Pollution and Health Risk Assessment of Carcinogenic Elements As, Cd, and Cr in Multiple Media—A Case of a Sustainable Farming Area in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Chemical Analysis
2.2.1. Sample Collection
2.2.2. Analytical Method
2.2.3. Quality Control
2.3. Input Flux Calculation
2.4. The Calculation of the Pollution Level
2.5. Bioaccumlation Factors
2.6. Health Risk Assessment Model
2.6.1. Health Risk Exposure Model and Parameters
2.6.2. Health Risk Characterization
2.7. Statistical Treatment
3. Results and Discussion
3.1. Pollution Level and Distribution
3.1.1. Atmospheric Precipitates
3.1.2. Soil
3.1.3. Wheat
3.1.4. Groundwater
3.2. Health Assessment
3.2.1. Noncarcinogenic Risk Assessment
3.2.2. Carcinogenic Risk Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huma-Khan, N.; Nafees, M.; Bashir, A. Study of heavy metals in soil and wheat crop and their transfer to food chain. Sarhad J. Agric. 2016, 32, 70–79. [Google Scholar] [CrossRef]
- Yaseen, I.A.A.B.; Al-Naeem, T.A. Assessment of Groundwater Pollution with Heavy Metals at the Al-Akaider Landfill Area, North Jordan. Res. J. Environ. Earth Sci. 2018, 10, 16–23. [Google Scholar] [CrossRef]
- Liu, W.X.; Liu, J.W.; Wu, M.Z.; Li, Y.; Zhao, Y.; Li, S.R. Accumulation and Translocation of Toxic Heavy Metals in Winter Wheat (Triticum aestivum L.) Growing in Agricultural Soil of Zhengzhou, China. Bull. Environ. Contam. Toxicol. 2009, 82, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Shabir, G.; Iqbal, S.; Mustafa, T.; Khan, Q.M.; Khalid, Z.M. Assessment of Heavy Metal Contamination in Soil and Groundwater at Leather Industrial Area of Kasur, Pakistan. CLEAN Soil Air Water 2013, 42, 1133–1139. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Luo, Y.; Yang, Y.; Zhao, L.; Zhou, X. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality—A case study of Dianchi Lake. Sci Total Environ. 2018, 624, 859–871. [Google Scholar] [CrossRef]
- Mondal, D.; Ganguli, B.; Sen Roy, S.; Halder, B.; Banerjee, N.; Banerjee, M.; Samanta, M.; Giri, A.K.; Polya, D.A. Diarrhoeal Health Risks Attributable to Water-Borne-Pathogens in Arsenic-Mitigated Drinking Water in West Bengal are Largely Independent of the Microbiological Quality of the Supplied Water. Water 2014, 6, 1100–1117. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Cadmium in Drinking-Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- World Health Organization (WHO). Arsenic in Drinking-Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- World Health Organization (WHO). Chromium in Drinking-Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Maqbool, A.; Xiao, X.; Wang, H.; Bian, Z.; Akram, M.W. Bioassessment of Heavy Metals in Wheat Crop from Soil and Dust in a Coal Mining Area. Pollution 2019, 5, 323–337. [Google Scholar]
- Osma, E.; Serin, M.; Leblebici, Z.; Aksoy, A. Assessment of Heavy Metal Accumulations (Cd, Cr, Cu, Ni, Pb, and Zn) in Vegetables and Soils. Pol. J. Environ. Stud. 2013, 22, 1449–1455. [Google Scholar]
- Wang, Q.R.; Dong, Y.; Cui, Y.; Liu, X. Instances of Soil and Crop Heavy Metal Contamination in China. Soil Sediment. Contam. An. Int. J. 2001, 10, 497–510. [Google Scholar]
- Nnabo Paulinus, N. Assessment of Heavy Metal Contamination of Water Sources from Enyigba Pb-Zn District, South Eastern Nigeria. Int. J. Sci. Technol. Res. 2015, 4, 186–196. [Google Scholar]
- Okegye, J.I.; Gajere, J.N. Assessment of Heavy Metal Contamination in Surface and Ground Water Resources around Udege Mbeki Mining District, North-Central Nigeria. J. Geol. Geophys. 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Hassan, N.U.; Mahmood, Q.; Waseem, A.; Irshad, M.; Faridullah; Pervez, A. Assessment of Heavy Metals in Wheat Plants Irrigated with Contaminated Wastewater. Pol. J. Environ. Stud. 2013, 22, 115–123. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Metals contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. B Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Luo, K. Household consumption of coal and related sulfur, arsenic, fluorine and mercury emissions in China. Energy Policy 2018, 112, 221–232. [Google Scholar] [CrossRef]
- Agrawal, M. Enhancing Food Chain Integrity: Quality Assurance Mechanism for Air Pollution Impacts on Food and Vegetable System; Final Technical Report (R7530); Department for International Development: London, UK, 2003.
