The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools
Abstract
:1. Introduction
2. Tools for the Study of the Movement of Tourists in Historic Tourist Cities
2.1. Interviews and Surveys
2.2. Direct Observation
2.3. Video Surveillance
2.4. Tourist Card
2.5. GIS and GPS
2.6. Mobile Networks
2.7. Bluetooth
2.8. Social Networks
2.9. Travel Stories
2.10. NFC
2.11. Alge System
2.12. Classification of Tools for the Study of the Movement of Visitors
3. Methods
3.1. Definition of fieldwork
3.2. Facts
4. Results
4.1. Construction of the Chain of Sequence of Visits
4.2. Descriptive Analysis
4.3. Movement Patterns
- According to the initial vector, the only start options for possible patterns are states (sites) 13, 14, 23, 26, 29, 3, 30, 32, 36, 4, 42, 5, 55, 57 and 6.
- The states in their order, to which most other states arrive (transition to it) (excluding E), 55 (16 transitions) followed by states 23, 29, 30 and 57 (with 12 transitions) and PR (11 states). This means that the sites of Rincón Payanés, Museo Arquidiocesano, followed by the Quingos, Museo de Historia Natural, Museo Nacional Guillermo Valencia and Panteón de los próceres, are the most visited.
- The states in their order, which most reach others (transition others from it) (excluding E), are RP arriving at 15 transitions, 29 and 6 arriving at 14 transitions, 32 with 13 transitions, and 57 with 12 transitions. This means in its order Rincón Payanés, Museo Historia Natural, Museo Casa Mosquera, Manos de Oro and Panteón de los próceres.
- It is then the strategic importance of these sites, highlighting the Rincon Payanés, the Museum of Natural History and Pantheon of the heroes, which are of greater transition from and to other sites or states.
- The probabilities of transitions between higher states for tourist sites of non-commercial activity are: between 13 and 14 (p = 0.615384615) (Museo Negret Y MIAMP - Museo Guillermo León Valencia), between 3 and 14 (p = 0.54545454545) (Cámara de Comercio del Cauca - Museo Guillermo León Valencia), between 32 and 55 (p = 0.46907216) (Manos de Oro - Museo Arquidiocesano), between 42 and 55 (p = 0.40909091) (Expocauca - Museo Arquidiocesano), between 42 and 55 (p = 0.40909091) (Expocauca -Museo Arquidiocesano). The case of the state known as Rincón Payanés, is found repeatedly, to be a set of craft shops, which was expected to be located a few meters. Of these transitions, the only one that has no obvious geographical proximity is the relationship between 3 to 14 (p = 0.545454545) (Cauca Chamber of Commerce - Museo Guillermo León Valencia).
- It should be noted that in the Chamber of Commerce, there is the Tourist Information Point of the city.
4.4. Analysis of Movements Based on Coordinate Paths
4.5. Statistical Tests and Model Validation
5. Discussion and Conclusions
6. Practical Implications, Limitations and Future Research Lines
Author Contributions
Funding
Conflicts of Interest
References
- Russo, A.P. The “vicious circle” of tourism development in heritage cities. Ann. Tour. Res. 2002, 29, 165–182. [Google Scholar] [CrossRef]
- Butler, R. The Tourism Area Life Cycle; Channel View Publications: Bristol, UK, 2006; Volume 1. [Google Scholar]
- Fernández, D.B.; Castillo, L.A.; Salomao, E.M.A. Tourist use of historic cities: Review of international agreements and literature. Int. J. Humanit. Stud. 2014, 1, 1–11. [Google Scholar]
- Lau, G.; McKercher, B. Understanding tourist movement patterns in a destination: A GIS approach. Tour. Hosp. Res. 2006, 7, 39–49. [Google Scholar] [CrossRef]
- Hernández, G.M. Turismo y conjuntos monumentales. In Capacidad de Acogida Turística y Gestión de Flujos de Visitantes; Tirant lo Blanch: Valencia, Spain, 2003. [Google Scholar]
- Shoval, N.; Isaacson, M. Tracking tourists in the digital age. Ann. Tour. Res. 2007, 34, 141–159. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, Y.; Li, W. Extraction and analysis of city’s tourism districts based on social media data. Comput. Environ. Urban Syst. 2017, 65, 66–78. [Google Scholar] [CrossRef]
- Smallwood, C.B.; Beckley, L.E.; Moore, S.A. An analysis of visitor movement patterns using travel networks in a large marine park, north-western Australia. Tour. Manag. 2012, 33, 517–528. [Google Scholar] [CrossRef]
- Tiwari, S.; Kaushik, S.; Jagwani, P. Location based recommender systems: Architecture, trends and research areas. In Proceedings of the IET International Conference on Wireless Communications and Applications (ICWCA 2012), Kuala Lumpur, Malaysia, 8–10 October 2012. [Google Scholar]
- Zheng, W.; Huang, X.; Li, Y. Understanding the tourist mobility using GPS: Where is the next place? Tour. Manag. 2017, 59, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Orellana, D.; Bregt, A.K.; Ligtenberg, A.; Wachowicz, M. Exploring visitor movement patterns in natural recreational areas. Tour. Manag. 2012, 33, 672–682. [Google Scholar] [CrossRef]
- Xia, J.C.; Zeephongsekul, P.; Arrowsmith, C. Modelling spatio-temporal movement of tourists using finite Markov chains. Math. Comput. Simul. 2009, 79, 1544–1553. [Google Scholar] [CrossRef]
- Hummel, K.A.; Hess, A. Movement activity estimation for opportunistic networking based on urban mobility traces. In Proceedings of the 2010 IFIP Wireless Days, Venice, Italy, 20–22 October 2010; pp. 1–5. [Google Scholar]
- Bryon, J.; Russo, A.P. The tourist historic city. Ann. Tour. Res. 2003, 30, 492–494. [Google Scholar] [CrossRef]
- Shoval, N.; Isaacson, M. Tourist Mobility and Advanced Tracking Technologies; Routledge: Oxford, UK, 2009. [Google Scholar]
- Schaick, J.; Spek, S.C. Urbanism on Track: Application of Tracking Technologies in Urbanism; IOS Press: Amsterdam, The Netherlands, 2008; Volume 1. [Google Scholar]
- Martinez-Garcia, E.; Raya-Vilchez, J.; Galí, N. Factors Affecting Time Spent Visiting Heritage City Areas. Sustainability 2018, 10, 1824. [Google Scholar] [CrossRef]
