Agricultural Sustainability: A Review of Concepts and Methods
Abstract
:1. Introduction
- To determine the evaluation criteria to systematically review agricultural sustainability assessment studies. To that end, several review papers were selected based on specific selection criteria and examined to determine the goal as well as the individual evaluation criteria adopted in each review. The ultimate goal is to critically synthesize a methodological framework for the systematic recording and evaluation of available agricultural sustainability assessment studies. Such systematic documentation can facilitate the comparison among the available studies as well as the development of a standard methodological framework for the sustainability assessment of agriculture.
- To implement the proposed methodology by investigating the available and mostly used methodologies to assess the sustainability of crop cultivations at the farm level. The methodological framework is applied to 38 Agricultural Sustainability studies published in peer-reviewed journals in the last decade (2009–2018).
2. Materials and Methods
2.1. Methodological Framework for the Systematic Review of Agricultural Sustainability Studies
2.1.1. Research Design
2.1.2. Systematic Approach
2.1.3. Critical Approach
2.1.4. Methodological Framework Presentation
3. Crop Production Sustainability at Farm Level
3.1. Search Scheme
3.2. Results
3.2.1. Initial Screening
3.2.2. In-Depth Review
3.3. Agricultural Sustainability Methods and Tools
3.3.1. Life Cycle Assessment, Environmental, and Economic Methods and Tools
3.3.2. Multicriteria Assessment Methods and Tools
3.3.3. Indicator Sets, Indexed and Frameworks
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
LCA | Life Cycle Assessment |
LCC | Life Cycle Costing |
SLCA | Social Life Cycle Assessment |
SYNOPS WEB | Environmental Risk Assessment Web tool |
CF | Carbon Footprint |
SCC | Social Cost of Carbon |
CBA | Cost–benefit Analysis |
SVA | Sustainable Value Approach |
MCDA | Multi Criteria Decision Analysis |
AHP | Analytic Hierarchy Process |
ANP | Analytical Network Process |
MASC | Multiattribute Assessment of Cropping Systems |
DEXi | A Program for Multiattribute Decision Making |
DEXiPM | DEXi Pest Management |
SMCE | Social Multicriteria Evaluation |
NAIADE | Novel approach to imprecise assessment and decision environments |
PCA | Principle Components Analysis |
CONTRA | the French acronym for ‘design of transparent decision trees’ |
DEA | Data Envelopment Analysis |
RISE | Response-Inducing Sustainability Evaluation |
SLSI | Sustainable Livelihood Security Index |
SFSI | Small Farm Sustainability Index |
SAEMETH | Sustainable Agri-Food Evaluation Methodology |
ANGT | Adapted Nominal Group Technique |
MOTIFS | Monitoring Tool for Integrated Farm Sustainability |
ASI | Agricultural Sustainability Index |
APOIA-NovoRUral | A system for weighted environmental impact assessment of rural activities |
SAFE | A hierarchical framework for assessing the sustainability of agricultural systems |
DPSIR | Drivers, Pressures, State, Impact, Response |
Appendix A
Criteria | De Luca et al., 2017 [10] | Binder et al., 2010 [4] | Peter et al., 2017 [12] | Bockstaller et al., 2009 [3] | Roy et al., 2012 [13] | Cerutti et al.,2011 [7] | Acosta-Alba et al.,2011 [14] | Baldini et al.,2017 [15] | Morais et al., 2016 [16] | McAuliffe et al., 2016 [17] | Latruffe et al.,2016 [18] | Bockstaller et al., 2008 [19] | Payraudeau et al.,2005 [20] | de Vries et al., 2015 [21] | Yan et al., 2011 [9] | Lebacq et al.,2013 [22] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Sustainability Assessment method | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
2 | Sustainability Assessment Tool | + | + | + | |||||||||||||
3 | Description of Assessment Tool | + | + | + | + | + | |||||||||||
4 | Field of Application/Product | + | + | + | + | + | + | + | |||||||||