- Pandey, J.; Pandey, U. Atmospheric Deposition and Heavy Metal Contamination in an Organic Farming System in a Seasonally Dry Tropical Region of India. J. Sustain. Agric. 2009, 33, 361–378. [Google Scholar] [CrossRef]
- Bose, S.; Bhattacharyya, A.K. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 2008, 70, 1264–1272. [Google Scholar] [CrossRef]
- Abtahi, M.; Fakhri, Y.; Oliveri Conti, G.; Keramati, H.; Zandsalimi, Y.; Bahmani, Z.; Ghasemi, S.M. Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryza sativa) from Iran and associated risk assessment: A systematic review. Toxin Rev. 2017, 36, 331–341. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2018; China Statistical Press: Beijing, China, 2018. [Google Scholar]
- Zhang, X.M.; Zhang, X.Y.; Zhong, T.Y.; Jiang, H. Spatial distribution and Accumulation of Heavy Metal in Arable Land Soil of China. Environ. Sci. 2014, 35, 693–699. [Google Scholar]
- Bartzas, G.; Tinivella, F.; Medini, L.; Zaharaki, D.; Komnitsas, K. Assessment of groundwater contamination risk in an agricultural area in north Italy. Inf. Process. Agric. 2015, 2, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Nobre, R.C.M.; Rotunno Filho, O.C.; Mansur, W.J.; Nobre, M.M.M.; Cosenza, C.A.N. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J. Contam. Hydrol. 2007, 94, 277–292. [Google Scholar] [CrossRef]
- Liu, X.M.; Song, Q.J.; Tang, Y.; Li, W.L.; Xu, J.M.; Wu, J.J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463, 530–540. [Google Scholar] [CrossRef]
- Komnitsas, K.; Modis, K. Geostatistical risk assessment at waste disposal sites in the presence of hot spots. J. Hazard. Mater. 2009, 164, 1185–1190. [Google Scholar] [CrossRef]
- Yang, X.; He, Z.L. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar]
- Luan, W.L.; Wen, X.Y.; Ma, Z.S.; Cui, X.T.; Song, Z.F.; Du, J. Geochemical Characteristics of Heavy Metal Elements in Soils of Eastern Hebei Plain. Geoscience 2008, 22, 939–946. [Google Scholar]
- Technical Standard of Geological Survey of China Geological Survey. Technical Requirements for Regional Eco-Geochemical Evaluation (DD2005-02); Standard Press of China: Beijing, China, 2005. [Google Scholar]
- Waza, A.; Schneiders, K.; May, J.; Rodríguez, S.; Epple, B.; Kandler, K. Field comparison of dry deposition samplers for collection of atmospheric mineral dust: Results from single-particle characterization. Atmos. Meas. Tech. Discuss. 2019. [Google Scholar] [CrossRef]
- National Environmental Protection Standards of the People’s China. Water Quality Sampling—Technical Regulation of the Preservation and Handling of Samples (HJ 493—2009); Environmental Protection Department: Beijing, China, 2009.
- Ministry of Health of the People’s Republic of China and National standardization administration of China. Standard Examination Methods for Drinking Water-Metal Parameters GB/T 5750.6–2006; The State Standard of the People’s China: Beijing, China, 2006.