- Richards, G.; Raymond, C. Creative tourism. ATLAS News 2000, 23, 16–20. [Google Scholar]
- Aranburu, I.; Plaza, B.; Esteban, M. Sustainable Cultural Tourism in Urban Destinations: Does Space Matter? Sustainability 2016, 8, 699. [Google Scholar] [CrossRef]
- García-Hernández, M.; de la Calle-Vaquero, M.; Yubero, C. Cultural heritage and urban tourism: Historic city centres under pressure. Sustainability 2017, 9, 1346. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, R.; Zhang, Z.; Zhong, Y.; Wang, S.; Wei, Z.; Ji, H. Understanding the tourist mobility using GPS: How similar are the tourists? Tour. Manag. 2019, 71, 54–66. [Google Scholar] [CrossRef]
- Wolf, I.D.; Hagenloh, G.; Croft, D.B. Visitor monitoring along roads and hiking trails: How to determine usage levels in tourist sites. Tour. Manag. 2012, 33, 16–28. [Google Scholar] [CrossRef]
- Parroco, A.M.; Vaccina, F.; De Cantis, S.; Ferrante, M. Multi-destination trips and tourism statistics: Empirical evidences in Sicily. Econ. Open-Access Open-Assess. E-J. 2012, 6, 1–27. [Google Scholar] [CrossRef]
- Terrier, C. Tourist flows and inflows: on measuring instruments and the geomathematics of flows. In Transport Survey Methods: Keeping up with a Changing World; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 219–241. [Google Scholar]
- Thornton, P.R.; Shaw, G.; Williams, A.M. Tourist group holiday decision-making and behaviour: The influence of children. Tour. Manag. 1997, 18, 287–297. [Google Scholar] [CrossRef]
- O’Connor, A.; Zerger, A.; Itami, B. Geo-temporal tracking and analysis of tourist movement. Math. Comput. Simul. 2005, 69, 135–150. [Google Scholar] [CrossRef]
- Zakrisson, I.; Zillinger, M. Emotions in motion: Tourist experiences in time and space. Curr. Issues Tour. 2012, 15, 505–523. [Google Scholar] [CrossRef]
- Zoltan, J.; Masiero, L. The relation between push motivation and activity consumption at the destination within the framework of a destination card. J. Destin. Mark. Manag. 2012, 1, 84–93. [Google Scholar] [CrossRef]
- Angeloni, S. A tourist kit ‘made in Italy’: An ‘intelligent’system for implementing new generation destination cards. Tour. Manag. 2016, 52, 187–209. [Google Scholar] [CrossRef]
- Zoltan, J.; McKercher, B. Analysing intra-destination movements and activity participation of tourists through destination card consumption. Tour. Geogr. 2015, 17, 19–35. [Google Scholar] [CrossRef]
- DubrovnikCard. Available online: http://www.dubrovnikcard.com/ (accessed on 30 September 2019).
- Centre, UNESCO World Heritage. UNESCO World Heritage Centre—Document—Report on the UNESCO/ICOMOS Reactive Monitoring mission to the Old City of Dubrovnik, Croatia, 27 October–1 November, 2015. Available online: https://whc.unesco.org/en/documents/141053/ (accessed on 30 September 2019).
- Van der Knaap, W.G. GIS-oriented analysis of tourist time-space patterns to support sustainable tourism development. Tour. Geogr. 1999, 1, 56–69. [Google Scholar] [CrossRef]
- Connell, J.; Page, S.J. Exploring the spatial patterns of car-based tourist travel in Loch Lomond and Trossachs National Park, Scotland. Tour. Manag. 2008, 29, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Grinberger, A.Y.; Shoval, N.; McKercher, B. Typologies of tourists’ time–space consumption: A new approach using GPS data and GIS tools. Tour. Geogr. 2014, 16, 105–123. [Google Scholar] [CrossRef]
- rmen, J.; Thorhauge, A.M. Smartphone log data in a qualitative perspective. Mob. Media Commun. 2015, 3, 335–350. [Google Scholar]
- Medzini, A.; Meishar-Tal, H.; Sneh, Y. Use of mobile technologies as support tools for geography field trips. Int. Res. Geogr. Environ. Educ. 2015, 24, 13–23. [Google Scholar] [CrossRef]
- Ahas, R.; Aasa, A.; Mark, Ü.; Pae, T.; Kull, A. Seasonal tourism spaces in Estonia: Case study with mobile positioning data. Tour. Manag. 2007, 28, 898–910. [Google Scholar] [CrossRef]
- Bauder, M.; Freytag, T. Visitor mobility in the city and the effects of travel preparation. Tour. Geogr. 2015, 17, 682–700. [Google Scholar] [CrossRef]
- De Cantis, S.; Ferrante, M.; Kahani, A.; Shoval, N. Cruise passengers’ behavior at the destination: Investigation using GPS technology. Tour. Manag. 2016, 52, 133–150. [Google Scholar] [CrossRef]
- Tchetchik, A.; Fleischer, A.; Shoval, N. Segmentation of visitors to a heritage site using high-resolution time-space data. J. Travel Res. 2009, 48, 216–229. [Google Scholar] [CrossRef]
- Sugimoto, K.; Ota, K.; Suzuki, S. Visitor Mobility and Spatial Structure in a Local Urban Tourism Destination: GPS Tracking and Network analysis. Sustainability 2019, 11, 919. [Google Scholar] [CrossRef]
- East, D.; Osborne, P.; Kemp, S.; Woodfine, T. Combining GPS & survey data improves understanding of visitor behaviour. Tour. Manag. 2017, 61, 307–320. [Google Scholar]
- Raun, J.; Ahas, R.; Tiru, M. Measuring tourism destinations using mobile tracking data. Tour. Manag. 2016, 57, 202–212. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, X.; Liu, Y.; Lin, J.; An, J. Tourist movement patterns understanding from the perspective of travel party size using mobile tracking data: A case study of Xi’an, China. Tour. Manag. 2018, 69, 368–383. [Google Scholar] [CrossRef]
- Bastianoni, S.; Pulselli, R.; Romano, P.; Pulselli, F. Dynamics and evolution of urban patterns: the evidence of the Mobile Landscape project. Des. Nat. IV Comp. Des. Nat. Sci. Eng. 2008, 4, 253. [Google Scholar]
- Vaccari, A.; Liu, L.; Biderman, A.; Ratti, C.; Pereira, F.; Oliveirinha, J.; Gerber, A. A holistic framework for the study of urban traces and the profiling of urban processes and dynamics. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7 October 2009; pp. 1–6. [Google Scholar]