5 | Year of Publication | + | + | + | + | + | + | + | + | + | + | ||||||
6 | Country | + | + | + | + | + | + | + | |||||||||
7 | Literature Typology | + | + | + | + | ||||||||||||
8 | Typology of Study | + | + | ||||||||||||||
9 | Level of Assessment/System Boundaries | + | + | + | + | + | + | + | + | + | + | + | + | ||||
10 | Goal of the Assessment | + | + | + | + | + | + | + | + | + | + | ||||||
11 | Views of the Assessment | + | |||||||||||||||
12 | Assessment Approach/Standards | + | + | ||||||||||||||
13 | Database Used | + | |||||||||||||||
14 | User Interface method | + | |||||||||||||||
15 | Developer of the method | + | + | ||||||||||||||
16 | Strengths | + | + | ||||||||||||||
17 | Drawbacks | + | + | ||||||||||||||
18 | Validation | + | + | + | + | ||||||||||||
19 | Readability | + | + | ||||||||||||||
20 | Feasibility | + | + | ||||||||||||||
21 | Reproducibility | + | + | ||||||||||||||
22 | Relevance for end users | + | + | ||||||||||||||
23 | Target Users | + | + | + | + | + | + | ||||||||||
24 | Aggregation | + | + | + | + | ||||||||||||
25 | Rating Scores | + | + | ||||||||||||||
26 | Thresholds/Characterization factors | + | + | + | |||||||||||||
27 | Type of Data used | + | + | + | + | + | + | ||||||||||
28 | Accessibility of data | + | + | + | + | + | + | ||||||||||
29 | Indicator Name/Type | + | + | + | + | + | + | + | + | + | + | ||||||
30 | Integration with existing farming software | + | |||||||||||||||
31 | Need for external support | + | |||||||||||||||
32 | User-Friendliness | + | |||||||||||||||
33 | Transparency | + | |||||||||||||||
34 | Calculation method | + | + | + | |||||||||||||
35 | Impacts Considered/Impact Identification | + | + | + | + | + | + | + | + | + | + | + | |||||
36 | Agronomic Protocol | + | + | ||||||||||||||
37 | Functional Unit Category | + | |||||||||||||||
38 | Operation with the greatest impact | + | |||||||||||||||
39 | Dimension of Sustainability Studied | + | + | + | + | + | + | + | |||||||||
40 | Functional Unit | + | + | + | + | + | + | + | + | + | + | ||||||
41 | Uncertainty and Sensitivity Analysis | + | + | + | |||||||||||||
42 | Case study Description | + | + | ||||||||||||||
43 | Participation method | + | + | ||||||||||||||
44 | Time Dimension | + | + | + | + |
a/a | Author | Assessment Goal | Target Users | Functional Unit | Time Dimension |
---|---|---|---|---|---|
1 | De Luca et al. (2018) [31] | SD | RE TE FA | 1ha cultivated surface | 50 years |
2 | Snapp et al. (2018) [32] | GP | - | 3 years mother trial | |
3 | Gaviglio et al. (2017) [25] | SD | DM FA RE | - | 1 year |
4 | Recanati et al. (2017) [33] | GP | - | 1 year | |
5 | Bockstaller et al. (2017) [34] | GP | DM FA RE | - | - |
6 | Goswami et al. (2017) [35] | SD | - | ||
7 | Theurl et al. (2017) [36] | GP | kg un-/pacjed fresh producty at the POS | 10/2014-04/2015 | |
8 | Chopin et al. (2017) [37] | GP | DM RE FA | - | - |
9 | Angevin et al. (2017) [26] | GP | DM RE | - | - |
10 | Vasileiadis et al. (2017) [38] | GP | DM FA | - | 4-year experiment |
11 | Egea et al. (2016) [39] | GP | - | - | |
12 | Dong et al. (2016) [40] | SD | - | - | |
13 | de Olde et al. (2016) [28] | SD | DM FA RE | - | 2013-2014 |
14 | Yang et al. (2016) [29] | SD | - | Fall 2011-spring 2012 (Sampling) | |
15 | Sajjad et al. (2016) [41] | SD | - | - | 2012-2013 |
16 | Allahyari et al. (2016) [42] | SD | - | - | - |
17 | Sottile et al. (2016) [30] | SD | - | - | - |
18 | El Chami et al. (2015) [43] | GP | - | 1tn fresh weight standardizes to 86% dry matter | Projection to 2050 |
19 | Santiago-Brown et al. (2015) [44] | SD | DM FA RE | - | - |
20 | Peano et al. (2015) [45] | SD | FA ΤΕ | - | 4-6 years in the ex post stage |
21 | Dong et al. (2015) [46] | SD | - | - | - |
22 | Yegbemey et al. (2014) [47] | SD | - | - | |
23 | Peano et al. (2014) [48] | GP | - | - | - |