- Technical Standard of Geological Survey of China Geological Survey. Technical Requirements for Eco-Geochemical Evaluation of Sample Analysis (DD2005-03); Standard Press of China: Beijing, China, 2005. [Google Scholar]
- Technical Standard of Geological Survey of China Geological Survey. Multi-target Area Geochemical Survey Specification (1:250,000) (DD2005-01); Standard Press of China: Beijing, China, 2005. [Google Scholar]
- Cai, K.; Yu, Y.Y.; Zhang, M.J.; Kim, K.J. Concentration, Source, and Total Health Risks of Cadmium in Multiple Media in Densely Populated Areas, China. Int. J. Environ. Res. Public Health 2019, 16, 2269. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sedimentsof the Rhine river. Geojournal 1969, 2, 108. [Google Scholar]
- Retamal-Salgado, J.; Hirzel, J.; Walter, I.; Matus, I. Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment. Int. J. Environ. Res. Public Health 2017, 14, 1399. [Google Scholar] [CrossRef]
- Hu, B.; Jia, X.; Hu, J.; Xu, D.; Xia, F.; Li, Y. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1042. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). National Primary Drinking Water Regulations: Radionuclides, Proposed Rule. 40CFR; United States Environmental Protection Agency: Washington, DC, USA, 1991.
- United States Environmental Protection Agency (USEPA). Guidelines for Carcinogen Risk Assessment; USEPA/630/P-03/001F; Risk Assessment Forum: Washington DC, USA, 2005. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Exposure Factors Handbook—Update, External Review Draft; EPA/600/R-09/052A; U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund Volume 1 Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response, U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- United States Environmental Protection Agency (USEPA). Exposure Factors Handbook Edition (Final Report); U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Chen, L.; Zhou, S.; Shi, Y.; Wang, C.; Li, B.; Li, Y.; Wu, S. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci. Total Environ. 2018, 615, 141–149. [Google Scholar] [CrossRef]
- Wang, Z.S.; Duan, X.L.; Liu, P.; Nie, J.; Huang, N.; Zhang, J.L. Human Exposure Factors of Chinese People in Environmental Health Risk Assessment. Res Environ Sci. 2009, 22, 11641170. [Google Scholar]
- Antoniadis, V.; Shaheen, S.M.; Levizou, E.; Shahid, M.; Niazi, N.K.; Vithanage, M.; Yong, S.O.; Bolan, N.; Rinklebe, J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environ. Int. 2019, 127, 819–847. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Guidance on Use of Modeled Results to Demonstrate Attainment of the Ozone NAAQS, EPA-454/B-95-007. 1996. Available online: http://www.epa.gov/ttn/scram/(file name:“O3TEST”) (accessed on 16 August 2019).
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold: New York, NY, USA, 1987; pp. 177–185. [Google Scholar]
- Fang, F.; Wang, H.; Lin, Y. Spatial distribution, bioavailability, and health risk assessment of soil Hg in Wuhu urban area, China. Environ. Monit. Assess. 2010, 179, 255–265. [Google Scholar] [CrossRef]
- Yang, L.P.; Chen, F.H.; Zhang, C.J. Chemical characteristics of atmospheric dust in Lanzhou. J. Lanzhou Univ. (Nat. Sci.) 2002, 38, 115–120. [Google Scholar]
- Tang, J.; Han, W.Z.; Li, N.; Li, Z.Y.; Bian, J.M.; Li, H.Y. Multivariate Analysis of Heavy metal Element Concentration in Atmospheric Deposition in Harbin City, Northeast China. Spectrosc. Spectr. Anal. 2011, 31, 3087–3090. [Google Scholar]
- Li, S.Q.; Yang, J.L.; Ruan, X.L.; Zhang, G.L. Atmospheric deposition of heavy metals and their impacts on soil environment in typical urban areas of Nanjing. China Environ. Sci. 2014, 34, 22–29. [Google Scholar]