- Ros, M.; D’Souza, M.; Postula, A.; MacColl, I. Location based services with personal area network for community and tourism applications. In Proceedings of the IET International Communication Conference on Wireless Mobile and Computing (CCWMC 2011), Shanghai, China, 14–16 November 2011. [Google Scholar]
- Georgeta-Irina, P. An insight into m-tourism. Rev. Econ. 2013, 65, 51–63. [Google Scholar]
- Versichele, M.; De Groote, L.; Bouuaert, M.C.; Neutens, T.; Moerman, I.; Van de Weghe, N. Pattern mining in tourist attraction visits through association rule learning on Bluetooth tracking data: A case study of Ghent, Belgium. Tour. Manag. 2014, 44, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Delafontaine, M.; Versichele, M.; Neutens, T.; Van de Weghe, N. Analysing spatiotemporal sequences in Bluetooth tracking data. Appl. Geogr. 2012, 34, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Gerval, J.P.; Le Ru, Y. Fusion of multimedia and mobile technology in audioguides for museums and exhibitions. In Fusion of Smart, Multimedia and Computer Gaming Technologies; Springer: New York, NY, USA, 2015; pp. 173–205. [Google Scholar]
- Moussouri, T.; Roussos, G. Conducting visitor studies using smartphone-based location sensing. J. Comput. Cult. Herit. (JOCCH) 2015, 8, 12. [Google Scholar] [CrossRef]
- Gabrielli, L.; Rinzivillo, S.; Ronzano, F.; Villatoro, D. From tweets to semantic trajectories: mining anomalous urban mobility patterns. In Proceedings of the International Workshop on Citizen in Sensor Networks, Barcelona, Spain, 19 September 2013; pp. 26–35. [Google Scholar]
- Encalada, L.; Boavida-Portugal, I.; Cardoso Ferreira, C.; Rocha, J. Identifying tourist places of interest based on digital imprints: Towards a sustainable smart city. Sustainability 2017, 9, 2317. [Google Scholar] [CrossRef]
- Chua, A.; Servillo, L.; Marcheggiani, E.; Moere, A.V. Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy. Tour. Manag. 2016, 57, 295–310. [Google Scholar] [CrossRef]
- Su, S.; Wan, C.; Hu, Y.; Cai, Z. Characterizing geographical preferences of international tourists and the local influential factors in China using geo-tagged photos on social media. Appl. Geogr. 2016, 73, 26–37. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Fesenmaier, D.R. Interpreting Tourist Experiences from First-Person Stories: A Foundation for Mobile Guides. In Proceedings of the Fifteenth European Conference on Information Systems, ECIS 2007, St. Gallen, Switzerland, 7–9 June 2007; pp. 2259–2270. [Google Scholar]
- Borrero, F.; Sanjuán, P.; Ramirez-Gonzalez, G. Gamification techniques in tourism, application test, Casa Mosquera Museum. Sistemas & Telemática 2015, 13, 63–76. [Google Scholar]
- Dickinson, J.E.; Ghali, K.; Cherrett, T.; Speed, C.; Davies, N.; Norgate, S. Tourism and the smartphone app: capabilities, emerging practice and scope in the travel domain. Curr. Issues Tour. 2014, 17, 84–101. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Basili, A.; Liguori, W.; Palumbo, F. NFC smart tourist card: Combining mobile and contactless technologies towards a smart tourist experience. In Proceedings of the 2014 IEEE 23rd International WETICE Conference, Parma, Italy, 23–25 June 2014; pp. 249–254. [Google Scholar]
- Chantre-Astaiza, A.; Fuentes-Moraleda, L.; Muñoz-Mazón, A.; Ramirez-Gonzalez, G. Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability. Sustainability 2019, 11, 4738. [Google Scholar] [CrossRef]
- Xia, J. Modelling the Spatial-Temporal Movement of Tourists. Ph.D. Thesis, Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia, 2007. [Google Scholar]
- Mednick, H. A Markov chain model of travel patterns of US visitors to Ontario. J. Leis. Res. 1975, 7, 246–255. [Google Scholar] [CrossRef]
- Tobler, W. Movement modeling on the sphere. Geogr. Environ. Model. 1997, 1, 97–103. [Google Scholar]
- Lusseau, D. Effects of tour boats on the behavior of bottlenose dolphins: using Markov chains to model anthropogenic impacts. Conserv. Biol. 2003, 17, 1785–1793. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Li, Y.; Zha, Z.J.; Chua, T.S. Mining travel patterns from GPS-tagged photos. In Proceedings of the International Conference on Multimedia Modeling, Taipei, Taiwan, 5–7 January 2011; pp. 262–272. [Google Scholar]
- Yamamoto, T.; Kitamura, R.; Kishizawa, K. Sampling alternatives from colossal choice set: Application of Markov Chain Monte Carlo algorithm. Transp. Res. Rec. 2001, 1752, 53–61. [Google Scholar] [CrossRef]
- Kikuchi, A.; Kitamura, R.; Yamamoto, T.; Fujii, S. Simulating spatial choices with quasi-continuous representation of urban space: An application of MCMC algorithms. In Proceedings of the Transportation Research Board 82nd Annual Meeting, Washington, DC, USA, 12–16 January 2003. [Google Scholar]
- Tabatabaee, N.; Ziyadi, M. Bayesian approach to updating Markov-based models for predicting pavement performance. Transp. Res. Rec. 2013, 2366, 34–42. [Google Scholar] [CrossRef]
- Spitzer, F. Principles of Random Walk, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2001. [Google Scholar]
- Harabagiu, S.; Hickl, A.; Lacatusu, F. Negation, contrast and contradiction in text processing. In Proceedings of the 21st National Conference on Artificial Intelligence, Boston, MA, USA, 16–20 July 2006; Volume 6, pp. 755–762. [Google Scholar]
- Wolf, I.D.; Stricker, H.K.; Hagenloh, G. Interpretive media that attract park visitors and enhance their experiences: A comparison of modern and traditional tools using GPS tracking and GIS technology. Tour. Manag. Perspect. 2013, 7, 59–72. [Google Scholar] [CrossRef]
- McKercher, B.; Shoval, N.; Ng, E.; Birenboim, A. Using GPS data to compare first-time and repeat visitors to Hong Kong. Tour. Geogr. 2012, 14, 147–161. [Google Scholar] [CrossRef]
- Paulino Valldepérez, I. Tourism Destination Zoning in Rural Regions: A Consumer-Based Approach in Terres de l’Ebre. 2013. Available online: https://dugi-doc.udg.edu/handle/10256/8808 (accessed on 30 September 2019).
