Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability
Abstract
:1. Introduction
2. Literature Review
2.1. Conceptualization of Tourist Movement
2.2. Conceptualization of Traceability
Traceability Analysis Methodologies and Tools
- Business process reengineering of a supply chain and a traceability system: This methodology, proposed by Bevilacqua, Ciarapica, and Giacchetta [83] is particular for the traceability of plants and defines it as the process of analyzing the Logistic chain and network. This methodology suggests redefining the logistic chain in three large blocks: Labeling block, block of traceability applications and block of data accumulation.
- Best practices in traceability of the EAN Belgium: The EAN Belgium report [84], suggests six steps to implement a traceability system, ranging from preparation to internal audit and testing (which involves the own analyses of pilot implementation and their possible incorporation of a permanent way in the logistic chain).
- GS1 Global Business Language: GS1 is the organization that currently promotes and coordinates the processes for product labeling in logistics chains and traceability of food products, has proposed a general 10 step and three general stages model applicable to each logistics chain. It has developed specific implementations for the health sector [85], for the fruit chain [86], and for the Wine chain [87]. The suggested stages are preparation, planning and implementation or operation.
- BRIDGE project methodology: The BRIDGE project (Building Radio Frequency Identification for the Global Environment) [88] was a project funded by the European Commission under the Sixth FP6 Framework Program between 2006 and 2009 [89]. The objective was research, Implementation, and development of solutions based on EPCGlobal, for several logistics chains in Europe. This project proposes a methodology for the implementation of traceability systems focused on EPC (Electronic Product Code).
- Framework for choosing an auto-ID technique in the supply chain. Ilie-Zudora et al. [90], based on a systemic review of multiple references, propose six steps, within two levels on which to address the problem of specifying, developing and integrating identification solutions for traceability purposes. The defined levels are a strategic level and a technical level. At the strategic level, decisions are analyzed at the level of requirements on what is needed and can be implemented later at the technical level.
- Link-All project [91,92], funded by the European Commission under the @lis program of cooperation between Europe and Latin America between 2003 and 2006 and developed among 17 partners from Latin America and Europe. Its objective was to provide and assist five pilot companies in the sectors of handicrafts, ecotourism, and culture, in 5 Latin American countries with innovative technological tools. This project developed several tools for the internet and mobile devices, and a methodology for traceability applicable to small logistics chains, emphasizing in the crafts [93]. This methodology defines some areas of the organization that are impacted by traceability processes such as infrastructure, software applications, processes, and human talent. Subsequently, it describes four states in which organizations can be found, concerning the adoption of essential traceability systems but not only in RFID (Radio Frequency Identification). These levels are apprenticeship, experimentation, evaluation, and adoption
3. Materials and Methods
3.1. Selection of Search Criteria
3.2. Selection of Information Sources and Search
4. Results
4.1. Relevance Analysis
4.2. Citation Volume
- Modeling tourist movements-A local destination analysis in A. Lew and McKercher [23], related to a proposal of how tourists move by proposing patterns.
- Digital Foot printing: Uncovering Tourists with User-Generated Content in Girardin et al. in Reference [166], related to a proposal of analysis of movements of tourists based on the multimedia information and web activity that they generated.
- Movement patterns of tourists within a destination. Mckercher and Lau in Reference [21], identified 78 discrete movement patterns in urban destination.
- Seasonal tourism spaces in Estonia: Case study with mobile positioning data. Ahas et al. in Reference [131] showed the mobile positioning data is used to know the activities carried out by foreign tourists in Estonia, which allows them to decipher their space-time movement
- Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Vu et al. in Reference [273] present a study using geotagged photos in Hong Kong.
- Tracking technologies and urban analysis. Shoval in Reference [6] presents a proposal aggregating data from GPS receivers in the Old City of Akko (Israel).
- Mining Travel Patterns from Geotagged Photos. Zheng et al. in Reference [149] investigate spatiotemporal movements based in photos with tags.
- GPS as a Method for Assessing Spatial and Temporal Use Distributions of Nature-Based Tourists. Hallo et al. [150] presents a study about GPS offers advantages over other methods.
- Understanding tourists’ spatial behaviour: GPS tracking as an aid to sustainable destination management. Edwards and Griffin in Reference [139] presents a study with 154 participants using GPS to construct and analyse maps.
- Time and Space in Event Behavior: Tracking Visitors by GPS. Pettersson and Zillinger in Reference [3] present a study using GPS in the Biathlon World Championships 2008 in contrast to other traditional technologies.
4.3. Most Cited References
- Collection in WOS of the bibliographic formats (ISI flat format) of each of the articles selected as relevant.
- Since WOS only contains a fraction of them, use is made of the tool PoP Publish or Perish [275], which delivers information from Google Scholar.
- For items that are not in WOS, all fields corresponding to the number of times an item has been quoted (TC field of files) are manually updated to obtain a standardized set of references that will be analyzed by the tool.
- First and Repeat Visitor Behaviour: GPS Tracking and GIS Analysis in Hong Kong. See in figure node with label MCKERCHER B, 2012 [276].
- A Social Network Analysis of Overseas Tourist Movement Patterns in Beijing: the Impact of the Olympic Games. See in figure node with label LEUNG XY, 2012 [143].
- Movement Patterns of Tourists within a Destination. See in figure node with label MCKERCHER B, 2008 [21].
- Understanding tourists’ spatial behaviour: GPS tracking as an aid to sustainable destination management. See in figure node with label EDWARDS D, 2013 [139].
- Modelling spatio-temporal movement of tourists using finite Markov chains. See in figure node with label XIA JH, 2009 [164].
- Tracking technologies and urban analysis. See in figure node with label SHOVAL N, 2008 [6].
- Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. See in figure node with label VU HQ, 2015 [273].
- Modeling Tourist Movements: A Local Destination Analysis. See in figure node with label LEW A, 2006 [23].
- An analysis of visitor movement patterns using travel networks in a large marine park, north-western Australia. See in figure node with label SMALLWOOD CB, 2012 [13].
- Intra-attraction Tourist Spatial-Temporal Behaviour Patterns. See in figure node with label HUANG XT, 2012 [147].
- Latent semantic indexing (LSI) that uses a mathematical technique to identify patterns in the relationships between the terms.
- Log-likelihood ratio or LLR1 based on the analysis of most common term or concept from the references.
- Mutual Information or MI based on the analysis of mutual dependence for terms as variables of concepts generated from the references.
4.4. Co-Citation Networks
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tiwari, S.; Kaushik, S.; Tiwari, S.; Jagwani, P. Location based recommender systems: Architecture, trends and research areas. In Proceedings of the IET International Conference on Wireless Communications and Applications (ICWCA 2012), Kuala Lumpur, Malaysia, 8–10 October 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Tiwari, S.; Kaushik, S. Information Enrichment for Tourist Spot Recommender System Using Location Aware Crowdsourcing. In Proceedings of the 2014 IEEE 15th International Conference on Mobile Data Management, Brisbane, Australia, 14–18 July 2014; Volume 2, pp. 11–14. [Google Scholar] [CrossRef]
- Pettersson, R.; Zillinger, M. Time and Space in Event Behaviour: Tracking Visitors by GPS. Tour. Geogr. 2011, 13, 1–20. [Google Scholar] [CrossRef]
- O’Connor, A.; Zerger, A.; Itami, B. Building better agents: Geo-temporal tracking and analysis of tourist behavior. MODSIM 2003 2003, 3, 1148–1153. [Google Scholar]
- Shoval, N.; Isaacson, M. Application of Tracking Technologies to the Study of Pedestrian Spatial Behavior. Prof. Geogr. 2006, 58, 172–183. [Google Scholar] [CrossRef]
- Shoval, N. Tracking technologies and urban analysis. Cities 2008, 25, 21–28. [Google Scholar] [CrossRef]
- Schaick, J.; Spek, S.C. Urbanism on Track: Application of Tracking Technologies in Urbanism; IOS Press: Clifton, VA, USA, 2008; Volume 1. [Google Scholar]
- Lau, G.; McKercher, B. Understanding Tourist Movement Patterns in a Destination: A GIS Approach. Tour. Hosp. Res. 2006, 7, 39–49. [Google Scholar] [CrossRef]
- Shoval, N.; Schvimer, Y.; Tamir, M. Real-Time Measurement of Tourists Objective and Subjective Emotions in Time and Space. J. Travel Res. 2017, 0047287517691155. [Google Scholar] [CrossRef]
- Van der Knaap, W.G. Research report: GIS oriented analysis of tourist time space patterns to support sustainable tourism development. Tour. Geogr. 1999, 1, 56–69. [Google Scholar] [CrossRef]
- Pugh, N.R. Principles of product traceability. Am. Soc. Qual. Control 1973, 4, 65–69. [Google Scholar]
- Monteiro, D.M.S.; Caswell, J.A. Traceability adoption at the farm level: An empirical analysis of the Portuguese pear industry. Food Policy 2009, 34, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Smallwood, C.B.; Beckley, L.E.; Moore, S.A. An analysis of visitor movement patterns using travel networks in a large marine park, north-western Australia. Tour. Manag. 2012, 33, 517–528. [Google Scholar] [CrossRef]