24 | Van Asselt et al. (2014) [49] | GP | - | ||
25 | Colomb et al. (2013) [50] | GP | DM | - | - |
26 | Vasileiadis et al. (2013) [51] | GP | - | - | 2012 |
27 | Sami et al. (2013) [52] | SD | - | - | - |
28 | Pelzer et al. (2012) [27] | GP | DM FA | - | - |
29 | Van Passel et al. (2012) [53] | SD | - | - | |
30 | Reig-Martinez et al. (2011) [54] | SD | - | - | - |
31 | Sharma et al. (2011) [55] | SD | - | 3 separate decades from 1950 | |
32 | Rodriguez et al. (2010) [56] | SD | DM RE FA TE | - | |
33 | Gomez-Limon et al. (2010) [24] | SD | DM | - | |
34 | Gomes et al. (2009) [57] | SD | - | - | 1986-2002 |
35 | Van Passel et al. (2009) [58] | SD | DM | - | - |
36 | Sadok et al. ([59] | SD | DM | - | - |
37 | Siciliano (2009) [60] | GP | - | 2003 | |
38 | Walter et al. (2009) [61,62] | SD | - |
a/a | Author | Validation | Aggregation | Type of Data | Accessibility of Data |
---|---|---|---|---|---|
1 | De Luca et al. (2018) [31] | - | E (Survey) | Ex ante | |
2 | Snapp et al. (2018) [32] | - | - | E | Ex post |
3 | Gaviglio et al. (2017) [25] | - | Sum | Ε (Survey) | Ex ante |
4 | Recanati et al. (2017) [33] | - | M (Model Farm based on survey) | Ex ante | |
5 | Bockstaller et al. (2017) [34] | - | Sum (rank of percentage of weight) | E, M | |
6 | Goswami et al. (2017) [35] | D, O, U | Linear, Geometric, Multicriteria function-based | - | Ex ante |
7 | Theurl et al. (2017) [36] | - | E (Data from field and survey) | Ex post | |
8 | Chopin et al. (2017) [37] | - | Decision Rules and relative weightings (using direct scoring method) | Μ, Ε (When model not available) | Ex ante |
9 | Angevin et al. (2017) [26] | EU (Experts Evaluation) | “IF-THEN” Aggregation rules | E | ex post |
10 | Vasileiadis et al. (2017) [38] | - | “IF-THEN” Aggregation rules | Ε | ex post |
11 | Egea et al. (2016) [39] | YES (weighted sum) | E (Expert opinion) | Ex post | |
12 | Dong et al. (2016) [40] | D | PCA and DEA (Weighting Factors) | E (Survey) | Ex post |
13 | de Olde et al. (2016) [28] | - | Arithmetic mean | E | Ex post |
14 | Yang et al. (2016) [29] | - | - | E (Survey) | Ex post |
15 | Sajjad et al. (2016) [41] | - | Not specific | E (Survey) | Ex post |
16 | Allahyari et al. (2016) [42] | - | Mean method | E (Survey to assess indicators) | Ex post |
17 | Sottile et al. (2016) [30] | - | PCA, Cluster Analysis | E (survey) | Ex post |
18 | El Chami et al. (2015) [43] | - | - | M | Ex ante |
19 | Santiago-Brown et al. (2015) [44] | - | - | - | - |
20 | Peano et al. (2015) [45] | Ο | Basic Indicators as equally important | E (Semi-structured interviews) | Ex ante and ex post |
21 | Dong et al. (2015) [46] | - | DEA model | E (Survey) | Ex post |
22 | Yegbemey et al. (2014) [47] | Simple and Linear aggregation technique | E(Survey) | Ex post | |
23 | Peano et al. (2014) [48] | D | Equal weights or based on importance | E | Ex post |
24 | Van Asselt et al. (2014) [49] | - | Normalization between 0-100 then weights based on importance | E | Ex post |
25 | Colomb et al. (2013) [50] | NO | “IF-THEN” Aggregation rules | E | Ex ante |
26 | Vasileiadis et al. (2013) [51] | - | “IF-THEN” Aggregation rules | E and M | Ex ante |
27 | Sami et al. (2013) [52] | - | “IF-THEN” Aggregation rules | Ε | Ex post |
28 | Pelzer et al. (2012) [27] | U | “IF-THEN” Aggregation rules | M | Ex ante |
29 | Van Passel et al. (2012) [53] | YES | The indicators are integrated into MOTIFS graph | M (Farm Accountancy data) | Ex post |
30 | Reig-Martinez et al. (2011) [54] | - | DEA model | Ε (Survey) | Ex post |
31 | Sharma et al. (2011) [55] | Equal weights | Ε (Survey) | Ex post | |
32 | Rodriguez et al. (2010) [56] | - | Normalization and weights then average for indices | E | Ex post |
33 | Gomez-Limon et al. (2010) [24] | - | Weighted sum, Product of weighted indicators | E (Survey) | Ex post |
34 | Gomes et al. (2009) [57] | - | - | E | Ex post |