- Blasco, D.; Guia, J.; Prats, L. Emergence of governance in cross-border destinations. Ann. Tour. Res. 2014, 49, 159–173. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, H.T.; Zhou, X. Discovering popular routes from trajectories. In Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 900–911. [Google Scholar]
- Zhao, J.; Forer, P.; Sun, Q.; Simmons, D. Multiple-view strategies for enhanced understanding of dynamic tourist activity through geovisualization at regional and national scales. Cartogr. Geogr. Inf. Sci. 2013, 40, 349–360. [Google Scholar] [CrossRef]
- Mckercher, B.; Lau, G. Movement patterns of tourists within a destination. Tour. Geogr. 2008, 10, 355–374. [Google Scholar] [CrossRef]
- McAdam, D. The value and scope of geographical information systems in tourism management. J. Sustain. Tour. 1999, 7, 77–92. [Google Scholar] [CrossRef]
- Beeco, J.A.; Brown, G. Integrating space, spatial tools, and spatial analysis into the human dimensions of parks and outdoor recreation. Appl. Geogr. 2013, 38, 76–85. [Google Scholar] [CrossRef]
- GPS Visualizer. Available online: https://www.gpsvisualizer.com/ (accessed on 30 September 2019).
- Michelot, T.; Langrock, R.; Patterson, T.A. moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol. Evol. 2016, 7, 1308–1315. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 30 September 2019).
- Schumacker, R.; Tomek, S. Understanding Statistics Using R; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Kabacoff, R. R In Action: Data Analysis and Graphics with R; Kabacoff, R., Ed.; Manning Publications Co.: Shelter Island, NY, USA, 2015. [Google Scholar]
- Vinod, H.D. Advances in Social Science Research Using R; Springer: New York, NY, USA, 2010. [Google Scholar]
- Pagano, R.R. Understanding Statistics in the Behavioral Sciences; Cengage Learning: Boston, MA, USA, 2012; Volume 1. [Google Scholar]
- Friendly, M.; Kwan, E. Effect ordering for data displays. Comput. Stat. Data Anal. 2003, 43, 509–539. [Google Scholar] [CrossRef] [Green Version]
- Friendly, M. A brief history of data visualization. In Handbook of Data Visualization; Springer: New York, NY, USA, 2008; pp. 15–56. [Google Scholar]
- Friendly, M. Corrgrams: Exploratory displays for correlation matrices. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. corrplot: Visualization of a Correlation Matrix. 17 October 2017. Available online: https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (accessed on 21 September 2019).
- Loecher, M.; Ropkins, K. RgoogleMaps and loa: Unleashing R graphics power on map tiles. J. Stat. Softw. 2015, 63. [Google Scholar] [CrossRef]
- Cheshire, J.; Lovelace, R. Spatial data visualisation with R. In Geocomputation: A Practical Primer; SAGE: London, UK, 2015; p. 3. [Google Scholar]
- Kahle, D.; Wickham, H. ggmap: Spatial Visualization with ggplot2. R J. 2013, 5, 144–161. [Google Scholar] [CrossRef] [Green Version]
- Quintero, F.G. La ciudad colonial y sus textualidades contemporáneas: El color blanco en Popayán. Un estudio de semiótica cultural urbana. Revista Nexus Comunicación 2014. [Google Scholar] [CrossRef]
- Xia, J.C.; Evans, F.H.; Spilsbury, K.; Ciesielski, V.; Arrowsmith, C.; Wright, G. Market segments based on the dominant movement patterns of tourists. Tour. Manag. 2010, 31, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Arrowsmith, C. Managing Scale Issues in Spatio-temporal Movement of Tourists Modelling. In Proceedings of the International Congress on Modelling and Simulation (MODSIM05), Melbourne, Australia, 12–15 December 2005; Zerger, A., Argent, R.M., Eds.; pp. 162–169. [Google Scholar]
- Arrowsmith, C.; Zanon, D.; Chhetri, P. Chapter 4—Monitoring Visitor Patterns of Use in Natural Tourist Destinations. In Taking Tourism to the Limits; Ryan, C., Page, S.J., Aicken, M., Eds.; Elsevier: Oxford, UK, 2005; pp. 33–52. [Google Scholar]
- Spedicato, G.A. Discrete Time Markov Chains with R. R J. 2017, 9, 84–104. [Google Scholar] [CrossRef]
- Pesonen, J.; Horster, E. Near field communication technology in tourism. Tour. Manag. Perspect. 2012, 4, 11–18. [Google Scholar] [CrossRef]
- Egger, R. The impact of near field communication on tourism. J. Hosp. Tour. Technol. 2013, 4, 119–133. [Google Scholar] [CrossRef]
- Ramírez-González, G.; Muñoz Organero, M.; Kloos, C.D.; Astaiza, A.C. Exploring NFC Interactive Panel. In Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services (Mobiquitous ’08), Dublin, Ireland, 21–25 July 2008; ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): Brussels, Belgium, 2008; p. 32. [Google Scholar]
- Palumbo, F.; Dominici, G. Unraveling the complexity of tourist experience with NFC technology and mobile wallets. In Chaos, Complexity and Leadership 2013; Springer: New York, NY, USA, 2015; pp. 189–196. [Google Scholar]
- Imbachi, J.L.C.; Jacome, D.L.N.; González, G.R. Mobile payments system employing NFC technology under the Android operating system. Sistemas & Telemática 2015, 13, 77–87. [Google Scholar]
- Silva-Pedroza, D.; Marin-Calero, R.; Ramirez-Gonzalez, G. NFC Evaluation in the Development of Mobile Applications for MICE in Tourism. Sustainability 2017, 9, 1937. [Google Scholar] [CrossRef]
- Tecnología NFC Servirá Para Promover el Turismo en España. Available online: https://www.fayerwayer.com/2011/04/tecnologia-nfc-servira-para-promover-el-turismo-en-espana/ (accessed on 30 September 2019).