- Butler, R.W. Sustainable tourism: A state-of-the-art review. Tour. Geogr. 1999, 1, 7–25. [Google Scholar] [CrossRef]
- Edgell, D.L., Sr. Managing Sustainable Tourism: A Legacy for the Future; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Eckert, C.; Pechlaner, H. Alternative Product Development as Strategy Towards Sustainability in Tourism: The Case of Lanzarote. Sustainability 2019, 11, 3588. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Sedaghat, M.; Maknoon, R.; Zavadskas, E.K. Sustainable tourism: A comprehensive literature review on frameworks and applications. Econ. Res. Ekon. Istraz. 2015, 28, 1–30. [Google Scholar] [CrossRef]
- Jovicic, D.Z. Key issues in the implementation of sustainable tourism. Curr. Issues Tour. 2014, 17, 297–302. [Google Scholar] [CrossRef]
- Keul, A. Field research on tourism: The Salzburg Tracking Project. Gr. Z. Angew. Soz. 1996, 27, 51–56. [Google Scholar]
- Fennell, D.A. A tourist space-time budget in the Shetland Islands. Ann. Tour. Res. 1996, 23, 811–829. [Google Scholar] [CrossRef]
- McKercher, B.; Lau, G. Movement patterns of tourists within a destination. Tour. Geogr. 2008, 10, 355–374. [Google Scholar] [CrossRef]
- Asakura, Y.; Iryo, T. Analysis of tourist behaviour based on the tracking data collected using a mobile communication instrument. Transp. Res. Part A Policy Pract. 2007, 41, 684–690. [Google Scholar] [CrossRef]
- Lew, A.; McKercher, B. Modeling tourist movements—A local destination analysis. Ann. Tour. Res. 2006, 33, 403–423. [Google Scholar] [CrossRef]
- Baraglia, R.; Muntean, C.I.; Nardini, F.M.; Silvestri, F. LearNext: Learning to Predict Tourists Movements. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October–1 November 2013; ACM: New York, NY, USA, 2013; pp. 751–756. [Google Scholar] [CrossRef]
- Ruhanen, L. Strategic visioning: Integrating sustainable development principles in tourism destination planning. Acta Tur. 2012, 24, 149–176. [Google Scholar]
- McCamley, C.; Gilmore, A. Strategic marketing planning for heritage tourism: A conceptual model and empirical findings from two emerging heritage regions. J. Strateg. Mark. 2018, 26, 156–173. [Google Scholar] [CrossRef]
- Shirazi, S.F.M.; Som, A.P.M. Destination Management and Relationship Marketing: Two Major Factors to Achieve Competitive Advantage. J. Relatsh. Mark. 2011, 10, 76–87. [Google Scholar] [CrossRef]
- Dwyer, L.; Edwards, D.; Mistilis, N.; Roman, C.; Scott, N. Destination and enterprise management for a tourism future. Tour. Manag. 2009, 30, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Beeco, J.A.; Brown, G. Integrating space, spatial tools, and spatial analysis into the human dimensions of parks and outdoor recreation. Appl. Geogr. 2013, 38, 76–85. [Google Scholar] [CrossRef]
- Scuttari, A.; Lucia, M.D.; Martini, U. Integrated planning for sustainable tourism and mobility. A tourism traffic analysis in Italy’s South Tyrol region. J. Sustain. Tour. 2013, 21, 614–637. [Google Scholar] [CrossRef]
- Jin, Q.; Hu, H.; Kavan, P. Factors Influencing Perceived Crowding of Tourists and Sustainable Tourism Destination Management. Sustainability 2016, 8, 976. [Google Scholar] [CrossRef]
- Mings, R.C.; Mchugh, K.E. The Spatial Configuration of Travel to Yellowstone National Park. J. Travel Res. 1992, 30, 38–46. [Google Scholar] [CrossRef]
- Lue, C.C.; Crompton, J.L.; Fesenmaier, D.R. Conceptualization of multi-destination pleasure trips. Ann. Tour. Res. 1993, 20, 289–301. [Google Scholar] [CrossRef]
- Oppermann, M. A Model of Travel Itineraries. J. Travel Res. 1995, 33, 57–61. [Google Scholar] [CrossRef]
- Flognfeldt, T. Traveler Geographic Origin and Market Segmentation: The Multi Trips Destination Case. J. Travel Tour. Mark. 1999, 8, 111–124. [Google Scholar] [CrossRef]
- Sriram, N.; Lew, A.; Raguraman, K. Gateways, hubs and destinations: Transportation hierarchies in Southeast Asia. In Tourism Managements and Policy: Perspectives from Singapore; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2001; pp. 55–89. [Google Scholar]
- Connell, J.; Page, S.J. Exploring the spatial patterns of car-based tourist travel in Loch Lomond and Trossachs National Park, Scotland. Tour. Manag. 2008, 29, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, J.E.; Filimonau, V.; Cherrett, T.; Davies, N.; Norgate, S.; Speed, C.; Winstanley, C. Understanding temporal rhythms and travel behaviour at destinations: Potential ways to achieve more sustainable travel. J. Sustain. Tour. 2013, 21, 1070–1090. [Google Scholar] [CrossRef]
- Paunovic, I.; Jovanovic, V. Implementation of Sustainable Tourism in the German Alps: A Case Study. Sustainability 2017, 9, 226. [Google Scholar] [CrossRef]
- Bratucu, G.; Baltescu, C.A.; Neacu, N.A.; Bocor, D.; ierean, O.M.; Madar, A. Approaching the Sustainable Development Practices in Mountain Tourism in the Romanian Carpathians. Sustainability 2017, 9, 2051. [Google Scholar] [CrossRef]
- Lew, A.A.; McKercher, B. Trip destinations, gateways and itineraries: The example of Hong Kong. Tour. Manag. 2002, 23, 609–621. [Google Scholar] [CrossRef]
- Hall, C.M.; Lew, A.A. Understanding and Managing Tourism Impacts: An Integrated Approach (Contemporary Geographies of Leisure, Tourism and Mobility), 1st ed.; Routledge: Abingdon, UK, 2009. [Google Scholar]
- Mckercher, B.; Lew, A.A. Distance Decay and the Impact of Effective Tourism Exclusion Zones on International Travel Flows. J. Travel Res. 2003, 42, 159–165. [Google Scholar] [CrossRef]
- Ho, G.; McKercher, B. A Comparison of Long-Haul and Short-Haul Business Tourists of Hong Kong. Asia Pac. J. Tour. Res. 2014, 19, 342–355. [Google Scholar] [CrossRef]
- Yan, Y.Q.; Zhang, H.Q.; Ye, B.H. Assessing the impacts of the high-speed train on tourism demand in China. Tour. Econ. 2014, 20, 157–169. [Google Scholar] [CrossRef]
- Albrecht, J.N. Micro-mobility patterns and service blueprints as foundations for visitor management planning. J. Sustain. Tour. 2014, 22, 1052–1070. [Google Scholar] [CrossRef]
- Meijles, E.; de Bakker, M.; Groote, P.; Barske, R. Analysing hiker movement patterns using GPS data: Implications for park management. Comput. Environ. Urban Syst. 2013, 47, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Taczanowska, K.; Muhar, A.; Brandenburg, C. Potential and limitations of GPS tracking for monitoring spatial and temporal aspects of visitor behaviour in recreational areas. In Proceedings of the Fourth International Conference on Monitoring and Management of Visitor Flows in Recreational and Protected Areas, Montecatini Terme, Italy, 14 October 2008; Volume 14, p. 451. [Google Scholar]
- Dye, A.S.; Shaw, S.L. A GIS-based spatial decision support system for tourists of Great Smoky Mountains National Park. J. Retail. Consum. Serv. 2007, 14, 269–278. [Google Scholar] [CrossRef]
- Aminu, M.; Ludin, A.; Matori, A.N.; Wan Yusof, K.; Dano, L.; Chandio, I. A spatial decision support system (SDSS) for sustainable tourism planning in Johor Ramsar sites, Malaysia. Environ. Earth Sci. 2013, 70, 1113–1124. [Google Scholar] [CrossRef]
- Holyoak, N.; Carson, D.; Schmallegger, D. VRUMTM: A Tool for Modelling Travel Patterns of Self-Drive Tourists. In Information and Communication Technologies in Tourism 2009; Hopken, W., Gretzel, U., Law, R., Eds.; Springer: Vienna, Austria, 2009; pp. 237–247. [Google Scholar]
- Carson, D.A.; Carson, D.B.; Lundmark, L. Tourism and Mobilities in Sparsely Populated Areas: Towards a Framework and Research Agenda. Scand. J. Hosp. Tour. 2014, 14, 353–366. [Google Scholar] [CrossRef]
- Wolf, I.D.; Hagenloh, G.; Croft, D.B. Visitor monitoring along roads and hiking trails: How to determine usage levels in tourist sites. Tour. Manag. 2012, 33, 16–28. [Google Scholar] [CrossRef]
- Wolf, I.D.; Stricker, H.K.; Hagenloh, G. Interpretive media that attract park visitors and enhance their experiences: A comparison of modern and traditional tools using {GPS} tracking and {GIS} technology. Tour. Manag. Perspect. 2013, 7, 59–72. [Google Scholar] [CrossRef]
- Freuler, B.; Hunziker, M. Recreation activities in protected areas: Bridging the gap between the attitudes and behaviour of snowshoe walkers. For. Snow Landsc. Res. 2007, 81, 191–206. [Google Scholar]
- Booth, J.E.; Gaston, K.J.; Armsworth, P.R. Public understanding of protected area designation. Biol. Conserv. 2009, 142, 3196–3200. [Google Scholar] [CrossRef]
- Tanner-McAllister, S.; Rhodes, J.; Hockings, M. Community and park manager’s perceptions of protected area management: A southeast Queensland study. Australas. J. Environ. Manag. 2014, 21, 320–336. [Google Scholar] [CrossRef]
- Rupf, R.; Wyttenbach, M.; Köchli, D.; Hediger, M.; Lauber, S.; Ochsner, P.; Graf, R. Assessing the spatio-temporal pattern of winter sports activities to minimize disturbance in capercaillie habitats. J. Prot. Mt. Areas Res. Manag. 2011, 3, 23–32. [Google Scholar] [CrossRef]
- Higham, J.; Inge Vistad, O. Tourism in Protected Natural Areas: The Nordic-Baltic Context. Scand. J. Hosp. Tour. 2011, 11, 1–12. [Google Scholar] [CrossRef]
- Lyon, K.; Cottrell, S.P.; Siikamki, P.; Van Marwijk, R. Biodiversity Hotspots and Visitor Flows in Oulanka National Park, Finland. Scand. J. Hosp. Tour. 2011, 11, 100–111. [Google Scholar] [CrossRef]
- Orellana, D.; Bregt, A.K.; Ligtenberg, A.; Wachowicz, M. Exploring visitor movement patterns in natural recreational areas. Tour. Manag. 2012, 33, 672–682. [Google Scholar] [CrossRef]
- Paunovic, I.; Jovanovic, V. Sustainable mountain tourism in word and deed: A comparative analysis in the macro regions of the Alps and the Dinarides. Acta Geogr. Slov. 2019, 59. [Google Scholar] [CrossRef] [Green Version]
- Opara, L.U.; Mazaud, F. Food traceability from field to plate. Outlook Agric. 2001, 30, 239–247. [Google Scholar] [CrossRef]