35 | Van Passel et al. (2009) [58] | - | - | M (Empirical data) | Ex ante |
36 | Sadok et al. ([59] | - | “IF-THEN” Aggregation rules | M | Ex ante |
37 | Siciliano (2009) [60] | - | Not specific | E | Ex post and ex ante |
38 | Walter et al. (2009) [61,62] | Sum and Weighted sum | M | Ex ante |
References
- United Nations Department of Economic and Social Affairs. World Population Projection; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- Viola, I.; Marinelli, A. Life Cycle Assessment and Environmental Sustainability in the Food System. Agric. Agric. Sci. Procedia 2016, 8, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Bockstaller, C.; Guichard, L.; Keichinger, O.; Girardin, P.; Galan, M.B.; Gaillard, G. Comparison of methods to assess the sustainability of agricultural systems. A review. Agron. Sustain. Dev. 2009, 29, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- De Olde, E.M.; Moller, H.; Marchand, F.; McDowell, R.W.; MacLeod, C.J.; Sautier, M.; Halloy, S.; Barber, A.; Benge, J.; Bockstaller, C.; et al. When experts disagree: The need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 2017, 19, 1327–1342. [Google Scholar] [CrossRef]
- Van Pham, L.; Smith, C. Drivers of agricultural sustainability in developing countries: A review. Environ. Syst. Decis. 2014, 34, 326–341. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Beccaro, G.L.; Bounous, G. A review of studies applying environmental impact assessment methods on fruit production systems. J. Environ. Manag. 2011, 92, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.G.; Bokkers, E.A.M.; De Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Yan, M.J.; Humphreys, J.; Holden, N.M. An evaluation of life cycle assessment of European milk production. J. Environ. Manag. 2011, 92, 372–379. [Google Scholar] [CrossRef]
- De Luca, A.I.; Iofrida, N.; Leskinen, P.; Stillitano, T.; Falcone, G.; Strano, A.; Gulisano, G. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 2017, 595, 352–370. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Peter, C.; Helming, K.; Nendel, C. Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices?—A review of carbon footprint calculators. Renew. Sustain. Energy Rev. 2017, 67, 461–476. [Google Scholar] [CrossRef]
- Roy, R.; Chan, N.W. An assessment of agricultural sustainability indicators in Bangladesh: Review and synthesis. Environmentalist 2012, 32, 99–110. [Google Scholar] [CrossRef]
- Acosta-Alba, I.; van der Werf, H.M.G. The use of reference values in indicator-based methods for the environmental assessment of agricultural systems. Sustainability 2011, 3, 424–442. [Google Scholar] [CrossRef]
- Baldini, C.; Gardoni, D.; Guarino, M. A critical review of the recent evolution of Life Cycle Assessment applied to milk production. J. Clean. Prod. 2017, 140, 421–435. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Domingos, T. Regionalization of agri-food life cycle assessment: A review of studies in Portugal and recommendations for the future. Int. J. Life Cycle Assess. 2016, 21, 875–884. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A thematic review of life cycle assessment (LCA) applied to pig production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Latruffe, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of sustainability in agriculture: A review of indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar] [CrossRef]
- Bockstaller, C.; Guichard, L.; Makowski, D.; Aveline, A.; Girardins, P.; Plantureux, S. Review article Agri-environmental indicators to assess cropping and farming systems. A review. Agron. Sustain. Dev. 2008, 28, 139–149. [Google Scholar] [CrossRef]
- Payraudeau, S.; Van Der Werf, H.M.G. Environmental impact assessment for a farming region: A review of methods. Agric. Ecosyst. Environ. 2005, 107, 1–19. [Google Scholar] [CrossRef]