- NFC Phones Replace Room Keys and Eliminate Check-In at Swedish hotel NFC World. 2010. Available online: https://www.nfcworld.com/2010/11/03/34886/nfc-keys-hotel-sweden/ (accessed on 30 September 2019).
- Ceipidor, U.B.; Medaglia, C.; Volpi, V.; Moroni, A.; Sposato, S.; Carboni, M.; Caridi, A. NFC technology applied to touristic-cultural field: A case study on an Italian museum. In Proceedings of the 2013 5th International Workshop on Near Field Communication (NFC), Zurich, Switzerland, 5 February 2013; pp. 1–6. [Google Scholar]
- Borrego-Jaraba, F.; Luque Ruiz, I.; Gómez-Nieto, M.Á. A NFC-based pervasive solution for city touristic surfing. Pers. Ubiquitous Comput. 2011, 15, 731–742. [Google Scholar] [CrossRef]
- Ronay, E.; Egger, R. NFC smart city: Cities of the future—A scenario technique application. In Information and Communication Technologies in Tourism 2014; Springer: New York, NY, USA, 2013; pp. 565–577. [Google Scholar]
- Agredo, E.A.C.; Martínez-Acosta, L.C.; Chantre, A.; Ramirez-Gonzalez, G. Pervasive NFC-based solution for the analysis of tourism data in an environment of smart cities. Sistemas & Telemática 2015, 13, 41–60. [Google Scholar] [Green Version]
- Vinuesa, M.A.T. Turismo y desarrollo sostenible en las ciudades históricas con patrimonio arquitectónico- monumental. Estudios turísticos 1998, 137, 5–53. [Google Scholar]
- Hernández, M.G. Turismo y medio ambiente en ciudades históricas. De la capacidad de acogida turística a la gestión de los flujos de visitantes. Anales de Geografía de la Universidad Complutense 2000, 2000, 131–148. [Google Scholar]
- Nielsen, J.; Landauer, T.K. A mathematical model of the finding of usability problems. In Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, Amsterdam, The Netherlands, 24–29 April 1993; pp. 206–213. [Google Scholar]
- Baxter, K.; Courage, C.; Caine, K. Understanding Your Users: A Practical Guide to User Research Methods; Morgan Kaufmann: Burlington, MA, USA, 2015. [Google Scholar]
Static Information, Collected by Means of a Survey in the Four Periods | |||
---|---|---|---|
Amplitud | Tourist profile. Variables; age, nationality, company, previous visits, | ||
motivation, age, expenditure, gender, means of transport, means of information. | |||
Depth | Number of visits to the 36 resources identified within the tourist offer | ||
Dynamic information, collected differently in the four periods | |||
Year | INSTRUMENT | INFORMATION RECOLECTION | Nº Movements and DATA ANALYSIS |
2011 | Tourist Cards (System that stores the records of visits. Tourist database). Inventiveness was provided when the tourist presented it. | Definition of points of observation for delivery or reception of the tourist card, called PAT (Point of Attention of the Tourist). | 120 movements recorded. The system developed ensures that surveys and movements are processed and stored properly. The information is first captured on paper and then digitized. |
2012 | Survey. Tool to process the survey. Survey database. Applied at the exit points of the destination. | Definition of identification points of tourist, for the delivery and realization of 420 surveys. It is decided to carry it out at the points of entry and exit of the destination. | 821 movements recorded. We have a database that allows surveys and movements to be processed and stored properly. The information is first captured on paper and then digitized. |
2013 | GPS Mobile phones with GPS and information capture application. Application for information downloads. Database. Provides the position of the tourist through the triangulation of satellite signals. | Mobile phones are delivered to visitors who accessed the site. | 304 movements recorded. There is a database that allows surveys to be processed and stored properly. The information is first captured on paper and then digitized. The movements are stored in files in the mobile that are extracted. |
2015 | NFC (Near Field Communication). Mobile phones with NFC. City map with NFC tags. Information download tool. Database. Allows the tourist to expand information on the resources visited. | Mobile phones with NFC support and map with NFC tags are delivered. | 104 movements recorded. There is a database that allows surveys to be processed and stored properly. The information is first captured on paper and then digitized. Movements are stored in files on the mobile that are extracted. |
ID Place | LOCATION | LONGITUDE | LATITUDE |
---|---|---|---|
3 | Cámara de Comercio del Cauca | −76.6067755 | 2.4420285 |
4 | Policía de Turismo – Terminal | −76.6084486 | 2.4513106 |
5 | Centro Comercial Campanario | −76.5946944 | 2.4593543 |
6 | Museo Casa Mosquera | −76.60501 | 2.44293 |
13 | Museo Negret Y MIAMP | −76.609726 | 2.4424412 |
14 | Museo Guillermo León Valencia | −76.6092814 | 2.442345 |
23 | Los Quingos Restaurante Típico | −76.6006021 | 2.4404079 |
24 | Jengibre Restaurante y Cafetería | −76.5986672 | 2.4516348 |
26 | Aplanchados Doña Chepa | −76.60405308 | 2.44401423 |
27 | Restaurante y Pizzería El Recuerdo | −76.5980828 | 2.4521989 |
28 | Wipala Galería Café – Bar | −76.6018963 | 2.4424512 |
29 | Museo Historia Natural Unicauca | −76.601178 | 2.4430614 |
30 | Museo Nacional Guillermo Valencia | −76.6051384 | 2.4431587 |
31 | Miscelánea La Torre del Reloj | −76.607261 | 2.44159708 |
32 | Manos de Oro (Corseda) | −76.60437495 | 2.4407985 |
36 | El Taller de Esperanza Polanco | −76.60936922 | 2.44325854 |
38 | Rincón Payanés (Café La Nigua) | −76.59897968 | 2.44349838 |
39 | Rincón Payanés (Cerámicas Tierra y Fuego) | −76.59891531 | 2.44347962 |
41 | Rincón Payanés (Artesanías Dennis) | −76.59893677 | 2.44348498 |
42 | Expocauca | −76.60905138 | 2.44882575 |
48 | Granja Integral Mama Lombriz | −76.5560174 | 2.51045209 |
51 | Rincón Payanés (Arte y Fuego) | −76.59899645 | 2.44342267 |