- Gunawan, I.; Vanany, I.; Widodo, E. The influence of traceability system practice to product recall capability in bulk food industry: Observation and interview. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; pp. 1688–1692. [Google Scholar]
- González-Amarillo, C.A.; Corrales-Muñoz, J.C.; Mendoza-Moreno, M.Á.; Hussein, A.F.; Arunkumar, N.; Ramirez-González, G. An IoT-Based Traceability System for Greenhouse Seedling Crops. IEEE Access 2018, 6, 67528–67535. [Google Scholar] [CrossRef]
- Jiang, J.A.; Lin, T.S.; Wang, C.H.; Liao, M.S.; Chou, C.Y.; Chen, C.T. Integration of an automatic agricultural and livestock production management system and an agriculture and food traceability system based on the Internet of Things technology. In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, Australia, 4–6 December 2017; pp. 1–7. [Google Scholar]
- Moretti, V.; Turchini, G.; Bellagamba, F.; Caprino, F. Traceability Issues in Fishery and Aquaculture Products. Vet. Res. Commun. 2003, 27, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Sylvia, G.; Morrissey, M.T. Seafood Traceability in the United States: Current Trends, System Design, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2005, 4, 1–7. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, N.; Wang, M. Wireless sensors in agriculture and food industry-Recent development and future perspective. Comput. Electron. Agric. 2006, 50, 1–14. [Google Scholar] [CrossRef]
- Schroder, U. Challenges in the Traceability of Seafood. J. Verbrauch. Lebensm. 2008, 3, 45–48. [Google Scholar] [CrossRef]
- Storoya, J.; Thakura, M.; Olsen, P. The TraceFood Framework-Principles and guidelines for implementing traceability in food value chains. J. Food Eng. 2013, 115, 41–48. [Google Scholar] [CrossRef]
- Regattieri, A.; Gamberi, M.; Manzini, R. Traceability of food products: General framework and experimental evidence. J. Food Eng. 2007, 81, 347–356. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sarria, D.; Menesatti, P. A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. Food Bioprocess Technol. 2013, 6, 353–366. [Google Scholar] [CrossRef]
- Lindvall, M.; Sandahl, K. Practical Implications of Traceability. Softw. Pract. Exper. 1996, 26, 1161–1180. [Google Scholar] [CrossRef]
- Moe, T. Perspectives on traceability in food manufacture. Trends Food Sci. Technol. 1998, 9, 211–214. [Google Scholar] [CrossRef]
- Kim, H.; Fox, M.; Gruninger, M. An ontology of quality for enterprise modelling. In Proceedings of the 4th IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE ’95), Berkeley Springs, WV, USA, 20–22 April 1995; pp. 105–116. [Google Scholar] [CrossRef]
- Storøy, J.; Senneset, G.; Forås, E.; Olsen, P.; Karlsen, K.; Frederiksen, M.; Børresen, T. Improving traceability in seafood production. In Improving Seafood Products for the Consumer; British Welding Research Association: Cambridge, UK, 2008; pp. 516–538. [Google Scholar]
- Keller, G.; Niuttgens, M. AW Scheer. semantische Processmodellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK); Institut für Wirtschaftsinformatik, Universität des Saarlandes: Saarbrücken, Germany, 1992. [Google Scholar]
- Ziemann, J.; Werth, D.; Matheis, T.; Kahl, T. Towards Tool Support for Integrated Modeling of Private and Public Business Processes. In Proceedings of the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2007), Evry, France, 18–20 June 2007; pp. 383–386. [Google Scholar] [CrossRef]
- Kiepuszewski, B.; ter Hofstede, A.; van der Aalst, W. Fundamentals of control flow in workflows. Acta Inform. 2003, 39, 143–209. [Google Scholar] [CrossRef] [Green Version]
- Van der Aalst, W.; ter Hofstede, A.; Weske, M. Business Process Management: A Survey. In Business Process Management; van der Aalst, W., Weske, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2678, pp. 1–12. [Google Scholar]
- Van der Aalst, W.M. Business process management: A comprehensive survey. ISRN Softw. Eng. 2013, 2013, 507984. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Ciarapica, F.; Giacchetta, G. Business process reengineering of a supply chain and a traceability system: A case study. J. Food Eng. 2009, 93, 13–22. [Google Scholar] [CrossRef]
- EAN Belgium. Best Practices in Traceability; Technical Report; EAN Belgium: Luxembourg, 2003. [Google Scholar]
- GS1. GS1 Global Traceability Standard for Healthcare (GTSH) Implementation Guide; Technical Report; GS1: Brussels, Belgium, 2009. [Google Scholar]
- GS1. Traceability for Fresh Fruits and Vegetables Implementation Guide; Technical Report; GS1: Brussels, Belgium, 2010. [Google Scholar]
- GS1. Wine Supply Chain Traceability. GS1 Implementation Guide; Technical Report; GS1: Brussels, Belgium, 2005. [Google Scholar]
- BRIDGE Project. BRIDGE: Building Radio Frequency Identification for the Global Environment; University of Cambridge: Cambridge, UK, 2015. [Google Scholar]
- EC. BRIDGE: Building Radio Frequency IDentification for the Global Environment. Project Website. 2015. Available online: http://www.bridge-project.eu/ (accessed on 4 July 2019).
- Ilie-Zudor, E.; Kemény, Z.; Van Blommestein, F.; Monostori, L.; Van Der Meulen, A. A survey of applications and requirements of unique identification systems and RFID techniques. Comput. Ind. 2011, 62, 227–252. [Google Scholar] [CrossRef]
- Assimakopoulos, A.M.; Puech, C.; Meinkoehn, F.; Gallicchio, E.; Grotiuz, I. Local-Communities Insertion Network Para America Latina: The Link-All System. In Proceedings of the ICHIM 05 Digital Culture and Heritage/Patrimoine culturel et numérique, Paris, France, 21–23 September 2005. [Google Scholar]
- Hurtado, J.; Maya, N.; Ramírez, G.; Caicedo, O. Resultados, Impacto y Sostenibilidad de LINK-ALL. In Alianza Para la Sociedad de la Información (@LIS): Experiencias y Realizaciones de la Universidad del Cauca; Rendón, A., Caicedo, O., Solarte, M., Eds.; Universidad del Cauca: Cauca, Colombia, 2008; pp. 251–258. [Google Scholar]
- Caicedo, O.; Martinez, F.; Hurtado, J.; Ramirez, G. Wireless Trace Service for Latin American Craft Sector. In Proceedings of the 2006 Wireless Telecommunications Symposium, Pomana, CA, USA, 27–29 April 2016; pp. 1–8. [Google Scholar] [CrossRef]
- EPCGlobal. Sitio Web Oficial. 2011. Available online: http://www.gs1.org/epcglobal (accessed on 4 July 2019).
- Kong, H.L.; Li, J.H. Application Review of the Global Identification System (EAN· UCC System) in the Traceability of the Food Safety Supply Chain. Food Sci. 2004, 6, 49. [Google Scholar]
- Folinas, D.; Manikas, I.; Manos, B. Traceability data management for food chains. Br. Food J. 2006, 108, 622–633. [Google Scholar] [CrossRef]
- Ramirez-Gonzalez, G.; Munoz-Organero, M.; Kloos, C.D.; Chantre, A. Exploring NFC Interactive Panel. In Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, Belgium, Belgium, 21–25 July 2008. [Google Scholar]
- Concha-Agredo, E.A.; Martinez-Acosta, L.C.; Chantre, A.; Ramirez-Gonzalez, G. Pervasive NFC-based solution for the analysis of tourism data in an environment of smart cities. Sist. Telemat. 2015, 13, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Silva-Pedroza, D.; Marin-Calero, R.; Ramirez-Gonzalez, G. NFC Evaluation in the Development of Mobile Applications for MICE in Tourism. Sustainability 2017, 9, 1937. [Google Scholar] [CrossRef]
- Gonzalez, G.R.; Organero, M.M.; Kloos, C.D. Early Infrastructure of an Internet of Things in Spaces for Learning. In Proceedings of the 2008 Eighth IEEE International Conference on Advanced Learning Technologies, Santander, Spain, 1–5 July 2008; pp. 381–383. [Google Scholar] [CrossRef]
- Jara, A.; Zamora, M.; Skarmeta, A. An Architecture Based on Internet of Things to Support Mobility and Security in Medical Environments. In Proceedings of the 2010 7th IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 9–12 January 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Borgman, C.L.; Furner, J. Scholarly communication and bibliometrics. Annu. Rev. Inf. Sci. Technol. 2002, 36, 2–72. [Google Scholar] [CrossRef]
- Grivel, L.; Polanco, X.; Kaplan, A. A computer system for big scientometrics at the age of the World Wide Web. Scientometrics 1997, 40, 493–506. [Google Scholar] [CrossRef]
- Santhanakarthikeyan, S.; Padma, P.; Veeramani, M.; Ravikrishnan, D. Scientometrics Study on Web: Tools and Techniques. Scientometrics 1960, 4, 40–45. [Google Scholar]
- Garfield, E. Citation indexes for science. A new dimension in documentation through association of ideas. Int. J. Epidemiol. 2006, 35, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Small, H.; Greenlee, E. Citation context analysis of a co-citation cluster: Recombinant-DNA. Scientometrics 1980, 2, 277–301. [Google Scholar] [CrossRef]
- Marshakova, I. System of document connection based on references. Nauchno-Tek. Inf. 1973, 2, 3–8. [Google Scholar]
- Muñoz, L.A.; Bolívar, M.P.R.; Cobo, M.J.; Herrera-Viedma, E. Science Mapping Tools: Their Application to e-Government Field. In Proceedings of the 17th International Digital Government Research Conference on Digital Government Research, Shanghai, China, 8–10 June 2016; ACM: New York, NY, USA, 2016; pp. 194–201. [Google Scholar] [CrossRef]
- Morris, S.A.; Van der Veer Martens, B. Mapping research specialties. Annu. Rev. Inf. Sci. Technol. 2008, 42, 213–295. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Borner, K.; Chen, C.; Boyack, K.W. Visualizing knowledge domains. Annu. Rev. Inf. Sci. Technol. 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Noyons, E.; Moed, H.; Luwel, M. Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. J. Am. Soc. Inf. Sci. 1999, 50, 115–131. [Google Scholar] [CrossRef]
- Persson, O.; Danell, R.; Schneider, J.W. How to use Bibexcel for various types of bibliometric analysis. Celebr. Sch. Commun. Stud. 2009, 5, 9–24. [Google Scholar]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eck, N.J.V.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Informetr. 2014, 8, 802–823. [Google Scholar] [CrossRef] [Green Version]
- Leydesdorff, L. Leydesdorff Software. Available online: https://www.leydesdorff.net/software.htm (accessed on 4 July 2019).