- De Vries, M.; van Middelaar, C.E.; de Boer, I.J.M. Comparing environmental impacts of beef production systems: A review of life cycle assessments. Livest. Sci. 2015, 178, 279–288. [Google Scholar] [CrossRef]
- Lebacq, T.; Baret, P.V.; Stilmant, D. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 2013, 33, 311–327. [Google Scholar] [CrossRef]
- Bockstaller, C.; Guichard, L.; Keichinger, O.; Girardin, P.; Galan, M.B.; Gaillard, G. Comparison of methods to assess the sustainability of agricultural systems: A review. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9789048126651. [Google Scholar]
- Gómez-Limón, J.A.; Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 2010, 69, 1062–1075. [Google Scholar] [CrossRef]
- Gaviglio, A.; Bertocchi, M.; Demartini, E. A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study. Resources 2017, 6, 60. [Google Scholar] [CrossRef]
- Angevin, F.; Fortino, G.; Bockstaller, C.; Pelzer, E.; Messéan, A. Assessing the sustainability of crop production systems: Toward a common framework? Crop Prot. 2017, 97, 18–27. [Google Scholar] [CrossRef]
- Pelzer, E.; Fortino, G.; Bockstaller, C.; Angevin, F.; Lamine, C.; Moonen, C.; Vasileiadis, V.; Guérin, D.; Guichard, L.; Reau, R.; et al. Assessing innovative cropping systems with DEXiPM, a qualitative multi-criteria assessment tool derived from DEXi. Ecol. Indic. 2012, 18, 171–182. [Google Scholar] [CrossRef]
- De Olde, E.; Oudshoorn, F.; Bokkers, E.; Stubsgaard, A.; Sørensen, C.; de Boer, I. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability 2016, 8, 957. [Google Scholar] [CrossRef]
- Yang, L.; Huang, B.; Mao, M.; Yao, L.; Niedermann, S.; Hu, W.; Chen, Y. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China. Environ. Sci. Pollut. Res. 2016, 23, 17287–17297. [Google Scholar] [CrossRef] [PubMed]
- Sottile, F.; Fiorito, D.; Tecco, N.; Girgenti, V.; Peano, C. An interpretive framework for assessing and monitoring the sustainability of school gardens. Sustainability 2016, 8, 801. [Google Scholar] [CrossRef]
- De Luca, A.I.; Falcone, G.; Stillitano, T.; Iofrida, N.; Strano, A.; Gulisano, G. Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy. J. Clean. Prod. 2018, 171, 1187–1202. [Google Scholar] [CrossRef]
- Snapp, S.S.; Grabowski, P.; Chikowo, R.; Smith, A.; Anders, E.; Sirrine, D.; Chimonyo, V.; Bekunda, M. Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible? Agric. Syst. 2018, 162, 77–88. [Google Scholar] [CrossRef]
- Recanati, F.; Castelletti, A.; Dotelli, G.; Melià, P. Trading off natural resources and rural livelihoods. A framework for sustainability assessment of small-scale food production in water-limited regions. Adv. Water Resour. 2017, 110, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Bockstaller, C.; Beauchet, S.; Manneville, V.; Amiaud, B.; Botreau, R. A tool to design fuzzy decision trees for sustainability assessment. Environ. Model. Softw. 2017, 97, 130–144. [Google Scholar] [CrossRef]
- Goswami, R.; Saha, S.; Dasgupta, P. Sustainability assessment of smallholder farms in developing countries. Agroecol. Sustain. Food Syst. 2017, 41, 546–569. [Google Scholar] [CrossRef]
- Theurl, M.C.; Hörtenhuber, S.J.; Lindenthal, T.; Palme, W. Unheated soil-grown winter vegetables in Austria: Greenhouse gas emissions and socio-economic factors of diffusion potential. J. Clean. Prod. 2017, 151, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Chopin, P.; Tirolien, J.; Blazy, J.M. Ex-ante sustainability assessment of cleaner banana production systems. J. Clean. Prod. 2016, 139, 15–24. [Google Scholar] [CrossRef]
- Vasileiadis, V.P.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Colnenne-David, C.; Leprince, F.; Holb, I.J.; Kierzek, R.; Furlan, L.; Loddo, D.; Melander, B.; et al. Sustainability of European winter wheat- and maize-based cropping systems: Economic, environmental and social ex-post assessment of conventional and IPM-based systems. Crop Prot. 2017, 97, 60–69. [Google Scholar] [CrossRef]