- Wang, M.M.; Yuan, M.Y.; Su, D.C. Characteristics and spatial-temporal variation of heavy metals in atmospheric dry and wet deposition of China. China Environ. Sci. 2017, 37, 4085–4096. [Google Scholar]
- Wong, C.S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Peng, X.Z. Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmos. Environ. 2003, 37, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Cong, Y.; Chen, Y.L.; Yang, Z.F.; Hou, Q.Y.; Wang, H.C. Dry and wet atmospher ic deposition fluxes of elements in the Plain area of Beijing Municipality, China. Geol. Bull. China 2008, 27, 257–264. [Google Scholar]
- Bao, L.R.; Yang, L.C.; Dong, J.X.; Zhou, J. Atmospheric deposition characteristic and its influence on the earth surface in western Chongqing agricultural area. Environ. Pollut. Control 2016, 38, 41–46. [Google Scholar]
- Deng, C.Z.; Sun, G.Y.; Yang, W.; Li, Y.P.; Zhang, L.D.; Ding, J.S.; Fu, A.Z. Analysis of the deposition flux and source of heavy metal elements in atmospheric dust fall in Ganan County, Heilongjiang Province. Earth Environ. 2012, 40, 342–348. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India. Environ. Monit. Assess. 2007, 142, 269–278. [Google Scholar] [CrossRef]
- Sam, A.; Philippe, C.; Isabelle, L.; Daniel, T. Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems. Water Air Soil Pollut. Springer Verlag 2004, 157, 295–313. [Google Scholar] [Green Version]
- Chinese Environmental Protection Administration (CEPA). Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2018); Standards Press of China: Beijing, China, 2018. [Google Scholar]
- Yu, M.D.; Zhang, H.; He, X.S.; Zhang, Y.; Ma, L.N.; Tan, W.B.; Gao, R.T. Pollution characteristics and ecological risk assessment of heavy metals in typical agricultural soils. Chin. J. Environ. Eng. 2016, 10, 1501–1506. [Google Scholar]
- Song, Z.F.; Luan, W.L.; Cui, X.T.; Li, S.M.; Wang, W.; Li, W. An analysis of the sources of heavy metals in soils of eastern Hebei plain. Geol. China 2010, 37, 1531–1537. [Google Scholar]
- Zhang, X.Z.; Wang, S.M.; Li, J.H. The study on cadmium enrichment and causing analysis in coastal areas of Jidong. Earth Environ. 2007, 35, 321–326. [Google Scholar]
- Ministry of Health of China (MHC). Maximum Levels of Contaminants in Foods (GB2762-2012); Standard Press of China: Beijing, China, 2012.
- Al-Othman, Z.A.; Ali, R.; Al-Othman, A.M.; Ali, J.; Habila, M.A. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources. Arab. J. Chem. 2016, 9, 1555–1562. [Google Scholar] [CrossRef]
- Cai, K.; Song, Z. Bioconcentration, Potential Health Risks, and a Receptor Prediction Model of Metal(loid)s in a Particular Agro-Ecological Area. Appl. Sci 2019, 9, 1902. [Google Scholar] [CrossRef]
- Grant, C.A.; Bailey, L.D.; McLaughlin, M.J.; Singh, B.R. management factors which influence cadmium concentrations in crops. In Cadmium in Soils and Plants; MeLaughlin, M.J., Singh, B.R., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 151–198. [Google Scholar]
- Huang, M.L.; Zhou, S.L.; Sun, B.; Zhao, Q.G. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Sci. Total Environ. 2008, 405, 54–61. [Google Scholar] [CrossRef]
- The State General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of China. Standard for Groundwater Quality GB/T 14848–2017; The State Standard of the People’s China: Beijing, China, 2017.
- Ministry of Health of the People’s Republic of China; National Standardization Administration of China. Standards for Drinking Water Quality GB/T 5749–2006; The State Standard of the People’s China: Beijing, China, 2006.
