Improving Phosphorus Use Efficiency and Optimizing Phosphorus Application Rates for Maize in the Northeast Plain of China for Sustainable Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Source and Experimental Treatments
2.3. Sampling and Measurements
2.4. Calculation
2.5. Model Description
2.5.1. Evaluated the Economically Optimal P Rates (EOPR)
2.5.2. Evaluated the Agronomically Optimal P Rates (AOPR)
2.5.3. Evaluated the Privately Optimal P Rates (POPR)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Grain Yield to P Application Rate
3.2. Plant P Uptake
3.3. P Agronomy Efficiency (AEP)
3.4. The Benefits of Different P Application Treatments
3.5. Estimated Optimal P Rate for Agronomy (AOPR), Privately (POPR) and Economically (EOPR) for Maize
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.C.; Deng, X.Y.; Pu, T.; Song, C.; Yong, T.W.; Yang, F.; Sun, X.; Liu, W.G.; Liu, Y.H. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crop. Res. 2017, 204, 12–22. [Google Scholar] [CrossRef]
- Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Wu, L.Q.; Cui, Z.L.; Chen, X.P.; Yue, S.C.; Sun, Y.X.; Zhao, R.F.; Deng, Y.; Zhang, W.; Chen, K. Change in phosphorus requirement with increasing grain yield for Chinese maize production. Field Crop. Res. 2015, 180, 216–220. [Google Scholar] [CrossRef]
- Oberson, A.; Friesen, D.K.; Rao, I.M.; Bühler, S.; Frossard, E. Phosphorus Transformations in an Oxisol under contrasting land-use systems: The role of the soil microbial biomass. Plant Soil 2001, 237, 197–210. [Google Scholar] [CrossRef]
- Krey, T.; Vassilev, N.; Baum, C.; Eichler-Löbermann, B. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur. J. Soil Biol. 2013, 55, 124–130. [Google Scholar] [CrossRef]
- Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.Y.; Chen, X.G.; et al. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 2011, 349, 157–167. [Google Scholar] [CrossRef]
- Zhang, W.F.; Ma, W.Q.; Ji, Y.X.; Fan, M.S.; Oenema, O.; Zhang, F.S. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 2008, 80, 131–144. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Li, H.G.; Liu, J.; Li, G.H.; Shen, J.B.; Bergström, L.; Zhang, F.S. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 2015, 44, 274–285. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Li, S.T.; Jin, J.Y.; Wang, H.T.; Li, C.J.; Wang, Y.L.; Cui, R.Z. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China. Agron. J. 2009, 101, 1489–1496. [Google Scholar] [CrossRef]
- Xu, X.P.; He, P.; Pampolino, M.F.; Johnston, A.M.; Qiu, S.J.; Zhao, S.C.; Chuan, L.M.; Zhou, W. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency. Field Crop. Res. 2014, 157, 27–34. [Google Scholar] [CrossRef]
- Li, H.; Cong, R.H.; Ren, T.; Li, X.K.; Ma, C.B.; Zheng, L.; Zhang, Z.; Lu, J.W. Yield response to N fertilizer and optimum N rate of winter oilseed rape under different soil indigenous N supplies. Field Crop. Res. 2015, 181, 52–59. [Google Scholar] [CrossRef]
- Cong, R.H.; Li, H.; Zhang, Z.; Ren, T.; Li, X.K.; Lu, J.W. Evaluate regional potassium fertilization strategy of winter oilseed rape under intensive cropping systems: Large-scale field experiment analysis. Field Crop. Res. 2016, 193, 34–42. [Google Scholar] [CrossRef]