- Egea, P.; Pérez y Pérez, L. Sustainability and multifunctionality of protected designations of origin of olive oil in Spain. Land Use Policy 2016, 58, 264–275. [Google Scholar] [CrossRef]
- Dong, F.; Mitchell, P.D.; Knuteson, D.; Wyman, J.; Bussan, A.J.; Conley, S. Assessing sustainability and improvements in US Midwestern soybean production systems using a PCA-DEA approach. Renew. Agric. Food Syst. 2016, 31, 524–539. [Google Scholar] [CrossRef]
- Sajjad, H.; Nasreen, I. Assessing farm-level agricultural sustainability using site-specific indicators and sustainable livelihood security index: Evidence from Vaishali district, India. Community Dev. 2016, 47, 602–619. [Google Scholar] [CrossRef]
- Allahyari, M.S.; Daghighi Masouleh, Z.; Koundinya, V. Implementing Minkowski fuzzy screening, entropy, and aggregation methods for selecting agricultural sustainability indicators. Agroecol. Sustain. Food Syst. 2016, 40, 277–294. [Google Scholar] [CrossRef]
- El Chami, D.; Daccache, A. Assessing sustainability of winter wheat production under climate change scenarios in a humid climate—An integrated modelling framework. Agric. Syst. 2015, 140, 19–25. [Google Scholar] [CrossRef]
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Sustainability assessment in wine-grape growing in the New World: Economic, environmental, and social indicators for agricultural businesses. Sustainability 2015, 7, 8178–8204. [Google Scholar] [CrossRef]
- Peano, C.; Tecco, N.; Dansero, E.; Girgenti, V.; Sottile, F. Evaluating the sustainability in complex agri-food systems: The SAEMETH framework. Sustainability 2015, 7, 6721–6741. [Google Scholar] [CrossRef]
- Dong, F.; Mitchell, P.D.; Colquhoun, J. Measuring farm sustainability using data envelope analysis with principal components: The case of Wisconsin cranberry. J. Environ. Manag. 2015, 147, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Yegbemey, R.N.; Yabi, J.A.; Dossa, C.S.G.; Bauer, S. Novel participatory indicators of sustainability reveal weaknesses of maize cropping in Benin. Agron. Sustain. Dev. 2014, 34, 909–920. [Google Scholar] [CrossRef]
- Peano, C.; Migliorini, P.; Sottile, F. A methodology for the sustainability assessment of agri-food systems: An application to the slow food presidia project. Ecol. Soc. 2014, 19, 1–11. [Google Scholar] [CrossRef]
- Van Asselt, E.D.; Van Bussel, L.G.J.; Van Der Voet, H.; Van Der Heijden, G.W.A.M.; Tromp, S.O.; Rijgersberg, H.; Van Evert, F.; Van Wagenberg, C.P.A.; Van Der Fels-Klerx, H.J. A protocol for evaluating the sustainability of agri-food production systems—A case study on potato production in peri-urban agriculture in the Netherlands. Ecol. Indic. 2014, 43, 315–321. [Google Scholar] [CrossRef]
- Colomb, B.; Carof, M.; Aveline, A.; Bergez, J.E. Stockless organic farming: Strengths and weaknesses evidenced by a multicriteria sustainability assessment model. Agron. Sustain. Dev. 2013, 33, 593–608. [Google Scholar] [CrossRef]
- Vasileiadis, V.P.; Moonen, A.C.; Sattin, M.; Otto, S.; Pons, X.; Kudsk, P.; Veres, A.; Dorner, Z.; van der Weide, R.; Marraccini, E.; et al. Sustainability of European maize-based cropping systems: Economic, environmental and social assessment of current and proposed innovative IPM-based systems. Eur. J. Agron. 2013, 48, 1–11. [Google Scholar] [CrossRef]
- Sami, M.; Shiekhdavoodi, M.J.; Almassi, M.; Marzban, A. Assessing the sustainability of agricultural production systems using fuzzy logic. J. Cent. Eur. Agric. 2013, 14, 318–330. [Google Scholar] [CrossRef]
- Van Passel, S.; Meul, M. Multilevel and multi-user sustainability assessment of farming systems. Environ. Impact Assess. Rev. 2012, 32, 170–180. [Google Scholar] [CrossRef]
- Reig-Martínez, E.; Gómez-Limón, J.A.; Picazo-Tadeo, A.J. Ranking farms with a composite indicator of sustainability. Agric. Econ. 2011, 42, 561–575. [Google Scholar] [CrossRef]