Class | Igeo | Pollution Level | Mean Value (A and S) |
---|---|---|---|
0 | ≤0 | Clean | Cr, As |
1 | 0 < Igeo ≤ 1 | Mild–moderate | Cd |
2 | 1 < Igeo ≤ 2 | Moderate | - |
3 | 2 < Igeo ≤ 3 | Moderate–intense | - |
4 | 3 < Igeo ≤ 4 | Intense | - |
5 | 4 < Igeo ≤ 5 | Intense–strong | - |
6 | 5 < Igeo ≤ 10 | Very strong | - |
Parameters | Unit and Value | Significance | Reference |
---|---|---|---|
CG | mg/L 95% UCL | Concentration in groundwater | [43,44] |
CS, CW, CA, | mg/kg 95% UCL | Exposure-point concentration (soil, wheat, atmospheric precipitates) | [43,44] |
EF | 365 d/yr | Exposure frequency | [44] |
ED | adults 70 yr; children 6 yr | Exposure duration | [44] |
AT | 365 × ED day | Averaging time for (non)carcinogens | [44] |
BW | adults: 70 kg and children: 18 kg | Bodyweight | [45] |
SA | adults 5700 cm2·day−1, children and 2800 cm2·day−1 | Exposed skin area | [45,46] |
AF | adults 0.07 mg·cm−2, children 0.02 mg·cm−2 | Adherence factor | [46] |
ABS | 0.001 | Dermal absorption fraction | [46,47] |
PEF | 1.36 × 109 m3·kg−1 | Particle emission factor | [46,47] |
CF | 10−6 kg·mg−1 | Units conversion factor | [47] |
IRA | adults 16.5 m3·day−1, children 5.6 m3·day−1 | Respiratory frequency of atmospheric precipitates | [46] |
IRS | adults 100 mg·day−1, children and 200 mg·day−1 | Ingestion rate of soil | [47] |
IRw | adults 0.250 kg·day−1, children 0.070 kg·day−1 | Ingestion rate of wheat | [22] |
IRG | adults 1.82 L person−1·day−1, children 1.06 L person−1·day−1 | Ingestion rate of water | [45] |
RFD-Cd | RFD ingestion: 1 × 10−3 mg·kg−1·day−1, RFD inhale: 1 × 10−5 mg·kg−1·day−1, RFD dermal: 1 × 10−5 mg·kg−1·day−1 | Chronic reference | [47] |
RFD-Cr | RFD ingestion: 3 × 10−3 mg·kg−1·day−1, RFD inhale: 2.86 × 10−5 mg·kg−1·day−1, RFD dermal: 6 × 10−5 mg·kg−1·day−1 | [47] | |
RFD-As | RFD ingestion: 3 × 10−4 mg·kg−1·day−1, RFD inhale: 1.23 × 10−4 mg·kg−1·day−1, RFD dermal: 1.23 × 10−4 mg·kg−1·day−1 | [47] | |
SF-Cd | SF ingestion: 15 kg·day·mg−1, SF inhale: 6.3 kg·day·mg−1. | Slope factor | [47] |
SF-Cr | SF inhale: 4.2 × 101 kg·day·mg−1 | ||
SF-As | SF ingestion: 1.5 kg·day·mg−1 | ||
SF inhale: 1.51 × 101 kg·day·mg−1 | [45,47] | ||
SF dermal: 3.66 kg·day·mg−1 |
Medium | Elements | Nugget (C0) | Sill (C0 + C) | Range (m) | C/(C0 + C) | R2 | Model |
---|---|---|---|---|---|---|---|
S | Cd | 0.019078 | 0.019078 | 174890 | 0.0001 | 0.648 | linear |
Cr | 0.011 | 0.992 | 880055 | 0.989 | 0.766 | Gaussian | |
As | 0.02 | 0.66 | 885077 | 0.970 | 0.544 | Gaussian | |
W | Cd | 0.0001 | 0.0402 | 8140 | 0.998 | 0.577 | Gaussian |
