Empirical Examination of Intention to Continue to Use Smart Home Services
Abstract
:1. Introduction
2. Research Background and Hypotheses
2.1. Smart Home Service
2.2. Continuance Intention
2.3. Research Hypotheses
2.3.1. Service Quality
2.3.2. Perceived Usefulness
2.3.3. Satisfaction
2.3.4. Habit
2.4. Research Model
3. Research Methodology
3.1. Questionnaire and Pre-Test
3.2. Data Collection and Methodology
3.3. Sample Characteristics
4. Data Analysis and Results
4.1. Measurement Model
4.2. Structural Model and Hypotheses Testing
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
Service Quality
|
References
- Yergin, D. The Quest: Energy, Security, and the Remaking of the Modern World; Penguin: New York, NY, USA, 2011. [Google Scholar]
- Baudier, P.; Ammi, C.; Deboeuf-Rouchon, M. Smart home: Highly-educated students’ acceptance. Technol. Forecast. Soc. Chang. 2018, 119355. [Google Scholar] [CrossRef]
- Chan, M.; Estève, D.; Escriba, C.; Campo, E. A review of smart homes—Present state and future challenges. Comput. Methods Programs Biomed. 2008, 91, 55–81. [Google Scholar] [CrossRef] [PubMed]
- ITU. Applications of ITU-T G.9960, ITU-T G.9961 Transceivers for Smart Grid Applications: Advanced Metering Infrastructure, Energy Management in the Home and Electric Vehicles. 2010. Available online: http://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-HOME-2010-PDF-E.pdf (accessed on 22 February 2019).
- Marikyan, D.; Papagiannidis, S.; Alamanos, E. A systematic review of the smart home literature: A user perspective. Technol. Forecast. Soc. Chang. 2019, 138, 139–154. [Google Scholar] [CrossRef]
- Schill, M.; Godefroit-Winkel, D.; Diallo, M.F.; Barbarossa, C. Consumers’ intentions to purchase smart home objects: Do environmental issues matter? Ecol. Econ. 2019, 161, 176–185. [Google Scholar] [CrossRef]
- Statista. Statistics Portal: Smat Home. Available online: https://www.statista.com/outlook/279/100/smart -home/worldwide (accessed on 10 March 2019).
- Khedekar, D.C.; Truco, A.C.; Oteyza, D.A.; Huertas, G.F. Home Automation—A Fast-Expanding Market. Thunderbird Int. Bus. Rev. 2017, 59, 79–91. [Google Scholar] [CrossRef]
- Shuhaiber, A.; Mashal, I. Understanding users’ acceptance of smart homes. Technol. Soc. 2019, 58, 101110. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Davidson, R.; Bicket, M.; Whitmarsh, L. Social barriers to the adoption of smart homes. Energy Policy. 2013, 63, 363–374. [Google Scholar] [CrossRef]
- Batalla, J.M.; Vasilakos, A.; Gajewski, M. Secure smart homes: Opportunities and challenge. ACM Comput. Surv. 2017, 50, 75. [Google Scholar] [CrossRef]
- Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Smart homes and their users: A systematic analysis and key challenges. Pers. Ubiquitous Comput. 2015, 19, 463–476. [Google Scholar] [CrossRef]
- Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Benefits and risks of smart home technologies. Energy Policy. 2017, 103, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Gram-Hanssen, K.; Darby, S.J. “Home is where the smart is”? Evaluating smart home research and approaches against the concept of home. Energy Res. Soc. Sci. 2018, 37, 94–101. [Google Scholar] [CrossRef]
- Ambalov, I.A. A meta-analysis of IT continuance: An evaluation of the expectation-confirmation model. Telemat. Inform. 2018, 35, 1561–1571. [Google Scholar] [CrossRef]
- Gu, W.; Lee, J.H. A Study on the Use Intention of Smart Home APP based on IoT—Focusing on the China Market. e-Business Stud. 2017, 18, 195–212. [Google Scholar] [CrossRef]
- Reinisch, C.; Kofler, M.; Iglesias, F.; Kastner, W. Thinkhome energy efficiency in future smart homes. EURASIP J. Embed. Syst. 2011, 2011, 104617. [Google Scholar] [CrossRef]
- Ding, D.; Cooper, R.A.; Pasquina, P.F.; Fici-Pasquina, L. Sensor technology for smart homes. Maturitas 2011, 69, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Liao, C.F.; Fu, L.C. Service-oriented smart-home architecture based on OSGi and mobile-agent technology. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007, 37, 193–205. [Google Scholar] [CrossRef]