52 | Rincón Payanés (Anthera Accesorios) | −76.59903266 | 2.44367859 |
53 | Rincón Payanés (Muñecas de Trapo) | −76.59892 | 2.44367993 |
55 | Museo Arquidiocesano | −76.6044021 | 2.4417669 |
57 | Panteón de los próceres | −76.6063617 | 2.4428647 |
13 | 14 | 23 | 24 | 26 | 27 | 28 | 29 | 3 | 30 | 31 | 32 | 36 | 38 | |
13 | 0.00000000 | 0.615384615 | 0.02564103 | 0.000000000 | 0.00000000 | 0.02564103 | 0.00000000 | 0.10256410 | 0.00000000 | 0.051282051 | 0.000000000 | 0.00000000 | 0.07692308 | 0.00000000 |
14 | 0.05882353 | 0.000000000 | 0.01960784 | 0.000000000 | 0.03921569 | 0.00000000 | 0.00000000 | 0.07843137 | 0.00000000 | 0.254901961 | 0.000000000 | 0.00000000 | 0.07843137 | 0.00000000 |
23 | 0.01538462 | 0.000000000 | 0.00000000 | 0.000000000 | 0.03076923 | 0.04615385 | 0.00000000 | 0.07692308 | 0.00000000 | 0.030769231 | 0.000000000 | 0.27692308 | 0.00000000 | 0.00000000 |
24 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.05000000 | 0.00000000 | 0.300000000 | 0.000000000 | 0.25000000 | 0.00000000 | 0.00000000 |
26 | 0.00000000 | 0.000000000 | 0.04545455 | 0.136363636 | 0.00000000 | 0.00000000 | 0.00000000 | 0.09090909 | 0.00000000 | 0.045454545 | 0.000000000 | 0.04545455 | 0.00000000 | 0.00000000 |
27 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.25000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.25000000 | 0.00000000 | 0.00000000 |
28 | 0.40000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.10000000 | 0.00000000 | 0.100000000 | 0.100000000 | 0.00000000 | 0.00000000 | 0.00000000 |
29 | 0.00000000 | 0.000000000 | 0.06818182 | 0.000000000 | 0.00000000 | 0.00000000 | 0.02272727 | 0.00000000 | 0.00000000 | 0.295454545 | 0.011363636 | 0.12500000 | 0.00000000 | 0.01136364 |
3 | 0.00000000 | 0.545454545 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.181818182 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
30 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.02614379 | 0.00000000 | 0.00000000 | 0.01307190 | 0.00000000 | 0.000000000 | 0.000000000 | 0.20915033 | 0.00000000 | 0.00000000 |
31 | 0.12500000 | 0.125000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
32 | 0.00000000 | 0.000000000 | 0.01030928 | 0.010309278 | 0.00000000 | 0.00000000 | 0.01030928 | 0.01546392 | 0.00000000 | 0.000000000 | 0.005154639 | 0.00000000 | 0.00000000 | 0.00000000 |
36 | 0.00000000 | 0.000000000 | 0.11111111 | 0.222222222 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
38 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
39 | 0.00000000 | 0.000000000 | 1.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
4 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
41 | 0.00000000 | 0.000000000 | 0.10000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.05000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
42 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
48 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
5 | 0.05172414 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.18965517 | 0.00000000 | 0.051724138 | 0.000000000 | 0.05172414 | 0.00000000 | 0.01724138 |
51 | 0.00000000 | 0.000000000 | 0.15000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.10000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
52 | 0.00000000 | 0.000000000 | 0.33333333 | 0.000000000 | 0.00000000 | 0.00000000 | 0.16666667 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
53 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
55 | 0.00000000 | 0.006269592 | 0.00000000 | 0.003134796 | 0.00000000 | 0.00000000 | 0.00000000 | 0.01880878 | 0.00000000 | 0.006269592 | 0.000000000 | 0.05329154 | 0.00000000 | 0.00000000 |
57 | 0.00000000 | 0.000000000 | 0.02298851 | 0.126436782 | 0.01149425 | 0.00000000 | 0.00000000 | 0.03448276 | 0.00000000 | 0.022988506 | 0.057471264 | 0.03448276 | 0.01149425 | 0.00000000 |
6 | 0.06557377 | 0.098360656 | 0.01639344 | 0.008196721 | 0.04098361 | 0.00000000 | 0.00000000 | 0.09016393 | 0.00000000 | 0.286885246 | 0.000000000 | 0.07377049 | 0.00000000 | 0.00000000 |
E | 0.03885481 | 0.012269939 | 0.07975460 | 0.000000000 | 0.01635992 | 0.00000000 | 0.00000000 | 0.07157464 | 0.02249489 | 0.118609407 | 0.000000000 | 0.19222904 | 0.00204499 | 0.00000000 |
39 | 4 | 41 | 42 | 48 | 5 | 51 | 52 | 53 | 55 | 57 | 6 | E | ||
13 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.025641026 | 0.00000000 | 0.00000000 | 0.07692308 | 0.00000000 | 0.000000000 | 0.00000000 | |
14 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.05882353 | 0.03921569 | 0.039215686 | 0.33333333 | |
23 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.03076923 | 0.00000000 | 0.15384615 | 0.01538462 | 0.030769231 | 0.29230769 | |
24 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.10000000 | 0.20000000 | 0.050000000 | 0.05000000 | |
26 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.09090909 | 0.09090909 | 0.000000000 | 0.45454545 | |
27 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.50000000 | |
28 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.200000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.10000000 | 0.00000000 | 0.000000000 | 0.00000000 | |
29 | 0.00000000 | 0.00000000 | 0.170454545 | 0.01136364 | 0.000000000 | 0.022727273 | 0.045454545 | 0.00000000 | 0.01136364 | 0.11363636 | 0.02272727 | 0.000000000 | 0.06818182 | |
3 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.090909091 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.181818182 | 0.00000000 | |
30 | 0.00000000 | 0.00000000 | 0.006535948 | 0.05228758 | 0.000000000 | 0.000000000 | 0.006535948 | 0.00000000 | 0.00000000 | 0.32026144 | 0.09150327 | 0.039215686 | 0.23529412 | |
31 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.125000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.12500000 | 0.00000000 | 0.000000000 | 0.50000000 | |