- Bélanger, G.; Walsh, J.R.; Richards, J.E.; Milburn, P.H.; Ziadi, N. Comparison of three statistical models describing potato yield response to nitrogen fertilizer. Agron. J. 2000, 92, 902–908. [Google Scholar] [CrossRef]
- Srivastava, S.; Rao, A.S.; Alivelu, K.; Singh, K.N.; Raju, N.S.; Rathore, A. Evaluation of Crop Responses to Applied Fertilizer Phosphorus and Derivation of Optimum Recommendations using the Mitscherlich–Bray Equation. Commun. Soil. Sci. Plant Anal. 2006, 37, 847–858. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Dobermann, A. Nutrient use efficiency: Measurement and management. In Fertilizer Best Management Practice: General Principles, Strategy for their Adoption and Voluntary Initiatives vs. Regulations, Proceedings of the IFA International Workshop on Fertilizer Best Management Practices, Brussels, Belgium, 7–9 March 2007; Krauss, A., Isherwood, K., Heffer, P., Eds.; International Fertilizer Industry Association: Paris, France, 2007; pp. 1–28. [Google Scholar]
- Setiyono, T.D.; Yang, H.; Walters, D.T.; Dobermann, A.; Ferguson, R.B.; Roberts, D.F.; Loyn, D.J.; Clay, D.E.; Cassman, K. Maize-N: A Decision Tool for Nitrogen Management in Maize. Agron. J. 2011, 103, 1276–1283. [Google Scholar] [CrossRef]
- Hao, Y.; Ye, Y.; Cui, Z.L.; Chen, X.P. Managing nitrogen for sustainable wheat production. J. Clean. Prod. 2017, 162, 1308–1316. [Google Scholar]
- Xin, X.; Qin, S.; Zhang, J.; Zhu, A.; Yang, W.; Zhang, X. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 2017, 208, 27–33. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, K.; Teng, W.; Zhan, A.; Tong, Y.P.; Feng, G.; Cui, Z.L.; Zhang, F.S.; Chen, X.P. Is the inherent potential of maize roots efficient for soil phosphorus acquisition? PLoS ONE 2014, 9, e90287. [Google Scholar] [CrossRef] [PubMed]
- Seggewiss, B.; Jungk, A. Influence of potassium dynamics at the soil-root interface on magnesium uptake of plants. Z. Pflanzenernahr. Bodenkd. 1988, 151, 91–96. [Google Scholar] [CrossRef]
- Heenan, D.P.; Campbell, L.C. Influence of potassium and manganese on growth and uptake of magnesium by soybeans (Glycine max (L.) Merr. cv. Bragg). Plant Soil 1981, 61, 447–456. [Google Scholar] [CrossRef]
- Hartmann, T.E.; Yue, S.C.; Schulz, R.; He, X.K.; Chen, X.P.; Zhang, F.S.; Muller, T. Yield and N use efficiency of a maize–wheat cropping system as affected by different fertilizer management strategies in a farmer’s field of the North China Plain. Field Crop. Res. 2015, 174, 30–39. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yu, R.; Li, F.; Li, K.; Cao, H.; Yang, N.; Li, M.H.; Dai, J.; Zan, Y.L.; et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Chuan, L.; Ping, H.; Pampolino, M.F.; Johnston, A.M.; Jin, J.; Xu, X.; Zhao, S.C.; Qiu, S.J.; Zhou, W. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crop. Res. 2013, 140, 1–8. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Zhan, J.; Pampolino, M.F.; Johnston, A.M.; Zhou, W. Spatial variation of attainable yield and fertilizer requirements for maize at the regional scale in China. Field Crop. Res 2017, 203, 8–15. [Google Scholar] [CrossRef]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef]