- Hajduk, S. The concept of a smart city in urban management. Bus. Manag. Educ. 2016, 14, 34–49. [Google Scholar] [CrossRef]
- Wang, Y.S.; Tseng, T.H.; Wang, W.T.; Shih, Y.W.; Chan, P.Y. Developing and validating a mobile catering app success model. Int. J. Hosp. Manag. 2019, 77, 19–30. [Google Scholar] [CrossRef]
- Augusto, J.C.; Liu, J.; McCullagh, P.; Wang, H.; Yang, J.B. Management of uncertainty and spatio-temporal aspects for monitoring and diagnosis in a smart home. Int. J. Comput. Intell. Syst. 2008, 1, 361–378. [Google Scholar] [CrossRef]
- Paetz, A.G.; Dütschke, E.; Fichtner, W. Smart homes as a means to sustainable energy consumption: A study of consumer perceptions. J. Consum. Policy 2012, 35, 23–41. [Google Scholar] [CrossRef]
- Peters, D.; Axsen, J.; Mallett, A. The role of environmental framing in socio-political acceptance of smart grid: The case of British Columbia, Canada. Renew. Sustain. Energy Rev. 2018, 82, 1939–1951. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Bhattacherjee, A.; Perols, J.; Sanford, C. Information technology continuance: A theoretic extension and empirical test. J. Comput. Inf. Syst. 2008, 49, 17–26. [Google Scholar] [CrossRef]
- Park, S.A.; Choi, S.M. An Understanding the Factors Influencing Satisfaction and Continued Use Intention of AI speakers: Focusing on the Utilitarian and Hedonic Values. Inf. Soc. Med. 2018, 19, 159–182. (In Korean) [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Malhotra, A. ES-QUAL: A multiple-item scale for assessing electronic service quality. J. Serv. Res. 2005, 7, 213–233. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. Information systems success: The quest for the dependent variable. Inf. Syst. Res. 1992, 3, 60–95. [Google Scholar] [CrossRef]
- Delone, W.H.; Mclean, E.R. Measuring e-commerce success: Applying the DeLone & McLean information systems success model. Int. J. Electron. Commer. 2004, 9, 31–47. [Google Scholar]
- Jahng, J.; Jain, H.; Ramamurthy, K. Effective design of electronic commerce environments: A proposed theory of congruence and an illustration. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2000, 30, 456–471. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Shin, J.W.; Park, Y.; Lee, D.H. Who will be smart home users? An analysis of adoption and diffusion of smart homes. Technol. Forecast. Soc. Chang. 2018, 134, 246–253. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Chang, J.J.; Tang, K.Y. Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telemat. Inform. 2016, 33, 342–355. [Google Scholar] [CrossRef]
- Gelderman, M. The relation between user satisfaction, usage of information systems and performance. Inf. Manag. 1998, 34, 1–11. [Google Scholar] [CrossRef]
- Ghazal, M.; Akmal, M.; Iyanna, S.; Ghoudi, K. Smart plugs: Perceived usefulness and satisfaction: Evidence from United Arab Emirates. Renew. Sustain. Energy Rev. 2016, 55, 1248–1259. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.M.; Hsu, M.H.; Lai, H.; Chang, C.M. Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents. Decis. Support Syst. 2012, 53, 835–845. [Google Scholar] [CrossRef]
- Wang, C.; Harris, J.; Patterson, P. The roles of habit, self-efficacy, and satisfaction in driving continued use of self-service technologies: A longitudinal study. J. Serv. Res. 2013, 16, 400–414. [Google Scholar] [CrossRef]
- Thorngate, W. Must we always think before we act? Person. Soc. Psychol. Bull. 1976, 2, 31–35. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M. How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef]
- Kim, S.S.; Malhotra, N.K. A longitudinal model of continued IS use: An integrative view of four mechanisms underlying postadoption phenomena. Manag. Sci. 2005, 51, 741–755. [Google Scholar] [CrossRef]