32 | 0.00000000 | 0.00000000 | 0.010309278 | 0.04123711 | 0.005154639 | 0.097938144 | 0.000000000 | 0.00000000 | 0.00000000 | 0.46907216 | 0.02061856 | 0.010309278 | 0.29381443 | |
36 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.33333333 | 0.000000000 | 0.33333333 | |
38 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.500000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.50000000 | |
39 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 1.000000000 | 0.00000000 | |
4 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 1.000000000 | 0.00000000 | |
41 | 0.00000000 | 0.00000000 | 0.000000000 | 0.05000000 | 0.000000000 | 0.000000000 | 0.500000000 | 0.15000000 | 0.05000000 | 0.05000000 | 0.00000000 | 0.000000000 | 0.05000000 | |
42 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.045454545 | 0.00000000 | 0.00000000 | 0.40909091 | 0.04545455 | 0.000000000 | 0.50000000 | |
48 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 1.00000000 | |
5 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.13793103 | 0.01724138 | 0.137931034 | 0.34482759 | |
51 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.20000000 | 0.20000000 | 0.10000000 | 0.00000000 | 0.000000000 | 0.25000000 | |
52 | 0.08333333 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.166666667 | 0.166666667 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.08333333 | |
53 | 0.00000000 | 0.00000000 | 0.333333333 | 0.00000000 | 0.000000000 | 0.000000000 | 0.166666667 | 0.50000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | |
55 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.009404389 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.13166144 | 0.034482759 | 0.73667712 | |
57 | 0.00000000 | 0.00000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.022988506 | 0.000000000 | 0.00000000 | 0.00000000 | 0.01149425 | 0.00000000 | 0.011494253 | 0.63218391 | |
6 | 0.00000000 | 0.00000000 | 0.000000000 | 0.01639344 | 0.000000000 | 0.008196721 | 0.000000000 | 0.00000000 | 0.00000000 | 0.21311475 | 0.04098361 | 0.008196721 | 0.03278689 | |
E | 0.00000000 | 0.00204499 | 0.000000000 | 0.00408998 | 0.000000000 | 0.051124744 | 0.000000000 | 0.00000000 | 0.00000000 | 0.20449898 | 0.01226994 | 0.171779141 | 0.00000000 |
13 | 14 | 23 | 24 | 26 | 27 | 28 | 29 | 3 | 30 | 31 | 32 | 36 | 38 | |
13 | 0.000000000 | 0.125614859 | 0.025641026 | 0.000000000 | 0.000000000 | 0.02564103 | 0.000000000 | 0.051282051 | 0.000000000 | 0.036261886 | 0.000000000 | 0.00000000 | 0.04441156 | 0.00000000 |
14 | 0.033961781 | 0.000000000 | 0.019607843 | 0.000000000 | 0.027729678 | 0.00000000 | 0.000000000 | 0.039215686 | 0.000000000 | 0.070697084 | 0.000000000 | 0.00000000 | 0.03921569 | 0.00000000 |
23 | 0.015384615 | 0.000000000 | 0.000000000 | 0.000000000 | 0.021757132 | 0.02664694 | 0.000000000 | 0.034401046 | 0.000000000 | 0.021757132 | 0.000000000 | 0.06527140 | 0.00000000 | 0.00000000 |
24 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.050000000 | 0.000000000 | 0.122474487 | 0.000000000 | 0.11180340 | 0.00000000 | 0.00000000 |
26 | 0.000000000 | 0.000000000 | 0.045454545 | 0.078729582 | 0.000000000 | 0.00000000 | 0.000000000 | 0.064282435 | 0.000000000 | 0.045454545 | 0.000000000 | 0.04545455 | 0.00000000 | 0.00000000 |
27 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.250000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.25000000 | 0.00000000 | 0.00000000 |
28 | 0.200000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.100000000 | 0.000000000 | 0.100000000 | 0.100000000 | 0.00000000 | 0.00000000 | 0.00000000 |
29 | 0.000000000 | 0.000000000 | 0.027835111 | 0.000000000 | 0.000000000 | 0.00000000 | 0.016070609 | 0.000000000 | 0.000000000 | 0.057943404 | 0.011363636 | 0.03768892 | 0.00000000 | 0.01136364 |
3 | 0.000000000 | 0.222680886 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.128564869 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
30 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.013071895 | 0.00000000 | 0.000000000 | 0.009243226 | 0.000000000 | 0.000000000 | 0.000000000 | 0.03697290 | 0.00000000 | 0.00000000 |
31 | 0.125000000 | 0.125000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
32 | 0.000000000 | 0.000000000 | 0.007289761 | 0.007289761 | 0.000000000 | 0.00000000 | 0.007289761 | 0.008928097 | 0.000000000 | 0.000000000 | 0.005154639 | 0.00000000 | 0.00000000 | 0.00000000 |
36 | 0.000000000 | 0.000000000 | 0.111111111 | 0.157134840 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
38 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
39 | 0.000000000 | 0.000000000 | 1.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
4 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
41 | 0.000000000 | 0.000000000 | 0.070710678 | 0.000000000 | 0.000000000 | 0.00000000 | 0.050000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
42 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
48 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
5 | 0.029862945 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.057183186 | 0.000000000 | 0.029862945 | 0.000000000 | 0.02986294 | 0.00000000 | 0.01724138 |
51 | 0.000000000 | 0.000000000 | 0.086602540 | 0.000000000 | 0.000000000 | 0.00000000 | 0.070710678 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
52 | 0.000000000 | 0.000000000 | 0.166666667 | 0.000000000 | 0.000000000 | 0.00000000 | 0.117851130 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
53 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 |
55 | 0.000000000 | 0.004433271 | 0.000000000 | 0.003134796 | 0.000000000 | 0.00000000 | 0.000000000 | 0.007678651 | 0.000000000 | 0.004433271 | 0.000000000 | 0.01292510 | 0.00000000 | 0.00000000 |
57 | 0.000000000 | 0.000000000 | 0.016255328 | 0.038122124 | 0.011494253 | 0.00000000 | 0.000000000 | 0.019908630 | 0.000000000 | 0.016255328 | 0.025701931 | 0.01990863 | 0.01149425 | 0.00000000 |