Years | 2010 | 2011 | 2012 | 2013 | 2014 | |
---|---|---|---|---|---|---|
Parameter | ||||||
PH | 5.8 | 5.6 | 5.9 | 6.2 | 6.1 | |
Organic C (g kg−1) | 9.4 | 8.8 | 9.9 | 10.6 | 9.2 | |
Total N (g kg−1) | 0.85 | 0.97 | 0.92 | 0.81 | 0.79 | |
NH4-N (mg kg−1) | 3.2 | 4.5 | 3.8 | 3.9 | 4.6 | |
Olsen-P (mg kg−1) | 16.6 | 20.2 | 19.7 | 19.2 | 18.2 | |
Exchangeable K (g kg−1) | 103.2 | 114.3 | 120.2 | 106.7 | 99.8 | |
Soil bulk density (g cm−3) | 1.2 | 1.3 | 1.2 | 1.4 | 1.1 | |
Sand contents (%) | 19.6 | 22.3 | 20.6 | 19.2 | 18.7 |
Treatment | P-Derived Yield Benefit (By, $ ha−1) | Private Profitability (BP, $ ha−1) | ||||
---|---|---|---|---|---|---|
LP | MP | HP | LP | MP | HP | |
Mean | 161.7 | 424.2 | 282.4 | 122.2 | 345.2 | 164.0 |
SD a | 36.3 | 90.4 | 77.7 | 34.0 | 86.3 | 72.8 |
Min | 58.9 | 195.6 | 131.0 | 16.4 | 110.5 | 3.4 |
25th Q b | 138.5 | 362.3 | 227.8 | 100.3 | 288.4 | 114.4 |
Median | 159.2 | 436.1 | 280.5 | 124.5 | 356.6 | 164.1 |
75th Q b | 189.6 | 486.1 | 329.7 | 147.1 | 401.1 | 205.9 |
Max | 237.6 | 590.1 | 489.4 | 195.0 | 505.0 | 361.8 |
Statistic | Coefficients for the Quadratic Functions Model of P-Derived Yield Benefit and P Rate BY ($ ha−1) = Ax2 + Bx | Agronomically Optimal P Rate AOPR (kg ha−1) | Coefficients for the Quadratic Functions Model of Private Profitability BP ($ ha−1) = Cx2 + Dx | Privately Optimal P Rates POPR (kg ha−1) | Coefficients for Spherical Model of P | Economically Optimal P Rates EOPR (kg ha−1) | Economically Optimal Yield EOY (t ha−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | a (t ha−1) | b (t ha−1) | c (kg ha−1) | |||||
Average | −0.023 | 5.62 | 127.9 | −0.023 | 4.94 | 110.8 | 8.88 | 1.24 | 124.3 | 114.4 | 10.11 |
Min | −0.049 | 2.17 | 80.6 | −0.049 | 1.46 | 78.2 | 5.81 | 0.56 | 87.6 | 82.6 | 7.18 |
25% Q a | −0.028 | 5.03 | 113.6 | −0.028 | 4.33 | 94.6 | 7.90 | 1.08 | 111.1 | 100.3 | 9.03 |
75% Q a | −0.018 | 6.51 | 139.2 | −0.018 | 5.80 | 122.0 | 9.82 | 1.41 | 136.9 | 125.9 | 11.13 |
Max | −0.008 | 7.90 | 211.3 | −0.008 | 7.90 | 181.8 | 12.05 | 2.01 | 163.2 | 151.6 | 13.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Liu, X.; Wang, X.; Yang, L.; Yin, Y. Improving Phosphorus Use Efficiency and Optimizing Phosphorus Application Rates for Maize in the Northeast Plain of China for Sustainable Agriculture. Sustainability 2019, 11, 4799. https://doi.org/10.3390/su11174799
Jiang W, Liu X, Wang X, Yang L, Yin Y. Improving Phosphorus Use Efficiency and Optimizing Phosphorus Application Rates for Maize in the Northeast Plain of China for Sustainable Agriculture. Sustainability. 2019; 11(17):4799. https://doi.org/10.3390/su11174799
Chicago/Turabian StyleJiang, Wenting, Xiaohu Liu, Xiukang Wang, Lihui Yang, and Yuan Yin. 2019. "Improving Phosphorus Use Efficiency and Optimizing Phosphorus Application Rates for Maize in the Northeast Plain of China for Sustainable Agriculture" Sustainability 11, no. 17: 4799. https://doi.org/10.3390/su11174799
APA StyleJiang, W., Liu, X., Wang, X., Yang, L., & Yin, Y. (2019). Improving Phosphorus Use Efficiency and Optimizing Phosphorus Application Rates for Maize in the Northeast Plain of China for Sustainable Agriculture. Sustainability, 11(17), 4799. https://doi.org/10.3390/su11174799