Cr | 0.00902 | 0.02794 | 26500 | 0.677 | 0.426 | Gaussian | |
As | 0.000006 | 0.000107 | 6200 | 0.940 | 0.205 | Spherical | |
G | Cd | 0.0122 | 0.0447 | 633000 | 0.727 | 0.931 | Exponential |
Cr | 0.0272 | 0.0703 | 25200 | 0.613 | 0.870 | Exponential | |
As | 0.1953 | 0.4056 | 50400 | 0.518 | 0.901 | Exponential |
Medium | Statistics | Cr | Cd | As |
---|---|---|---|---|
A | Min | 57.50 | 0.70 | 5.28 |
Max | 89.00 | 5.1800 | 14.54 | |
Mean | 68.510 | 2.048 | 9.51 | |
Standard deviation | 10.658 | 1.489 | 3.0871 | |
S | Min | 21.3000 | 0.050 | 2.80 |
Max | 172.2000 | 0.31 | 16.60 | |
Mean | 63.4625 | 0.1492 | 7.0558 | |
Standard deviation | 26.3238 | 0.0513 | 2.9678 | |
Local background | 66 | 0.08 | 6.73 | |
Risk limit | 250 | 0.6 | 25 | |
W | Min | 0.0140 | 0.0230 | 0.0020 |
Max | 0.1400 | 0.1800 | 0.0500 | |
Mean | 0.0359 | 0.0554 | 0.0208 | |
Standard deviation | 0.0180 | 0.0313 | 0.0104 | |
Food limit | 1 | 0.1 | 0.5 | |
G | Min | 0.0008 | 0.0004 | 0.0004 |
Max | 0.0240 | 0.0021 | 0.1100 | |
Mean | 0.0015 | 0.0005 | 0.0063 | |
Standard deviation | 0.0018 | 0.0003 | 0.0128 | |
Risk limit | 0.1 | 0.01 | 0.05 |
Soil Types/Sample Numbers | Elements | Minimum | Maximum | Mean Value | BAFs (%) |
---|---|---|---|---|---|
Brown soil/28 | Assoil | 2.8 | 16.6 | 7.11 | 0.35 |
Aswheat | 0.007 | 0.05 | 0.02 | ||
Cdsoil | 0.067 | 0.23 | 0.14 | 44.79 | |
Cdwheat | 0.023 | 0.18 | 0.056 | ||
Crsoil | 26.0 | 112.1 | 64.75 | 0.07 | |
Crwheat | 0.022 | 0.14 | 0.037 | ||
Moist soil/18 | Assoil | 2.8 | 10.5 | 6.03 | 0.39 |
Aswheat | 0.002 | 0.041 | 0.02 | ||
Cdsoil | 0.05 | 0.31 | 0.15 | 47.85 | |
Cdwheat | 0.027 | 0.12 | 0.055 | ||
Crsoil | 25.0 | 92.6 | 55.39 | 0.07 | |
Crwheat | 0.014 | 0.057 | 0.035 |
Medium | Health Index | Cr | Cd | As | |
---|---|---|---|---|---|
A-inhale | ADD-a | 2.75 × 10−7 | 3.76 × 10−10 | 4.20 × 10−8 | |
ADD-c | 4.66 × 10−7 | 6.38 × 10−10 | 7.11 × 10−8 | ||
HQ-a | 9.61 × 10−3 | 3.76 × 10−5 | 3.41 × 10−4 | ||
HQ-c | 1.63 × 10−2 | 6.38 × 10−5 | 5.78 × 10−4 | ||
S-ingestion | ADD-a | 6.49 × 10−5 | 5.09 × 10−7 | 7.22 × 10−6 | |
ADD-c | 1.05 × 10−4 | 8.27 × 10−7 | 1.17 × 10−5 | ||
HQ-a | 2.16 × 10−2 | 5.09 × 10−4 | 2.41 × 10−2 | ||
HQ-c | 3.52 × 10−2 | 8.27 × 10−4 | 3.91 × 10−2 | ||
S-dermal | ADD-a | 3.56 × 10−7 | 8.37 × 10−10 | 3.96 × 10−8 | |
ADD-c | 1.94 × 10−7 | 4.57 × 10−10 | 2.16 × 10−8 | ||
HQ-a | 5.94 × 10−3 | 8.37 × 10−5 | 3.21 × 10−4 | ||
HQ-c | 3.24 × 10−3 | 4.57 × 10−5 | 1.76 × 10−4 | ||
W-ingestion | ADD-a | 7.04 × 10−5 | 1.74 × 10−4 | 6.50 × 10−5 | |
ADD-c | 1.40 × 10−4 | 2.16 × 10−4 | 8.11 × 10−5 | ||