- Matheo-Software Team. Matheo Analyzer; Matheo-Software Team. Available online: https://www.matheo-software.com/matheo-analyzer/ (accessed on 4 July 2019).
- Börner, K.; Polley, D.E. Visual Insights: A Practical Guide to Making Sense of Data; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Cobo, M.; López-Herrera, A.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
- Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Williams, J.M.; Liu, H.; Khanna, R.; Pisharody, G. Internet of Things: A Scientometric Review. Symmetry 2017, 9, 301. [Google Scholar] [CrossRef]
- Zhang, S.J.; Lyu, P.H.; Yan, Y. Global geographical and scientometric analysis of tourism-themed research. Scientometrics 2015, 105, 385–401. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Hao, J.X.; Yu, Y. Mapping smart tourism research in China: A semantic and social network analysis using CiteSpace. In Proceedings of the 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Fang, Y.; Yin, J.; Wu, B. Climate change and tourism: A scientometric analysis using CiteSpace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Li, X.; Ma, E.; Qu, H. Knowledge mapping of hospitality research—A visual analysis using CiteSpace. Int. J. Hosp. Manag. 2017, 60, 77–93. [Google Scholar] [CrossRef]
- Marfil, J.A.C.; Valiente, G.C. La investigación turística publicada en revistas turísticas y no turísticas: Análisis bibliométrico de la producción de las universidades catalanas. Cuad. Tur. 2013, 31, 55–81. [Google Scholar]
- Leiva Olivencia, J.L.; Guevara Plaza, A.; Rossi Jimenez, C. Generation of recommendations in an Augmented Reality system applied to tourism based on the context. Pasos-Rev. Tur. Patrim. Cult. 2015, 13, 649–668. [Google Scholar]
- Shoval, N.; Schvimer, Y.; Tamir, M. Tracking technologies and urban analysis: Adding the emotional dimension. Cities 2018, 72, 34–42. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Li, Y.; Zha, Z.J.; Chua, T.S. Mining Travel Patterns from GPS-Tagged Photos. In Advances in Multimedia Modeling, PT I; Lee, K.T., Tsai, W.H., Liao, H.Y.M., Chen, T., Hsieh, J.W., Tseng, C.C., Eds.; Springer: Berlin, Germany, 2011; Volume 6523, pp. 262–272. [Google Scholar]
- Basiron, N.F.Z.; Ahmad, A.; Masron, T. Spatial Analysis of International Tourist Movement to Langkawi for 2010 and 2011. In Proceedings of the SHS Web of Conferences, Paris, France, 1 January 2014; Volume 12, p. 01066. [Google Scholar]
- Zoltan, J.; McKercher, B. Analysing intra-destination movements and activity participation of tourists through destination card consumption. Tour. Geogr. 2015, 17, 19–35. [Google Scholar] [CrossRef]
- Ahas, R.; Aasa, A.; Mark, U.; Pae, T.; Kull, A. Seasonal tourism spaces in Estonia: Case study with mobile positioning data. Tour. Manag. 2007, 28, 898–910. [Google Scholar] [CrossRef]
- Brilhante, I.; Macedo, J.; Nardini, F.; Perego, R.; Renso, C. TripBuilder: A Tool for Recommending Sightseeing Tours. In Proceedings of the European Conference on Information Retrieval, Amsterdam, The Netherlands, 13–16 April 2014; Rijke, M., Kenter, T., Vries, A., Zhai, C.X., Jong, F., Radinsky, K., Hofmann, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 771–774. [Google Scholar]
- Cai, G.; Hio, C.; Bermingham, L.; Lee, K.; Lee, I. Mining Frequent Trajectory Patterns and Regions-of-Interest from Flickr Photos. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences (HICSS), Los Alamitos, CA, USA, 6–9 January 2014; pp. 1454–1463. [Google Scholar]
- Gabrielli, L.; Rinzivillo, S.; Ronzano, F.; Villatoro, D. From tweets to semantic trajectories: Mining anomalous urban mobility patterns. In Proceedings of the International Workshop on Citizen in Sensor Networks, Barcelona, Spain, 19 September 2013; Nin, J., Villatoro, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 26–35. [Google Scholar]
- Hummel, K.A.; Hess, A. Movement activity estimation and forwarding effects for opportunistic networking based on urban mobility traces. Wirel. Commun. Mob. Comput. 2013, 13, 343–360. [Google Scholar] [CrossRef]
- Masiero, L.; Zoltan, J. Tourists intra-destination visits and transport mode: A bivariate probit model. Ann. Tour. Res. 2013, 43, 529–546. [Google Scholar] [CrossRef]
- Bianchi, R.V.; Stephenson, M.L. Deciphering tourism and citizenship in a globalized world. Tour. Manag. 2013, 39, 10–20. [Google Scholar] [CrossRef]
- Restrepo, E.; Moreno, F.; Sanchez Lasheras, F. Identification of frequent touristic routes using the SMoT algorithm. In Proceedings of the 11th International Conference of Numerical Analysis and Applied Mathematics 2013, Rhodes, Greece, 21–27 September 2013; Volume 1558, pp. 2325–2328. [Google Scholar]
- Edwards, D.; Griffin, T. Understanding tourists spatial behaviour: GPS tracking as an aid to sustainable destination management. J. Sustain. Tour. 2013, 21, 580–595. [Google Scholar] [CrossRef]
- Zhao, J.; Forer, P.; Sun, Q.; Simmons, D. Multiple-view strategies for enhanced understanding of dynamic tourist activity through geovisualization at regional and national scales. Cartogr. Geogr. Inf. Sci. 2013, 40, 349–360. [Google Scholar] [CrossRef]
- Elragal, A.; El-Gendy, N. Trajectory data mining: Integrating semantics. J. Enterp. Inf. Manag. 2013, 26, 516–535. [Google Scholar] [CrossRef]
- Mladenovic, V.; Lutovac, M.M.; Lutovac, M.D. Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book. In Proceedings of the 2012 20th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–22 November 2012; pp. 1460–1463. [Google Scholar]
- Leung, X.Y.; Wang, F.; Wu, B.; Bai, B.; Stahura, K.A.; Xie, Z. A Social Network Analysis of Overseas Tourist Movement Patterns in Beijing: The Impact of the Olympic Games. Int. J. Tour. Res. 2012, 14, 469–484. [Google Scholar] [CrossRef]
- Baraglia, R.; Frattari, C.; Muntean, C.; Nardini, F.; Silvestri, F. A Trajectory-Based Recommender System for Tourism. In Proceedings of the 8th International Conference, Macau, China, 4–7 December 2012; Huang, R., Ghorbani, A., Pasi, G., Yamaguchi, T., Yen, N., Jin, B., Eds.; Springer: Berlin, Germany, 2012; pp. 196–205. [Google Scholar]
- Kozicka, K.; Szopa, R. Managing of the tourist destinations offer based on the dynamics and the forecast of tourist movement. Pol. J. Manag. Stud. 2016, 14, 127–136. [Google Scholar] [CrossRef]
- Zakrisson, I.; Zillinger, M. Emotions in motion: Tourist experiences in time and space. Curr. Issues Tour. 2012, 15, 505–523. [Google Scholar] [CrossRef]
- Xiao-Ting, H.; Bi-Hu, W. Intra-attraction Tourist Spatial-Temporal Behaviour Patterns. Tour. Geogr. 2012, 14, 625–645. [Google Scholar] [CrossRef]
- Baraglia, R.; Frattari, C.; Muntean, C.; Nardini, F.; Silvestri, F. RecTour: A Recommender System for Tourists. In Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT 2012), Macau, China, 4–7 December 2012. [Google Scholar]
- Zheng, Y.T.; Zha, Z.J.; Chua, T.S. Mining Travel Patterns from Geotagged Photos. ACM Trans. Intell. Syst. Technol. 2012, 3, 56. [Google Scholar] [CrossRef]
- Hallo, J.C.; Beeco, J.A.; Goetcheus, C.; McGee, J.; McGehee, N.G.; Norman, W.C. GPS as a Method for Assessing Spatial and Temporal Use Distributions of Nature-Based Tourists. J. Travel Res. 2012, 51, 591–606. [Google Scholar] [CrossRef]
- Parroco, A.M.; Vaccina, F.; De Cantis, S.; Ferrante, M. Multi-Destination Trips and Tourism Statistics: Empirical Evidences in Sicily. Economics 2012, 6, 12–27. [Google Scholar] [CrossRef]
- Chen, T.; Pearce, P.L. Seasonality patterns in Asian tourism. Tour. Econ. 2012, 18, 1105–1115. [Google Scholar] [CrossRef]
- Doscher, C.; Moore, K.; Smallman, C.; Wilson, J.; Simmons, D. An Agent-Based Model of Tourist Movements in New Zealand: Implications for Spatial Yield. In Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM2011), Perth, Australia, 12–16 December 2011; pp. 2908–2913. [Google Scholar]
- Shoval, N.; McKercher, B.; Birenboim, A.; Ng, E. The Application of a Sequence Alignment Method to the Creation of Typologies of Tourist Activity in Time and Space. Environ. Plan. B Plan. Des. 2015, 42, 76–94. [Google Scholar] [CrossRef]
- Xia, J.C.; Zeephongsekul, P.; Packer, D. Spatial and temporal modelling of tourist movements using Semi-Markov processes. Tour. Manag. 2011, 32, 844–851. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, R.; Chandra, S.; Vamsheedhar, J.; Das, V.R. Parametric Study of Pedestrian Speeds at Midblock Crossings. J. Urban Plan. Dev. ASCE 2011, 137, 381–389. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Sun, X.; Su, X.; Zheng, S.; Dong, R.; Shi, L. Photography-based analysis of tourists’ temporal-spatial behaviour in the Old Town of Lijiang. Int. J. Sustain. Dev. World Ecol. 2011, 18, 523–529. [Google Scholar] [CrossRef]