- Sharma, D.; Shardendu, S. Assessing farm-level agricultural sustainability over a 60-year period in rural eastern India. Environmentalist 2011, 31, 325–337. [Google Scholar] [CrossRef]
- Rodrigues, G.S.; Rodrigues, I.A.; de Almeida Buschinelli, C.C.; de Barros, I. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 2010, 30, 229–239. [Google Scholar] [CrossRef]
- Gomes, E.G.; Soares De Mello, J.C.C.B.; Souza, G.D.S.E.; Angulo Meza, L.; Mangabeira, J.A.D.C. Efficiency and sustainability assessment for a group of farmers in the Brazilian Amazon. Ann. Oper. Res. 2009, 169, 167–181. [Google Scholar] [CrossRef]
- Van Passel, S.; Van Huylenbroeck, G.; Lauwers, L.; Mathijs, E. Sustainable value assessment of farms using frontier efficiency benchmarks. J. Environ. Manag. 2009, 90, 3057–3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadok, W.; Angevin, F.; Bergez, J.-E.; Bockstaller, C.; Colomb, B.; Guichard, L.; Reau, R.; Messéan, A.; Doré, T. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 2009, 29, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, G. Social multicriteria evaluation of farming practices in the presence of soil degradation. A case study in Southern Tuscany, Italy. Environ. Dev. Sustain. 2009, 11, 1107–1133. [Google Scholar] [CrossRef]
- Walter, C.; Stützel, H. A new method for assessing the sustainability of land-use systems (II): Evaluating impact indicators. Ecol. Econ. 2009, 68, 1288–1300. [Google Scholar] [CrossRef]
- Walter, C.; Stützel, H. A new method for assessing the sustainability of land-use systems (I): Identifying the relevant issues. Ecol. Econ. 2009, 68, 1275–1287. [Google Scholar] [CrossRef]
- Meul, M.; Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Hauwermeiren, A. MOTIFS: A monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef]
a/a | Reference | Type of Review | Spatial Coverage |
---|---|---|---|
1 | De Luca, A. I., et al., (2017) [10] | Critical and Systematic | Global |
2 | Binder, C.R., et al., (2010) [4] | Critical | Global |
3 | Peter, C., et al. (2017) [12] | Systematic | Global |
4 | Bockstaller, C., et al. (2009) [3] | Critical | Global |
5 | Roy, R., et al. (2012) [13] | Systematic | Country level - Bangladesh |
6 | Cerutti, A.K., et al. (2011) [7] | Systematic | Global |
7 | Acosta-Alba, I et al. (2011) [14] | Critical | Global |
8 | Baldini, C., et al. (2017) [15] | Critical and Systematic | Global |
9 | Morais, T.G., et al. (2016), [16] | Systematic | Country level - Portugal |
10 | McAuliffe, G.A., et al. (2016) [17] | Systematic | Global |
11 | Latruffe, L., et al. (2016) [18] | Critical | Global |
12 | Bockstaller, C., et al. (2008) [19] | Critical | Global |
13 | Payraudeau, S., et al. (2005) [20] | Systematic | Global |
14 | de Vries, M., et al. (2015) [21] | Systematic | Global |
15 | Yan, M.-J., et al. (2011) [9] | Systematic | Europe |
16 | Lebacq, T., et al. (2013) [22] | Critical | Global |
Population | Intervention/Comparator | Inclusion | Exclusion |
---|---|---|---|
Agriculture | Sustainability Assessment | Primary Research | Review |
Farming | Triple Bottom Line Assessment | In English | Not in English |
Agricultural | Agricultural Sustainability | Published from 2009 | Published before 2009 |
Farm | Environmental Assessment | Peer-reviewed | Book Chapters |
Livestock | Economic Assessment | Agriculture /Livestock | Conference Proceedings |
Husbandry | Societal/Social Assessment | Primary Production | Grey literature |
Tillage | Life Cycle Assessment (or LCA) | ||
Agronomy | Multicriteria Decision Analysis (MCDA) | ||
Stockraising | Indicators (or KPI) | ||
Environmental Impact Assessment (or EIA) | |||
Cost–Benefit Analysis (CBA) |
a/a | Author | Country | Method/Tool | Methodology/Application | Field of Application/Product | Level of Assessment/System Boundaries |