- Aarts, H.; Dijksterhuis, A.P. The automatic activation of goal-directed behaviour: The case of travel habit. J. Environ. Psychol. 2000, 20, 75–82. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Wilson, E.V.; Lankton, N.K. Effects of Prior Use, Intention, and Habit on IT Continuance Across Sporadic Use and Frequent Use Conditions. Commun. Assoc. Inf. Syst. 2013, 33, 3. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.H.; Chiu, C.H.; Ho, C.Y.; Lee, J.C. Understanding Mobile Apps Continuance Usage Behavior and Habit: An Expectance-Confirmation Theory. In Proceedings of the PACIS 2013, Jeju, Korea, 18–22 June 2013; p. 132. [Google Scholar]
- Amoroso, D.; Lim, R. The mediating effects of habit on continuance intention. Int. J. Inf. Manag. 2017, 37, 693–702. [Google Scholar] [CrossRef]
- George, D.; Mallery, P. IBM SPSS Statistics 23 Step by Step: A Simple Guide and Reference; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Lee, B.; Kwon, O.; Lee, I.; Kim, J. Companionship with smart home devices: The impact of social connectedness and interaction types on perceived social support and companionship in smart homes. Comput. Hum. Behav. 2017, 75, 922–934. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.; Zo, H. User acceptance of smart home services: An extension of the theory of planned behavior. Ind. Manag. Data Syst. 2017, 117, 68–89. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D. A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Commun. Assoc. Inf. Syst. 2005, 16, 5. [Google Scholar] [CrossRef]
Construct | Item | Factor Loading | SMC | CR | AVE | Cronbach’s α |
---|---|---|---|---|---|---|
SQ | SQ1 | 0.763 | 0.582 | 0.862 | 0.609 | 0.861 |
SQ2 | 0.766 | 0.587 | ||||
SQ3 | 0.817 | 0.599 | ||||
SQ4 | 0.774 | 0.668 | ||||
PU | PU1 | 0.762 | 0.581 | 0.856 | 0.598 | 0.856 |
PU2 | 0.757 | 0.573 | ||||
PU3 | 0.806 | 0.650 | ||||
PU4 | 0.768 | 0.590 | ||||
SAT | SAT1 | 0.781 | 0.610 | 0.877 | 0.641 | 0.876 |
SAT2 | 0.847 | 0.718 | ||||
SAT3 | 0.761 | 0.580 | ||||
SAT4 | 0.811 | 0.658 | ||||
HT | HT1 | 0.830 | 0.689 | 0.899 | 0.690 | 0.899 |
HT2 | 0.863 | 0.746 | ||||
HT3 | 0.797 | 0.635 | ||||
HT4 | 0.832 | 0.691 | ||||
CI | CI1 | 0.848 | 0.719 | 0.913 | 0.723 | 0.911 |
CI2 | 0.886 | 0.785 | ||||
CI3 | 0.840 | 0.705 | ||||
CI4 | 0.826 | 0.683 |
Construct | SQ | PU | SAT | HT | CI |
---|---|---|---|---|---|
SQ | 0.609 | ||||
PU | 0.258 | 0.598 | |||
SAT | 0.492 | 0.524 | 0.641 | ||
HT | 0.560 | 0.446 | 0.495 | 0.690 | |
CI | 0.470 | 0.470 | 0.498 | 0.574 | 0.723 |
Hypothesis | Path | Estimate | S.E. | C.R. | p-Value | Result |
---|---|---|---|---|---|---|
H1 | SQ → PU | 0.280 | 0.054 | 5.166 | *** | Supported |
H2 | SQ → SAT | 0.427 | 0.052 | 8.170 | *** | Supported |
H3 | PU → SAT | 0.428 | 0.052 | 8.266 | *** | Supported |
H4 | PU → HT | 0.267 | 0.062 | 4.286 | *** | Supported |
H5 | PU → CI | 0.245 | 0.069 | 3.534 | *** | Supported |
H6 | SAT → HT | 0.422 | 0.061 | 6.910 | *** | Supported |
H7 | SAT → CI | 0.282 | 0.070 | 4.037 | *** | Supported |
H8 | HT → CI | 0.443 | 0.062 | 7.159 | *** | Supported |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Bao, P.; Hao, W.; Kim, J. Empirical Examination of Intention to Continue to Use Smart Home Services. Sustainability 2019, 11, 5213. https://doi.org/10.3390/su11195213
Gu W, Bao P, Hao W, Kim J. Empirical Examination of Intention to Continue to Use Smart Home Services. Sustainability. 2019; 11(19):5213. https://doi.org/10.3390/su11195213
Chicago/Turabian StyleGu, Wei, Peng Bao, Wenyuan Hao, and Jaewoong Kim. 2019. "Empirical Examination of Intention to Continue to Use Smart Home Services" Sustainability 11, no. 19: 5213. https://doi.org/10.3390/su11195213
APA StyleGu, W., Bao, P., Hao, W., & Kim, J. (2019). Empirical Examination of Intention to Continue to Use Smart Home Services. Sustainability, 11(19), 5213. https://doi.org/10.3390/su11195213