6 | 0.023183829 | 0.028394276 | 0.011591914 | 0.008196721 | 0.018328426 | 0.00000000 | 0.000000000 | 0.027185449 | 0.000000000 | 0.048492457 | 0.000000000 | 0.02459016 | 0.00000000 | 0.00000000 |
E | 0.008913904 | 0.005009181 | 0.012770957 | 0.000000000 | 0.005784105 | 0.00000000 | 0.000000000 | 0.012098323 | 0.006782464 | 0.015574178 | 0.000000000 | 0.01982691 | 0.00204499 | 0.00000000 |
39 | 4 | 41 | 42 | 48 | 5 | 51 | 52 | 53 | 55 | 57 | 6 | E | ||
13 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.025641026 | 0.00000000 | 0.00000000 | 0.04441156 | 0.000000000 | 0.000000000 | 0.00000000 | |
14 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.03396178 | 0.027729678 | 0.027729678 | 0.08084521 | |
23 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.02175713 | 0.00000000 | 0.04865043 | 0.015384615 | 0.021757132 | 0.06705998 | |
24 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.07071068 | 0.100000000 | 0.050000000 | 0.05000000 | |
26 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.06428243 | 0.064282435 | 0.000000000 | 0.14373989 | |
27 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.35355339 | |
28 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.141421356 | 0.000000000 | 0.00000000 | 0.00000000 | 0.10000000 | 0.000000000 | 0.000000000 | 0.00000000 | |
29 | 0.00000000 | 0.00000000 | 0.044011174 | 0.011363636 | 0.000000000 | 0.016070609 | 0.022727273 | 0.00000000 | 0.01136364 | 0.03593497 | 0.016070609 | 0.000000000 | 0.02783511 | |
3 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.090909091 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.128564869 | 0.00000000 | |
30 | 0.00000000 | 0.00000000 | 0.006535948 | 0.018486452 | 0.000000000 | 0.000000000 | 0.006535948 | 0.00000000 | 0.00000000 | 0.04575163 | 0.024455277 | 0.016009737 | 0.03921569 | |
31 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.125000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.12500000 | 0.000000000 | 0.000000000 | 0.25000000 | |
32 | 0.00000000 | 0.00000000 | 0.007289761 | 0.014579521 | 0.005154639 | 0.022468551 | 0.000000000 | 0.00000000 | 0.00000000 | 0.04917212 | 0.010309278 | 0.007289761 | 0.03891667 | |
36 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.192450090 | 0.000000000 | 0.19245009 | |
38 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.500000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.50000000 | |
39 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | |
4 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 1.000000000 | 0.00000000 | |
41 | 0.00000000 | 0.00000000 | 0.000000000 | 0.050000000 | 0.000000000 | 0.000000000 | 0.158113883 | 0.08660254 | 0.05000000 | 0.05000000 | 0.000000000 | 0.000000000 | 0.05000000 | |
42 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.045454545 | 0.00000000 | 0.00000000 | 0.13636364 | 0.045454545 | 0.000000000 | 0.15075567 | |
48 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.70710678 | |
5 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.00000000 | 0.00000000 | 0.04876598 | 0.017241379 | 0.048765985 | 0.07710579 | |
51 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.10000000 | 0.10000000 | 0.07071068 | 0.000000000 | 0.000000000 | 0.11180340 | |
52 | 0.08333333 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.117851130 | 0.117851130 | 0.00000000 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.08333333 | |
53 | 0.00000000 | 0.00000000 | 0.235702260 | 0.000000000 | 0.000000000 | 0.000000000 | 0.166666667 | 0.28867513 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.00000000 | |
55 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.005429626 | 0.000000000 | 0.00000000 | 0.00000000 | 0.00000000 | 0.020315802 | 0.010396943 | 0.04805552 | |
57 | 0.00000000 | 0.00000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.016255328 | 0.000000000 | 0.00000000 | 0.00000000 | 0.01149425 | 0.000000000 | 0.011494253 | 0.08524366 | |
6 | 0.00000000 | 0.00000000 | 0.000000000 | 0.011591914 | 0.000000000 | 0.008196721 | 0.000000000 | 0.00000000 | 0.00000000 | 0.04179524 | 0.018328426 | 0.008196721 | 0.01639344 | |
E | 0.00000000 | 0.00204499 | 0.000000000 | 0.002892052 | 0.000000000 | 0.010224949 | 0.000000000 | 0.00000000 | 0.00000000 | 0.02044990 | 0.005009181 | 0.018742641 | 0.00000000 |
FROM | TO |
---|---|
13 | 14 23 27 29 30 36 55 RP |
14 | 13 23 26 29 30 36 55 57 6 |
23 | 13 26 27 29 30 32 55 57 6 RP |
24 | 29 30 32 55 57 6 RP E |
26 | 23 24 29 30 32 55 57 RP |
27 | 28 32 RP E |
28 | 13 29 30 31 5 55 RP |
29 | 23 28 30 31 32 38 42 5 55 57 RP |
3 | 14 30 5 6 RP |
30 | 14 26 29 30 31 32 42 55 57 6 RP |
31 | 13 14 5 55 RP E |
32 | 23 24 28 29 31 42 48 5 55 57 6 RP |
36 | 23 24 57 RP |
38 | 48 RP |
4 | 6 RP |
42 | 55 57 RP |
48 | RP |
5 | 13 29 30 32 38 55 57 6 RP |
55 | 14 24 29 30 32 5 57 6 RP |
6 | 13 14 23 24 26 29 30 32 42 5 55 57 6 RP |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Mazón, A.; Fuentes-Moraleda, L.; Chantre-Astaiza, A.; Burbano-Fernandez, M.-F. The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools. Sustainability 2019, 11, 5265. https://doi.org/10.3390/su11195265
Muñoz-Mazón A, Fuentes-Moraleda L, Chantre-Astaiza A, Burbano-Fernandez M-F. The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools. Sustainability. 2019; 11(19):5265. https://doi.org/10.3390/su11195265
Chicago/Turabian StyleMuñoz-Mazón, Ana, Laura Fuentes-Moraleda, Angela Chantre-Astaiza, and Marlon-Felipe Burbano-Fernandez. 2019. "The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools" Sustainability 11, no. 19: 5265. https://doi.org/10.3390/su11195265
APA StyleMuñoz-Mazón, A., Fuentes-Moraleda, L., Chantre-Astaiza, A., & Burbano-Fernandez, M. -F. (2019). The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools. Sustainability, 11(19), 5265. https://doi.org/10.3390/su11195265