- Dejbakhsh, S.; Arrowsmith, C.; Jackson, M. Cultural Influence on Spatial Behaviour. Tour. Geogr. 2011, 13, 91–111. [Google Scholar] [CrossRef]
- Xia, J.C.; Evans, F.H.; Spilsbury, K.; Ciesielski, V.; Arrowsmith, C.; Wright, G. Market segments based on the dominant movement patterns of tourists. Tour. Manag. 2010, 31, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Terrier, C. Tourist Flows. In Transport Survey Methods: Keeping up with a Changing World; Bonnel, P., LeeGosselin, M., Zmud, J., Madre, J.L., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 219–241. [Google Scholar]
- Xia, J.; Zeephongsekul, P. Space and Time Analysis of Tourist Movements using Semi-Markov Processes. In Proceedings of the 18th World Imacs Congress, Cairns, Australia, 13–17 July 2009; pp. 1265–1271. [Google Scholar]
- Weidenfeld, A.; Butler, R.W.; Williams, A.M. Clustering and compatibility between tourism attractions. Int. J. Tour. Res. 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Xia, J.; Packer, D.; Dong, C. Individual differences and tourist wayfinding behaviours. In Proceedings of the 18th World Imacs Congress, Cairns, Australia, 13–17 July 2009; pp. 1272–1278. [Google Scholar]
- Xia, J.; Zeephongsekul, P.; Arrowsmith, C. Modelling spatio-temporal movement of tourists using finite Markov chains. Math. Comput. Simul. 2009, 79, 1544–1553. [Google Scholar] [CrossRef]
- Bastianoni, S.; Pulselli, R.M.; Romano, P.; Pulselli, F.M. Dynamics and evolution of urban patterns: The evidence of the Mobile Landscape project. Des. Nat. IV Comp. Des. Nat. Sci. Eng. 2008, 4, 253–260. [Google Scholar]
- Girardin, F.; Blat, J.; Calabrese, F.; Dal Fiore, F.; Ratti, C. Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Comput. 2008, 7, 36–43. [Google Scholar] [CrossRef] [Green Version]
- McKercher, B.; Wong, C.; Lau, G. How tourists consume a destination. J. Bus. Res. 2006, 59, 647–652. [Google Scholar] [CrossRef]
- Xia, J.; Arrowsmith, C. Managing Scale Issues in Spatio-temporal Movement of Tourists Modelling. In Proceedings of the International Congress on Modelling and Simulation (Modsim) 2005, Melbourne, Australia, 12–15 December 2005; pp. 162–169. [Google Scholar]
- Klimek, R. Mapping Population and Mobile Pervasive Datasets into Individual Behaviours for Urban Ecosystems. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 12–16 June 2016; pp. 683–694. [Google Scholar] [CrossRef]
- O’Connor, A.; Zerger, A.; Itami, B. Geo-temporal tracking and analysis of tourist movement. Math. Comput. Simul. 2005, 69, 135–150. [Google Scholar] [CrossRef]
- Hu, F.; Li, Z.; Yang, C.; Jiang, Y. A graph-based approach to detecting tourist movement patterns using social media data. Cartogr. Geogr. Inf. Sci. 2019, 46, 368–382. [Google Scholar] [CrossRef]
- Lee, H.; Chung, N.; Nam, Y. Do online information sources really make tourists visit more diverse places? Based on the social networking analysis. Inf. Process. Manag. 2019, 56, 1376–1390. [Google Scholar] [CrossRef]
- Ruiz, J.B.; Lamers, M.; Bush, S.; Wells, G.B. Governing nature-based tourism mobility in National Park Torres del Paine, Chilean Southern Patagonia. Mobilities 2019, 1–17. [Google Scholar] [CrossRef]
- Mehmood, F.; Ahmad, S.; Kim, D. Design and Development of a Real-Time Optimal Route Recommendation System Using Big Data for Tourists in Jeju Island. Electronics 2019, 8, 506. [Google Scholar] [CrossRef]
- Caldeira, A.M.; Kastenholz, E. Spatiotemporal tourist behaviour in urban destinations: A framework of analysis. Tour. Geogr. 2019, 1–29. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, R.; Zhang, Z.; Zhong, Y.; Wang, S.; Wei, Z.; Ji, H. Understanding the tourist mobility using GPS: How similar are the tourists? Tour. Manag. 2019, 71, 54–66. [Google Scholar] [CrossRef]
- Klimek, R. Towards Recognising Individual Behaviours from Pervasive Mobile Datasets in Urban Spaces. Sustainability 2019, 11, 1563. [Google Scholar] [CrossRef]
- Li, Y.; Yang, L.; Shen, H.; Wu, Z. Modeling intra-destination travel behavior of tourists through spatio-temporal analysis. J. Destin. Mark. Manag. 2019, 11, 260–269. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, T.; Yuan, H.; Hu, Z.; Miao, J. Exploring Group Movement Pattern through Cellular Data: A Case Study of Tourists in Hainan. ISPRS Int. J. Geo-Inf. 2019, 8, 74. [Google Scholar] [CrossRef]
- Zai, C.; Lowen Sahr, C.L. touristic route as a tool for territorial development: The ‘verde que te quero verde’ route in campo Magro/Parana (Brasil). Finisterra Rev. Port. Geogr. 2019, 54, 135–154. [Google Scholar] [CrossRef]
- Khairi, N.D.M.; Ismail, H.N.; Jaafar, S.M.R.S. Tourist behaviour through consumption in Melaka World Heritage Site. Curr. Issues Tour. 2019, 22, 582–600. [Google Scholar] [CrossRef]
- Qin, S.; Man, J.; Wang, X.; Li, C.; Dong, H.; Ge, X. Applying Big Data Analytics to Monitor Tourist Flow for the Scenic Area Operation Management. Discret. Dyn. Nat. Soc. 2019, 2019, 8239047. [Google Scholar] [CrossRef]
- Duffy, A. Two-way street: How smartphones and the social web impact the travellers liminal gaze. Mob. Media Commun. 2019, 7, 60–75. [Google Scholar] [CrossRef]
- Van der Zee, E.; Bertocchi, D. Finding patterns in urban tourist behaviour: A social network analysis approach based on TripAdvisor reviews. Inf. Technol. Tour. 2018, 20, 153–180. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, X.; Liu, Y.; Lin, J.; An, J. Tourist movement patterns understanding from the perspective of travel party size using mobile tracking data: A case study of Xi’an, China. Tour. Manag. 2018, 69, 368–383. [Google Scholar] [CrossRef]
- Kidd, A.; D’Antonio, A.; Monz, C.; Heaslip, K.; Taff, D.; Newman, P. A GPS-Based Classification of Visitors Vehicular Behavior in a Protected Area Setting. J. Park Recreat. Adm. 2018, 36. [Google Scholar] [CrossRef]
- Matsuda, Y.; Fedotov, D.; Takahashi, Y.; Arakawa, Y.; Yasumoto, K.; Minker, W. EmoTour: Estimating Emotion and Satisfaction of Users Based on Behavioral Cues and Audiovisual Data. Sensors 2018, 18, 3978. [Google Scholar] [CrossRef]
- Zeng, B. Pattern of Chinese tourist flows in Japan: A Social Network Analysis perspective. Tour. Geogr. 2018, 20, 810–832. [Google Scholar] [CrossRef]
- Veretekhina, S.V.; Shmakova, E.G.; Medvedeva, V.A.; Makushkin, S.A.; Kashirin, V.S.; Pivneva, V.S. Identification Of Distrust Of The Functionality Of Mobile Applications. Suggestions For Personalization of the Data Provided By The Example Of Tourism. Mod. J. Lang. Teach. Methods 2018, 8, 147–154. [Google Scholar]
- Kim, E.J.; Jo, Y.; Kang, Y. Are Touristic Attractions Well-Connected in an Olympic Host City? A Network Analysis Measurement of Visitor Movement Patterns in Gangneung, South Korea. Sustainability 2018, 10, 3310. [Google Scholar] [CrossRef]
- Cvelbar, L.K.; Mayr, M.; Vavpotic, D. Geographical mapping of visitor flow in tourism: A user-generated content approach. Tour. Econ. 2018, 24, 701–719. [Google Scholar] [CrossRef]
- Vu, H.Q.; Li, G.; Law, R.; Zhang, Y. Tourist activity analysis by leveraging mobile social media data. J. Travel Res. 2018, 57, 883–898. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, I. Change and stability in shopping tourist destination networks: The case of Seoul in Korea. J. Destin. Mark. Manag. 2018, 9, 267–278. [Google Scholar] [CrossRef]
- Kang, S.; Lee, G.; Kim, J.; Park, D. Identifying the spatial structure of the tourist attraction system in South Korea using GIS and network analysis: An application of anchor-point theory. J. Destin. Mark. Manag. 2018, 9, 358–370. [Google Scholar] [CrossRef]
- Scherrer, L.; Tomko, M.; Ranacher, P.; Weibel, R. Travelers or locals? Identifying meaningful sub-populations from human movement data in the absence of ground truth. EPJ Data Sci. 2018, 7, 19. [Google Scholar] [CrossRef]
- Jin, C.; Cheng, J.; Xu, J. Using user-generated content to explore the temporal heterogeneity in tourist mobility. J. Travel Res. 2018, 57, 779–791. [Google Scholar] [CrossRef]