HQ-a | 2.35 × 10−2 | 6.50 × 10−2 | 2.17 × 10−1 | ||
HQ-c | 4.67 × 10−2 | 8.11 × 10−2 | 2.70 × 10−1 | ||
G-ingestion | ADD-a | 4.42 × 10−8 | 1.53 × 10−5 | 1.86 × 10−7 | |
ADD-c | 4.71 × 10−8 | 2.80 × 10−5 | 3.06 × 10−7 | ||
HQ-a | 1.47 × 10−5 | 1.53 × 10−2 | 6.19 × 10−4 | ||
HQ-c | 1.57 × 10−5 | 3.05 × 10−2 | 1.02 × 10−3 | ||
G-dermal | ADD-a | 2.91 × 10−7 | 1.00 × 10−10 | 1.22 × 10−6 | |
ADD-c | 4.89 × 10−7 | 1.69 × 10−10 | 2.05 × 10−6 | ||
HQ-a | 4.85 × 10−3 | 1.00 × 10−5 | 9.93 × 10−3 | ||
HQ-c | 8.15 × 10−3 | 1.69 × 10−5 | 1.67 × 10−2 | ||
Total | HI-a | 6.55 × 10−2 | 8.10 × 10−2 | 2.52 × 10−1 | 0.40 |
HI-c | 1.10 × 10−1 | 1.12 × 10−1 | 3.28 × 10−1 | 0.55 |
Medium | Health Index | Cr | Cd | As | |
---|---|---|---|---|---|
A-inhale | CR-a | 1.15 × 10−5 | 2.37 × 10−9 | 6.33 × 10−7 | |
A-inhale | CR-c | 1.96 × 10−5 | 4.02 × 10−9 | 1.07 × 10−6 | |
S-ingestion | CR-a | - | 7.63 × 10−6 | 1.08 × 10−5 | |
S-ingestion | CR-c | - | 1.24 × 10−5 | 1.76 × 10−5 | |
S-dermal | CR-a | - | - | 1.45 × 10−7 | |
S-dermal | CR-c | - | - | 7.91 × 10−8 | |
W-ingestion | CR-a | - | 2.60 × 10−3 | 9.76 × 10−5 | |
W-ingestion | CR-c | - | 3.24 × 10−3 | 1.22 × 10−4 | |
G-ingestion | CR-a | - | 2.29 × 10−4 | 2.78 × 10−7 | |
G-ingestion | CR-c | - | 4.19 × 10−4 | 4.59 × 10−7 | |
G-dermal | CR-a | - | - | 4.47 × 10−6 | |
G-dermal | CR-c | - | - | 7.51 × 10−6 | |
Total | TCR-a | 1.15 × 10−5 | 2.84 × 10−3 | 1.14 × 10−4 | 2.97 × 10−3 |
TCR-c | 1.96 × 10−5 | 3.68 × 10−3 | 1.48 × 10−4 | 3.84 × 10−3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, K.; Li, C.; Song, Z.; Gao, X.; Wu, M. Pollution and Health Risk Assessment of Carcinogenic Elements As, Cd, and Cr in Multiple Media—A Case of a Sustainable Farming Area in China. Sustainability 2019, 11, 5208. https://doi.org/10.3390/su11195208
Cai K, Li C, Song Z, Gao X, Wu M. Pollution and Health Risk Assessment of Carcinogenic Elements As, Cd, and Cr in Multiple Media—A Case of a Sustainable Farming Area in China. Sustainability. 2019; 11(19):5208. https://doi.org/10.3390/su11195208
Chicago/Turabian StyleCai, Kui, Chang Li, Zefeng Song, Xin Gao, and Moxin Wu. 2019. "Pollution and Health Risk Assessment of Carcinogenic Elements As, Cd, and Cr in Multiple Media—A Case of a Sustainable Farming Area in China" Sustainability 11, no. 19: 5208. https://doi.org/10.3390/su11195208
APA StyleCai, K., Li, C., Song, Z., Gao, X., & Wu, M. (2019). Pollution and Health Risk Assessment of Carcinogenic Elements As, Cd, and Cr in Multiple Media—A Case of a Sustainable Farming Area in China. Sustainability, 11(19), 5208. https://doi.org/10.3390/su11195208