrate leaching and maize yield during two growing seasons. Span. J. Agric. Res. 2008, 6, 294. [Google Scholar] [CrossRef] [Green Version]
- Landwirtschaftskammer Nordrhein-Westfalen; RLV e.V. Erfahrungssätze für überbetriebliche Maschinenarbeiten im Rheinland 2017; Landwirtschaftskammer Nordrhein-Westfalen: Münster, Germany, 2017. [Google Scholar]
- Statistisches Bundesamt. Statistisches Jahrbuch Deutschland 2017; Statistisches Bundesamt: Wiesbaden, Germany, 2017; ISBN 978-3-8246-1057-0. [Google Scholar]
- Agrarheute.com Düngerpreise. Available online: https://www.agrarheute.com/tag/duengerpreise (accessed on 22 August 2019).
- Raiffeise. Available online: https://www.raiffeisen-duengershop.de/produkt/obstbau/entec-26/ (accessed on 13 June 2019).
- Doo, H.S.; Ryo, J.H.; Lee, K.S.; Choi, S.Y.; Cheong, Y.K.; Park, K.H. Response of Different Seedlings to Growth and Yield in Yacon. Korean J. Crop Sci 2002, 47, 356–360. [Google Scholar]
- Wagner, M.; Lewandowski, I. Relevance of environmental impact categories for perennial biomass production. GCB Bioenergy 2017, 9, 215–228. [Google Scholar] [CrossRef]
- Charles, R.; Jolliet, O.; Gaillard, G.; Pellet, D. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agric. Ecosyst. Environ. 2006, 113, 216–225. [Google Scholar] [CrossRef]
- Goglio, P.; Bonari, E.; Mazzoncini, M. LCA of cropping systems with different external input levels for energetic purposes. Biomass Bioenergy 2012, 42, 33–42. [Google Scholar] [CrossRef]
- Meyer, F.; Wagner, M.; Lewandowski, I. Optimizing GHG emission and energy-saving performance of miscanthus-based value chains. Biomass Convers. Biorefinery 2017, 7, 139–152. [Google Scholar] [CrossRef]
- Wagner, M.; Mangold, A.; Lask, J.; Petig, E.; Kiesel, A.; Lewandowski, I. Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenergy 2019, 11, 34–49. [Google Scholar] [CrossRef]
- Parawira, W.; Murto, M.; Zvauya, R.; Mattiasson, B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew. Energy 2004, 29, 1811–1823. [Google Scholar] [CrossRef]
- Honoré, S.M.; Genta, S.B.; Sánchez, S.S. Smallanthus sonchifolius (Yacon) leaves: An emerging source of compounds for diabetes management. J. Biol. Res. 2015, 5, 21–42. [Google Scholar]
- Oliveira, R.B.; Chagas-Paula, D.A.; Secatto, A.; Gasparoto, T.H.; Faccioli, L.H.; Campanelli, A.P.; Da Costa, F.B. Topical anti-inflammatory activity of yacon leaf extracts. Rev. Bras. Farmacogn. 2013, 23, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Khajehei, F.; Niakousari, M.; Seidi Damyeh, M.; Merkt, N.; Claupein, W.; Graeff-Hoenninger, S. Impact of Ohmic-Assisted Decoction on Bioactive Components Extracted from Yacon (Smallanthus sonchifolius Poepp.) Leaves: Comparison with Conventional Decoction. Molecules 2017, 22, 2043. [Google Scholar] [CrossRef] [PubMed]
- Somda, Z.C.; McLaurin, W.J.; Kays, S.J. Jerusalem artichoke growth, development, and field storage. II. Carbon and nutrient element allocation and redistribution. J. Plant. Nutr. 1999, 22, 1315–1334. [Google Scholar] [CrossRef]
- Swanton, C.J.; Cavers, P.B. Biomass and nutrient allocation patterns in Jerusalem artichoke (Helianthus tuberosus). Can. J. Bot. 1989, 67, 2880–2887. [Google Scholar] [CrossRef]
- Fernández, E.C.; Viehmannov, I.; Lachman, J.; Milella, L. Yacon [Smallanthus sonchifolius (Poeppig & Endlicher) H. Robinson]: A new crop in the Central Europe. Plant Soil Environ. 2006, 52, 564–570. [Google Scholar]
- Khajehei, F.; Merkt, N.; Claupein, W.; Graeff-Hoenninger, S. Yacon (Smallanthus sonchifolius Poepp. & Endl.) as a Novel Source of Health Promoting Compounds: Antioxidant Activity, Phytochemicals and Sugar Content in Flesh, Peel, and Whole Tubers of Seven Cultivars. Molecules 2018, 23, 278. [Google Scholar]
- Khajehei, F.; Hartung, J.; Graeff-Hönninger, S. Total Phenolic Content and Antioxidant Activity of Yacon (Smallanthus Sonchifolius Poepp. and Endl.) Chips: Effect of Cultivar, Pre-Treatment and Drying. Agriculture 2018, 8, 183. [Google Scholar] [CrossRef]
- Izsáki, Z.; Kádi, G.N. Biomass Accumulation and Nutrient Uptake of Jerusalem Artichoke (Helianthus tuberosus L.). Am. J. Plant Sci. 2013, 4, 1629–1640. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Sousa, L.; Cabanas, J.E.; Arrobas, M. Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Span. J. Agric. Res. 2007, 5, 545–553. [Google Scholar] [CrossRef]
- Johansson, E.; Prade, T.; Angelidaki, I.; Svensson, S.-E.; Newson, W.; Gunnarsson, I.; Hovmalm, H. Economically Viable Components from Jerusalem Artichoke (Helianthus tuberosus L.) in a Biorefinery Concept. Int. J. Mol. Sci. 2015, 16, 8997–9016. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Input/Output | Red-Shelled Genotype | Brown-Shelled Genotype | ||||
---|---|---|---|---|---|---|
Fertilization level in kg N ha−1 | 0 | 40 | 80 | 0 | 40 | 80 |
Tuber yield in kg DM ha−1 | 10,350 | 10,496 | 11,405 | 4716 | 4515 | 5672 |
FOS content in % | 30.50 | 33.23 | 34.81 | 36.21 | 39.35 | 42.02 |
FOS yield in kg FOS ha−1 | 3157 | 3488 | 3970 | 1708 | 1777 | 2383 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.; Kamp, L.; Graeff-Hönninger, S.; Lewandowski, I. Environmental and Economic Performance of Yacon (Smallanthus sonchifolius) Cultivated for Fructooligosaccharide Production. Sustainability 2019, 11, 4581. https://doi.org/10.3390/su11174581
Wagner M, Kamp L, Graeff-Hönninger S, Lewandowski I. Environmental and Economic Performance of Yacon (Smallanthus sonchifolius) Cultivated for Fructooligosaccharide Production. Sustainability. 2019; 11(17):4581. https://doi.org/10.3390/su11174581
Chicago/Turabian StyleWagner, Moritz, Larissa Kamp, Simone Graeff-Hönninger, and Iris Lewandowski. 2019. "Environmental and Economic Performance of Yacon (Smallanthus sonchifolius) Cultivated for Fructooligosaccharide Production" Sustainability 11, no. 17: 4581. https://doi.org/10.3390/su11174581
APA StyleWagner, M., Kamp, L., Graeff-Hönninger, S., & Lewandowski, I. (2019). Environmental and Economic Performance of Yacon (Smallanthus sonchifolius) Cultivated for Fructooligosaccharide Production. Sustainability, 11(17), 4581. https://doi.org/10.3390/su11174581