- Bartie, P.; Mackaness, W.; Lemon, O.; Dalmas, T.; Janarthanam, S.; Hill, R.L.; Dickinson, A.; Liu, X. A dialogue based mobile virtual assistant for tourists: The SpaceBook Project. Comput. Environ. Urban Syst. 2018, 67, 110–123. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Chung, N.; Nam, Y. A social network analysis of tourist movement patterns in blogs: Korean backpackers in Europe. Sustainability 2017, 9, 2251. [Google Scholar] [CrossRef]
- Taczanowska, K.; Bielański, M.; González, L.M.; Garcia-Massó, X.; Toca-Herrera, J. Analyzing spatial behavior of backcountry skiers in mountain protected areas combining GPS tracking and graph theory. Symmetry 2017, 9, 317. [Google Scholar] [CrossRef]
- Shao, J.; Chang, X.; Morrison, A. How can big data support smart scenic area management? An analysis of travel blogs on Huashan. Sustainability 2017, 9, 2291. [Google Scholar] [CrossRef]
- Zheng, W.; Liao, Z.; Qin, J. Using a four-step heuristic algorithm to design personalized day tour route within a tourist attraction. Tour. Manag. 2017, 62, 335–349. [Google Scholar] [CrossRef]
- Hernández, J.M.; González-Martel, C. An evolving model for the lodging-service network in a tourism destination. Phys. A Stat. Mech. Appl. 2017, 482, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Miah, S.J.; Vu, H.Q.; Gammack, J.; McGrath, M. A big data analytics method for tourist behaviour analysis. Inf. Manag. 2017, 54, 771–785. [Google Scholar] [CrossRef]
- Hardy, A.; Hyslop, S.; Booth, K.; Robards, B.; Aryal, J.; Gretzel, U.; Eccleston, R. Tracking tourists travel with smartphone-based GPS technology: A methodological discussion. Inf. Technol. Tour. 2017, 17, 255–274. [Google Scholar] [CrossRef]
- Liu, Y.; Ester, M.; Qian, Y.; Hu, B.; Cheung, D.W. Microscopic and macroscopic spatio-temporal topic models for check-in data. IEEE Trans. Knowl. Data Eng. 2017, 29, 1957–1970. [Google Scholar] [CrossRef]
- Becker, M.; Lemmerich, F.; Singer, P.; Strohmaier, M.; Hotho, A. MixedTrails: Bayesian hypothesis comparison on heterogeneous sequential data. Data Min. Knowl. Discov. 2017, 31, 1359–1390. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Dong, C.; Chen, W. Mapping and quantifying spatial and temporal dynamics and bundles of travel flows of residents visiting urban parks. Sustainability 2017, 9, 1296. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.R.; Su, Q. Does spatial layout matter to theme park tourism carrying capacity? Tour. Manag. 2017, 61, 82–95. [Google Scholar] [CrossRef]
- Peng, X.; Huang, Z. A novel popular tourist attraction discovering approach based on geo-tagged social media big data. ISPRS Int. J. Geo-Inf. 2017, 6, 216. [Google Scholar] [CrossRef]
- Pieraccini, M.; Betti, M.; Forcellini, D.; Dei, D.; Papi, F.; Bartoli, G.; Facchini, L.; Corazzi, R.; Kovacevic, V.C. Radar detection of pedestrian-induced vibrations on Michelangelo’s David. PLoS ONE 2017, 12, e0174480. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Huang, X.; Li, Y. Understanding the tourist mobility using GPS: Where is the next place? Tour. Manag. 2017, 59, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Ichifuji, Y.; Matsuo, Y.; Koide, N.; Akashi, N.; Terai, Y.; Kobayashi, T. A study for understanding of tourist person trip pattern based on log data of Wi-Fi access points. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 2167–2174. [Google Scholar]
- Hontus, A.C.; Alecu, I.N.; Cretu, R.F.; Cretu, R.C. Study Regarding the Tourist Traffic in the Danube Delta through Forecasting the Last Two Years. In Proceedings of the 27th International Business Information Management Association Conference, Milan, Italy, 4–5 May 2016; pp. 3592–3610. [Google Scholar]
- Blečić, I.; Canu, D.; Cecchini, A.; Congiu, T.; Fancello, G.; Mauro, S.; Sacerdotti, S.L.; Trunfio, G.A. Coupling surveys with GPS tracking to explore tourists spatio-temporal behaviour. In Proceedings of the International Conference on Computational Science and Its Applications, Beijing, China, 4–7 July 2016; pp. 150–160. [Google Scholar]
- Ivars, J.; Celdrán, M.; Triviño, A.; Vera-Rebollo, J. Tourist mobility at coastal mass destinations: Implications for sustainability. WIT Trans. Ecol. Environ. 2016, 201, 127–137. [Google Scholar]
- Toha, M.A.M.; Ismail, H.N. A heritage tourism and tourist flow pattern: A perspective on traditional versus modern technologies in tracking the tourists. Int. J. Built Environ. Sustain. 2015, 2, 85–92. [Google Scholar]
- Khairi, N.D.M.; Ismail, H.N. Acknowledging the Tourist Spatial Behavior for Space Management in Urban Heritage Destination. Int. J. Built Environ. Sustain. 2015, 2, 317–323. [Google Scholar] [CrossRef]
- Sugimoto, K.; Koike, T. Tourist behaviors in the region at the foot of Mt. Fuji: An analysis focusing on the effect of travel distance. J. Geogr. Chigaku Zasshi 2015, 124, 1015–1031. [Google Scholar] [CrossRef]
- Valle, D.; Cvetojevic, S.; Robertson, E.P.; Reichert, B.E.; Hochmair, H.H.; Fletcher, R.J. Individual movement strategies revealed through novel clustering of emergent movement patterns. Sci. Rep. 2017, 7, 44052. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Huang, S.S.; Fu, H. An application of network analysis on tourist attractions: The case of Xinjiang, China. Tour. Manag. 2017, 58, 132–141. [Google Scholar] [CrossRef]
- Cortesi, N.; Gotti, K.; Psaila, G.; Burini, F.; Lwin, K.T.; Hossain, M. A network-based ranking approach to discover places visited by tourists from geo-located tweets. In Proceedings of the 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), Malabe, Sri Lanka, 6–8 December 2017; pp. 1–8. [Google Scholar]
- Redin, D.; Vilela, D.; Nunes, N.; Ribeiro, M.; Prandi, C. ViTFlow: A platform to visualize tourists flows in a rich interactive map-based interface. In Proceedings of the 2017 Sustainable Internet and ICT for Sustainability (SustainIT), Funchal, Portugal, 6–7 December 2017; pp. 1–2. [Google Scholar]
- Sobaś, E.; Gawroński, K.; Gawrońska, G.; Janus, B. Monitoring of Tourist Movement as a Basis for Management and Protection of Attractive Tourist Areas on the Example of the Popradzki Landscape Park. Acta Sci. Pol. Form. Circumiectus 2017, 16, 73. [Google Scholar] [CrossRef]
- Zafar, A.; Kamran, M.; Shad, S.A.; Nisar, W. A Robust Missing Data-Recovering Technique for Mobility Data Mining. Appl. Artif. Intell. 2017, 31, 425–438. [Google Scholar] [CrossRef]
- Nishad, A.; Abraham, S. Semantic trajectory analysis for identifying locations of interest of moving objects. In Proceedings of the 2017 International Conference on Networks & Advances in Computational Technologies (NetACT), Thiruvanthapuram, India, 20–22 July 2017; pp. 257–261. [Google Scholar]
- Lee, H.; Chung, N. Explorative Study on Movement Patterns of Korean Domestic Tourists Using Social Networking Analysis for Implementation of Smart Tourism Ecosystem. J. Korea Serv. Manag. Soc. 2017, 18, 57–74. [Google Scholar]
- Anagnostopoulos, V.; Havlena, M.; Kiefer, P.; Giannopoulos, I.; Schindler, K.; Raubal, M. Gaze-Informed location-based services. Int. J. Geogr. Inf. Sci. 2017, 31, 1770–1797. [Google Scholar] [CrossRef]
- Nezdoyminov, S.; Andryeyeva, N. Studies of tourist traffic on the water transport in Ukraine. Mark. Manag. Innov. 2017, 1, 205–212. [Google Scholar] [CrossRef]
- Shoval, N.; Ahas, R. The use of tracking technologies in tourism research: The first decade. Tour. Geogr. 2016, 18, 587–606. [Google Scholar] [CrossRef]
- Chua, A.; Servillo, L.; Marcheggiani, E.; Moere, A.V. Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy. Tour. Manag. 2016, 57, 295–310. [Google Scholar] [CrossRef]
- Luo, D.; Xu, H.; Zhen, Y.; Dilkina, B.; Zha, H.; Yang, X.; Zhang, W. Learning mixtures of markov chains from aggregate data with structural constraints. IEEE Trans. Knowl. Data Eng. 2016, 28, 1518–1531. [Google Scholar] [CrossRef]
- Groß, S.; Menzel, A. GPS-Tracking in touristischen Destinationen–Neue Software-Anwendung zur Erfassung des Mobilitätsverhaltens am Beispiel von Wanderern im Harz. Raumforsch. Raumordn. 2016, 74, 51–68. [Google Scholar] [CrossRef]
- Thimm, T.; Seepold, R. Past, present and future of tourist tracking. J. Tour. Futures 2016, 2, 43–55. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, L.; Ye, Y.; Xu, W.; Law, A. Understanding tourist space at a historic site through space syntax analysis: The case of Gulangyu, China. Tour. Manag. 2016, 52, 30–43. [Google Scholar] [CrossRef]
- Baerenholdt, J.O. Experiencing the enchantment of place and mobility. J. Consum. Cult. 2016, 16, 393–411. [Google Scholar] [CrossRef]