---|---|---|---|---|---|---|
1 | De Luca et al. (2018) [31] | Italy | LCSA AHP LCA LCC SLCA | M, A | Olive | F |
2 | Snapp et al. (2018) [32] | Malawi | INDICATORS | M, A | Maize, legume | F |
3 | Gaviglio et al. (2017) [25] | Italy | INDICATORS 4AGRO | M, A | Agricultural Park | F |
4 | Recanati et al. (2017) [33] | Palaistine | INDICATORS | M, A | Food Production | F, R |
5 | Bockstaller et al. (2017) [34] | - | CONTRA | M, A | - | F |
6 | Goswami et al. (2017) [35] | - | SFSI DPSIR SL | M | Smal Farms | F |
7 | Theurl et al. (2017) [36] | Austria | LCA CF INDICATORS | A | Lettuce, spinach, scallions, red radish | F, R |
8 | Chopin et al. (2017) [37] | FrenchWest Indies | MASC | A | Banana | F, N |
9 | Angevin et al. (2017) [26] | - | DEXiPM | M | - | F |
10 | Vasileiadis et al. (2017) [38] | Europe | DEXiPM SYNOPS-WEB CBA | A | Wheat, maize | F, R |
11 | Egea et al. (2016) [39] | Spain | MCDA ANP | M | Olive | F |
12 | Dong et al. (2016) [40] | USA | PCA DEA | M, A | Soybean | F |
13 | de Olde et al. (2016) [28] | Denmark | RISE | A | Organic Farms (vegetable, dairy, pig, poultry) | F |
14 | Yang et al. (2016) [29] | China | INDICATORS | M, A | Greenhouse vegetables | F |
15 | Sajjad et al. (2016) [41] | India | SLSI | A | - | F, R |
16 | Allahyari et al. (2016) [42] | Iran | INDICATORS | M | Paddy fields | F |
17 | Sottile et al. (2016) [30] | Kenya | SAEMETH-G PCA | M, A | School Gardens | F |
18 | El Chami et al. (2015) [43] | England | LCA CBA SCC | M, A | Winter Wheat | F |
19 | Santiago-Brown et al. (2015) [44] | - | INDICATORS | M | Grapes | F |
20 | Peano et al. (2015) [45] | - | SAEMETH | M, A | 10 small agri-food systems | F |
21 | Dong et al. (2015) [46] | USA | PCA DEA | M, A | Cranberry | F |
22 | Yegbemey et al. (2014) [47] | Benin | INDICATORS | M, A | Maize | F |
23 | Peano et al. (2014) [48] | Italy | INDICATORS | M, A | Agri-food system Slow food Presidia Project | F |
24 | Van Asselt et al. (2014) [49] | The Netherlands | INDICATORS | M, A | Potato | F |
25 | Colomb et al. (2013) [50] | France | MASC-OF DEXi | M, A | - | F, R |
26 | Vasileiadis et al. (2013) [51] | Europe | DEXiPM | A | Wheat, maize | F |
27 | Sami et al. (2013) [52] | Iran | INDICATORS | M, A | Wheat maize | F |
28 | Pelzer et al. (2012) [27] | France | DEXiPM | M, A | Arable crops and maize-based systems | F |
29 | Van Passel et al. (2012) [53] | Belgium | SVA MOTIFS | M, A | - | F |
30 | Reig-Martinez et al. (2011) [54] | Spain | DEA MCDA | M, A | - | F |
31 | Sharma et al. (2011) [55] | India | ASI | M, A | - | F |
32 | Rodriguez et al. (2010) [56] | - | APOIA-NovoRural | M, A | - | F |
33 | Gomez-Limon et al. (2010) [24] | Spain | SAFE AHP PCA | M, A | Rain-fed and irrigated | F |
34 | Gomes et al. (2009) [57] | Brazil | DEA | A | Rice, maize, coffee | F, R |
35 | Van Passel et al. (2009) [58] | Belgium | SVA | M | - | F |
36 | Sadok et al. ([59] | France | MASC DEXi | M, A | Cropping systems | F |
37 | Siciliano (2009) [60] | Italy | SMCE | M, A | Durum Wheat | F, L, R |
38 | Walter et al. (2009) [61,62] | Germany | INDICATORS | M, A | Spinach | F, R, G |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampridi, M.G.; Sørensen, C.G.; Bochtis, D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 2019, 11, 5120. https://doi.org/10.3390/su11185120
Lampridi MG, Sørensen CG, Bochtis D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability. 2019; 11(18):5120. https://doi.org/10.3390/su11185120
Chicago/Turabian StyleLampridi, Maria G., Claus G. Sørensen, and Dionysis Bochtis. 2019. "Agricultural Sustainability: A Review of Concepts and Methods" Sustainability 11, no. 18: 5120. https://doi.org/10.3390/su11185120
APA StyleLampridi, M. G., Sørensen, C. G., & Bochtis, D. (2019). Agricultural Sustainability: A Review of Concepts and Methods. Sustainability, 11(18), 5120. https://doi.org/10.3390/su11185120