- Roura, R.M. Being there: Examining the behaviour of Antarctic tourists through their blogs. Polar Res. 2012, 31, 10905. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, W.; Gao, H.; Zhang, Y. Design of monitoring and management system of tourist attractions based on RFID technology. In Proceedings of the 2012 IEEE Symposium on Robotics and Applications (ISRA), Kuala Lumpur, Malaysia, 3–5 June 2012; pp. 773–776. [Google Scholar]
- Lucchese, C.; Perego, R.; Silvestri, F.; Vahabi, H.; Venturini, R. How random walks can help tourism. In Proceedings of the 34th European Conference on IR Research (ECIR 2012), Barcelona, Spain, 1–5 April 2012; pp. 195–206. [Google Scholar]
- Vaccari, A.; Liu, L.; Biderman, A.; Ratti, C.; Pereira, F.; Oliveirinha, J.; Gerber, A. A holistic framework for the study of urban traces and the profiling of urban processes and dynamics. In Proceedings of the 2009 12TH International IEEE Conference on Intelligent Transportation Systems (ITSC 2009), St Louis, MO, USA, 4–7 October 2009; pp. 273–278. [Google Scholar]
- Chareyron, G.; Da-Rugna, J.; Branchet, B. Mining tourist routes using flickr traces. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Niagara, ON, Canada, 25–28 August 2013; pp. 1488–1489. [Google Scholar]
- Önder, I.; Koerbitz, W.; Hubmann-Haidvogel, A. Tracing tourists by their digital footprints: The case of Austria. J. Travel Res. 2016, 55, 566–573. [Google Scholar] [CrossRef]
- Phithakkitnukoon, S.; Horanont, T.; Witayangkurn, A.; Siri, R.; Sekimoto, Y.; Shibasaki, R. Understanding tourist behavior using large-scale mobile sensing approach: A case study of mobile phone users in Japan. Pervasive Mob. Comput. 2015, 18, 18–39. [Google Scholar] [CrossRef]
- Paldino, S.; Bojic, I.; Sobolevsky, S.; Ratti, C.; González, M.C. Urban magnetism through the lens of geo-tagged photography. EPJ Data Sci. 2015, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Bordogna, G.; Frigerio, L.; Cuzzocrea, A.; Psaila, G. Clustering geo-tagged tweets for advanced big data analytics. In Proceedings of the 2016 IEEE International Congress on Big Data (BigData Congress), San Francisco, CA, USA, 27 June–2 July 2016; pp. 42–51. [Google Scholar]
- Hasnat, M.M.; Hasan, S. Identifying tourists and analyzing spatial patterns of their destinations from location-based social media data. Transp. Res. Part C Emerg. Technol. 2018, 96, 38–54. [Google Scholar] [CrossRef]
- Hawelka, B.; Sitko, I.; Kazakopoulos, P.; Beinat, E. Collective prediction of individual mobility traces for users with short data history. PLoS ONE 2017, 12, e0170907. [Google Scholar] [CrossRef]
- Dou, L.; Qu, H.; Bi, X.; Zhang, Y.; Yu, C.; Qin, J.; Huang, X.; Li, X. MyTrace: A Mobile Phone Based Tourist Spatial Temporal Behavior Record and Analysis System. In Proceedings of the Monterey Workshop, Beijing, China, 8–11 October 2016; pp. 99–108. [Google Scholar]
- Wang, L.-C.; Yan, C.-X.; Wang, J. The Research on Spatial temporal Characteristics of Tourist Flow in Lanzhou Based on Sina Microblog Big Data. DEStech Trans. Econ. Bus. Manag. 2016. [Google Scholar] [CrossRef]
- Chiu, C.S.; Cheng, C.C.; Lin, Y.C. Multi dimensional spatio temporal data model Application to tourism guidance system of cultural resources. In Proceedings of the 2017 Pacific Neighborhood Consortium Annual Conference and Joint Meetings (PNC), Tainan, Taiwan, 7–9 November 2017; pp. 122–127. [Google Scholar]
- Clarke, A.; Raffay, A.; Beritelli, P.; Wittmer, A. Supporting Mobility: Evaluating Mobile Technology Advances in Tourism. Tour. Anal. 2009, 14, 425–441. [Google Scholar] [CrossRef]
- Cantis, S.D.; Ferrante, M.; Kahani, A.; Shoval, N. Cruise passengers’ behavior at the destination: Investigation using GPS technology. Tour. Manag. 2016, 52, 133–150. [Google Scholar] [CrossRef]
- McKercher, B.; Shoval, N.; Park, E.; Kahani, A. The Limited Impact of Weather on Tourist Behavior in an Urban Destination. J. Travel Res. 2015, 54, 442–455. [Google Scholar] [CrossRef]
- Bauder, M.; Freytag, T. Visitor mobility in the city and the effects of travel preparation. Tour. Geogr. 2015, 17, 682–700. [Google Scholar] [CrossRef]
- Yun, H.J.; Park, M.H. Time-Space Movement of Festival Visitors in Rural Areas Using a Smart Phone Application. Asia Pac. J. Tour. Res. 2015, 20, 1246–1265. [Google Scholar] [CrossRef]
- Tiwari, S.; Kaushik, S. Modeling Personalized Recommendations of Unvisited Tourist Places Using Genetic Algorithms. In Databases in Networked Information Systems; Springer: Cham, Switzerland, 2015; pp. 264–276. [Google Scholar]
- Cuzzocrea, A.; Psaila, G.; Toccu, M. Knowledge Discovery from Geo-Located Tweets for Supporting Advanced Big Data Analytics: A Real-Life Experience. In Proceedings of the Model and Data Engineering: 5th International Conference, MEDI 2015, Rhodes, Greece, 26–28 September 2015; pp. 285–294. [Google Scholar] [CrossRef]
- Spangenberg, T. Development of a mobile toolkit to support research on human mobility behavior using GPS trajectories. Inf. Technol. Tour. 2014, 14, 317–346. [Google Scholar] [CrossRef]
- Bermingham, L.; Lee, I. Spatio temporal Sequential Pattern Mining for Tourism Sciences. Procedia Comput. Sci. 2014, 29, 379–389. [Google Scholar] [CrossRef]
- Tussyadiah, I.; Fesenmaier, D. Interpreting tourist experiences from firstperson stories: A foundation for mobile guides. In Proceedings of the 15th European Conference on Information Systems, St. Gallen, Switzerland, 7–9 June 2007; pp. 2259–2270. [Google Scholar]
- Moller-Jensen, L. Spatial narratives from mobile GIS-The case of H.C.Andersen in Copenhagen. Kart Plan 2017, 67, 176–182. [Google Scholar]
- Haldrup, M. Laid-back mobilities: Second-home holidays in time and space. Tour. Geogr. 2004, 6, 434–454. [Google Scholar] [CrossRef]
- Chardonnel, S.; Van der Knaap, W. Managing tourist time-space movements in recreational areas: A comparative study of a protected natural park in the French Alps and the “De Hoge Veluwe” Dutch National Park using the same methodology. Rev. Geogr. Alp. 2002, 90, 37–48. [Google Scholar] [CrossRef]
- Debbage, K. Activity Spaces in New Environments: Tourist Movements in a Resort Setting in the Bahamas. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 1988. [Google Scholar]
- Cooper, C. Spatial and temporal patterns of tourist behaviour. Reg. Stud. 1981, 15, 359–371. [Google Scholar] [CrossRef]
- Warszynska, J. The application of the simulation method ‘Monte Carlo’ to forecast spatial distribution of tourist movement. Folia Geogr. Ser. Geogr. Oeconomica 1980, 13, 73–84. [Google Scholar]
- Cai, G.; Lee, K.; Lee, I. A framework for mining semantic-level tourist movement behaviours from geo-tagged photos. In Australasian Joint Conference on Artificial Intelligence; Springer: Cham, Switzerland, 2016; pp. 519–524. [Google Scholar]
- Zhong, L.; Sun, S.; Law, R. Movement patterns of tourists. Tour. Manag. 2019, 75, 318–322. [Google Scholar] [CrossRef]
- Mansouri, M.; Ujang, N. Space syntax analysis of tourists movement patterns in the historical district of Kuala Lumpur, Malaysia. J. Urban. Int. Res. Placemaking Urban Sustain. 2017, 10, 163–180. [Google Scholar] [CrossRef]
- Caldeira, A.M.; Kastenholz, E. Its so hot: Predicting climate change effects on urban tourists time–space experience. J. Sustain. Tour. 2018, 26, 1516–1542. [Google Scholar] [CrossRef]
- Mckercher, B.; Hardy, A.; Aryal, J. Using tracking technology to improve marketing: Insights from a historic town in Tasmania, Australia. J. Travel Tour. Mark. 2019, 36, 1–12. [Google Scholar] [CrossRef]
- Brilhante, I.R.; Macedo, J.A.; Nardini, F.M.; Perego, R.; Renso, C. On planning sightseeing tours with TripBuilder. Inf. Process. Manag. 2015, 51, 1–15. [Google Scholar] [CrossRef]
- Anu, J.; Agrawal, R.; Bhattacharya, S. Ranking tourist attractions using time series GPS data of cabs. In Proceedings of the IEEE Southeastcon 2014, Lexington, KY, USA, 13–16 March 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Vu, H.Q.; Li, G.; Law, R.; Ye, B.H. Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tour. Manag. 2015, 46, 222–232. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Harzing, A.W.; Van der Wal, R. Google Scholar: The democratization of citation analysis. Ethics Sci. Environ. Politics 2007, 8, 61–73. [Google Scholar] [CrossRef]
- McKercher, B.; Shoval, N.; Ng, E.; Birenboim, A. First and Repeat Visitor Behaviour: GPS Tracking and GIS Analysis in Hong Kong. Tour. Geogr. 2012, 14, 147–161. [Google Scholar] [CrossRef]
- McKercher, B.; Zoltan, J. Tourist Flows and Spatial Behavior. In The Wiley Blackwell Companion to Tourism; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 33–44. [Google Scholar]
- Shoval, N. Monitoring and Managing Visitors Flows in Destinations using Aggregative GPS Data. In Information and Communication Technologies in Tourism 2010; Gretzel, U., Law, R., Fuchs, M., Eds.; Springer: Vienna, Austria, 2010; pp. 171–183. [Google Scholar]
- Edwards, D.; Griffin, T.; Hayllar, B. Urban Tourism Research: Developing an Agenda. Ann. Tour. Res. 2008, 35, 1032–1052. [Google Scholar] [CrossRef]
- Ahas, R.; Saluveer, E.; Tiru, M.; Silm, S. Mobile Positioning Based Tourism Monitoring System: Positium Barometer. In Information and Communication Technologies in Tourism 2008; OConnor, P., Hopken, W., Gretzel, U., Eds.; Springer: Vienna, Austria, 2008; pp. 475–485. [Google Scholar]
- Ahas, R.; Aasa, A.; Roose, A.; Mark, U.; Silm, S. Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tour. Manag. 2008, 29, 469–486. [Google Scholar] [CrossRef]
- Leiper, N. Tourism Management; RMIT Press: Melbourne, Australia, 1997. [Google Scholar]
- Dietvorst, A.; Ashworth, G. Tourism Transformations: An Introduction; CABI: Wallingford, UK, 1995; pp. 1–12. [Google Scholar]
- Richards, G.; Raymond, C. Creative tourism. ATLAS News 2000, 23, 16–20. [Google Scholar]
- Aranburu, I.; Plaza, B.; Esteban, M. Sustainable Cultural Tourism in Urban Destinations: Does Space Matter? Sustainability 2016, 8, 699. [Google Scholar] [CrossRef]
- Espelt, N.G.; Benito, J.A.D. First-time versus repeat visitors behavior patterns: A GPS analysis. Bol. Asoc. Geogr. Esp. 2018, 78, 49–65. [Google Scholar]
- Yun, H.J.; Kang, D.J.; Lee, M.J. Spatiotemporal distribution of urban walking tourists by season using GPS-based smartphone application. Asia Pac. J. Tour. Res. 2018, 23, 1047–1061. [Google Scholar] [CrossRef]
- Miyasaka, T.; Oba, A.; Akasaka, M.; Tsuchiya, T. Sampling limitations in using tourists mobile phones for GPS-based visitor monitoring. J. Leis. Res. 2018, 49, 298–310. [Google Scholar] [CrossRef]
- Versichele, M.; de Groote, L.; Bouuaert, M.C.; Neutens, T.; Moerman, I.; de Weghe, N.V. Pattern mining in tourist attraction visits through association rule learning on Bluetooth tracking data: A case study of Ghent, Belgium. Tour. Manag. 2014, 44, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Ros, M.; D’Souza, M.; Postula, A.; MacColl, I. Location based services with personal area network for community and tourism applications. In Proceedings of the IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2011), Shanghai, China, 14–16 November 2011; pp. 432–437. [Google Scholar] [CrossRef]
- Cui, Y.; Mahoney, E. Employing Internet GIS Surveys to Characterize Recreational Boating Travel Patterns. Trans. GIS 2015, 19, 42–62. [Google Scholar] [CrossRef]
- Black, W.R. Sustainable transportation: A US perspective. J. Transp. Geogr. 1996, 4, 151–159. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M.; Ceron, J.P.; Dubois, G. Consumer behaviour and demand response of tourists to climate change. Ann. Tour. Res. 2012, 39, 36–58. [Google Scholar] [CrossRef]
Codification | Term Combination |
---|---|
a | Tourist + Traceability |
b | Tourist + Movement |
c | Traceability + Movement |
d | Tourist + Trace |
Source | a | b | c | d | TOTAL |
---|---|---|---|---|---|
WOS | 10 | 1.249 | 278 | 538 | 2.075 |
SCOPUS | 5 | 986 | 224 | 366 | 1.581 |
TOTAL | 15 | 2.235 | 502 | 904 | 3.656 |
Source | a | b | c | d | TOTAL |
---|---|---|---|---|---|
WOS | 1 | 116 | 0 | 17 | 134 |
SCOPUS | 1 | 137 | 0 | 21 | 159 |
TOTAL | 2 | 253 | 0 | 38 | 293 |
Source | Search Criteria | Relevant Papers | References |
---|---|---|---|
WOS | [a] tourist traceability | 1 | [126]. |
[b] tourist movement | 117 | [3,6,13,21,23,29,53,54,61,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234]. | |
[d] tourist trace | 17 | [2,19,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249] | |
SCOPUS | [a] tourist traceability | 1 | [250]. |
[b] tourist movement | 22 | [24,47,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270]. | |
[d] tourist trace | 3 | [271,272,273]. |
ID | Size | Year | LSI | LLR | MI |
---|---|---|---|---|---|
0 | 12 | 2014 | graph theory; areas; mountain; combining gps tracking | backcountry skier; graph theory; combining gps tracking | anomalous urban mobility pattern; semantic trajectories; using genetic algorithm |
1 | 11 | 2015 | huashan; smart scenic area management; travel blogs; | tourism statistics; empirical evidence; multi-destination trip | using genetic algorithm; unvisited tourist place; anomalous urban mobility pattern |
2 | 10 | 2015 | analysis; huashan; smart scenic area management | using travel network; large marine park; visitor movement pattern | intra-destination visit; transport mode; bivariate probit model |
3 | 5 | 2014 | tourist sites; hiking; roads | overseas tourist movement pattern; social network analysis; olympic game | using genetic algorithm; anomalous urban mobility pattern; semantic trajectories |
5 | 3 | 2017 | tourist flows; southern Italy; social media data | tourist flow; southern Italy; mapping cilento | mobility; place; enchantment; using genetic algorithm |
Methodologies | Advantages | Disadvantages |
---|---|---|
A. The spatial-temporal movement of tourist with GPS trace | Decipher space-time movement | Invisible tourists (turns on GPS but does not use it) |
More accurate data | No access to user profile | |
B. Distribution of space and time activities in destination from the registration of mobile networks | More accurate | Possible invasion of the privacy of the tourist |
Large number of people | No access to user profile | |
C. Visitors registration using Bluetooth technology | Is anonymous, does not store personal data of users | The non-distinction between tourists and residents |
D. Patterns of tourist mobility, based on geolocalized photographs | Not invasion of the privacy | Only includes the travelers who posted |
Low collection costs | Hard to create a tourist profile | |
E. Movement of tourist based in geolocalized tweets | Not invasion of the privacy | Only includes the travelers who posted. |
Low collection costs | ||
F. Analysis of movement pattern from travel journals | Less privacy issues because it is voluntary | Few tourists participate in due to effort to fill in the details of each activity |
Fluctuation in data quality | ||
G. Movement of tourist based on digital records | The combination of tools and the accuracy | The invasion of privacy |
Difficulty in creating a tourist profile | ||
H. Tourist experience from travel stories available on blogs | Simpler and less expensive to collect | The non-representative sample |
The activities of the traveler are not affected by observation | ||
I. Patterns of movement of tourist in a destination based on surveys | Provide a better level of detail than other methods. | Difficulty to interview tourists |
The quality and quantity of the information collected | ||
J. Models of tourist movements with Markov chain based on surveys | It uses surveys | Difficulty to interview tourists |
Provide a better level of detail than other methods | The quality and quantity of the information collected | |
K. Spatio-temporal behavior of tourist from the registration of a space-time budget | A survey is conducted based on the place visited, the time of the visit and the time spent. | The quantity and quality of the information collected |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chantre-Astaiza, A.; Fuentes-Moraleda, L.; Muñoz-Mazón, A.; Ramirez-Gonzalez, G. Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability. Sustainability 2019, 11, 4738. https://doi.org/10.3390/su11174738
Chantre-Astaiza A, Fuentes-Moraleda L, Muñoz-Mazón A, Ramirez-Gonzalez G. Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability. Sustainability. 2019; 11(17):4738. https://doi.org/10.3390/su11174738
Chicago/Turabian StyleChantre-Astaiza, Angela, Laura Fuentes-Moraleda, Ana Muñoz-Mazón, and Gustavo Ramirez-Gonzalez. 2019. "Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability" Sustainability 11, no. 17: 4738. https://doi.org/10.3390/su11174738
APA StyleChantre-Astaiza, A., Fuentes-Moraleda, L., Muñoz-Mazón, A., & Ramirez-Gonzalez, G. (2019). Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability. Sustainability, 11(17), 4738. https://doi.org/10.3390/su11174738