Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Digital Data Collection and Field Studies
2.3. Classification of Plant Functional Traits and Ecological Functions
3. Results
3.1. Distribution of Roof Greening in Beijing
3.2. Taxonomic Characteristics of Roof Greening Plants
3.3. Functional Traits of Roof Greening Plants
3.4. Ecological Functions by Roof Greening Plants
3.5. Plant Ecological Functions in Different Families
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ma, Y.P.; Dong, G.Y. Design and Construction of Roof Greening; China Machine Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- FLL. Guidelines for the Planning, Construction and Maintenence of Green Roofing: Green Roof Guideline, 6th ed.; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau E. V.: Bonn, Germany, 2018. [Google Scholar]
- Thuring, C.E.; Dunnett, N.P. Persistence, loss and gain: Characterising mature green roof vegetation by functional composition. Landsc. Urban Plan. 2019, 185, 228–236. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.E.; Belarbi, R.; Jaffal, I.; Trabelsi, A. Assessment of green roof thermal behavior: A coupled heat and mass transfer model. Build. Environ. 2011, 46, 2624–2631. [Google Scholar] [CrossRef]
- Dunnett, N.; Nolan, A. The effect of substrate depth and supplementary watering on the growth of nine herbaceous perennials in semi-extensive green roof. Acta Hortic. 2004, 643, 305–309. [Google Scholar] [CrossRef]
- Chen, C.D.; Bao, S.X. Urbanization in China and the trends of its development. Acta Ecol. Sin. 1994, 14, 84–89. [Google Scholar]
- Lundholm, J.; Tran, S.; Gebert, L. Plant functional traits predict green roof ecosystem Services. Environ. Sci. Technol. 2015, 49, 2366–2374. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; 160p. [Google Scholar]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Cascone, S.; Gagliano, A.; Poli, T.; Sciuto, G. Thermal performance assessment of extensive green roofs invetigating realsitic vegettaion-substrate configuations. Build. Simul. 2019, 12, 379–393. [Google Scholar] [CrossRef]
- Wang, L.M.; Qin, J.; Chen, B.S.; Hu, Y. Influence of roof garden on architecture microclimates. Chin. Agric. Sci. Bull. 2006, 22, 236–238. [Google Scholar]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Lu, M.; Li, Y.J.; Lu, J.P. Absorption and Purification to Main Air Pollutants by Tree Species. Urban Environ. Urban Ecol. 2002, 2, 7–9. [Google Scholar]
- Jia, Y.L.; Wang, D.Y. The ecological function of roof greening. Xiandai Hortic. 2011, 11, 140–141, (In Chinese with English Abstract). [Google Scholar]
- Wang, H. Functional analysis of domestic forest system ecology significance and service. Forest Explor. Design 2015, 3, 27–29, (In Chinese with English Abstract). [Google Scholar]
- Wang, W.L. Study on Four Seasons Changes of Nosie Reduction Effect of Urban Green Belt in Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2012. (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.H.; Duan, C.Q.; Hou, Y.P.; Yang, J. The relationship of plant species diversity to ecosystem function in relation to soil conservation in semi-humid evergreen forests, Yunnan province, China. J. Plant Ecol. 2006, 30, 392–403, (In Chinese with English Abstract). [Google Scholar]
- Madre, F.; Vergnes, A.; Machon, N.; Clergeau, P. Green roofs as habitats for wild plant species in urban landscapes: First insights from a large-scale sampling. Landsc. Urban Plan. 2014, 122, 100–107. [Google Scholar] [CrossRef]
- Luo, H.; Wang, N.; Zhao, Y.J.; Zhou, B. Species of invasive edible plants in China and their edibility assessment. Chin. J. Ecol. 1886, 34, 1886–1891, (In Chinese with English Abstract). [Google Scholar]
- Meng, F. Comprehensive Environment Construction of the Landscape Value of Ornamental Prunus Mume and Application Advices in Nanjing Area. Master’s Thesis, Nanjing Agriculture University, Nanjing, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Lan, F.N.; Jiang, Z.C.; Xie, Y.Q.; Zhang, M. Studies on the nutrition value and feeding effect of several forage cultivars in karst mountainous region. Pratacult. Sci. 2008, 25, 84–87. [Google Scholar]
- Raunkiaer, C.; Egerton, F.F.N.; Carter, H.G. The Life Forms of Plants and Statistical Plant Geography; The Clarendon press: Oxford, UK, 1934. [Google Scholar]
- Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- McIntyre, S.; Lavorel, S.; Landsberg, J.; Forbes, T.D.A. Disturbance response in vegetation–towards a global perspective on functional traits. J. Veg. Sci. 1999, 10, 621–630. [Google Scholar] [CrossRef]
- Mabry, C.; Ackerly, D.; Gerhardt, F. Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora. J. Veg. Sci. 2000, 11, 213–224. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Diaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ter Steege, H.; Morgan, H.D.; Van Der Heijden, M.G.A.; et al. A Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Barboni, D.; Harrison, S.P.; Bartlein, P.J.; Jalut, G.; New, M.; Prentice, I.C.; Sanchez-Goñi, M.F.; Spessa, A.; Davis, B.; Stevenson, A.C. Relationships between plant traits and climate in the Mediterranean region: A pollen data analysis. J. Veg. Sci. 2004, 15, 635–646. [Google Scholar] [CrossRef]
- Faucon, M.P.; Houben, D.; Lambers, H. Plant functional traits: Soil and ecosystem services. Trends Plant Sci. 2017, 22, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P. Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Brown, C.; Lundholm, J. Microclimate and substrate depth influence green roof plant community dynamics. Landsc. Urban Plan. 2015, 143, 134–142. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Lundholm, J.T.; Maclvor, J.S. Phylogenetic diversity and plant trait composition predict multiple ecosystem functions in green roofs. Sci. Total Environ. 2018, 628–629, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Arndt, S.K.; Farrell, C. Relationships between plant drought response, traits and climate of origin for green roof plant selection. Ecol. Appl. 2018, 28, 1752–1761. [Google Scholar] [CrossRef]
- Tatsuya, M.; Kazuaki, T.; Toshiya, O. Leaf traits of Sedum species used for green roofs and its influence on evapotranspiration. J. Jpn. Soc. Reveg. Technol. 2017, 43, 115–120. [Google Scholar]
- Cook-Patton, S.C.; Bauerle, T.L. Potential benefits of plant diversity on vegetated roofs: A literature review. J. Environ. Manag. 2012, 106, 85–92. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; Van Ruijven, J. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; de Jonge, V.N.; Marques, J.C. Linking biodiversity indicators, ecosystem functioning, provision of services and human well-being in estuarine systems: Application of a conceptual framework. Ecol. Indic. 2014, 36, 644–655. [Google Scholar] [CrossRef]
- Lundholm, J.; MacIvor, J.S.; Macdougall, Z.; Ranalli, M. Plant species and functional group combinations affect green roof ecosystem functions. PLoS ONE 2010, 5, e9677. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Van Meerbeek, K.; Dutoit, T.; Hermy, M. Functional diversity as a framework for novel ecosystem design: The example of extensive green roofs. Landsc. Urban Plan. 2015, 136, 165–173. [Google Scholar] [CrossRef]
- CNC-DIVERSITAS. Advances in Biodiversity Conservation and Research in China; China Meteorological Press: Beijing, China, 2014. [Google Scholar]
- Lundholm, J.T. Green roof plant species diversity improves ecosystem multi-functionality. J. Appl. Ecol. 2015, 52, 726–734. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B. The role of extensive green roofs in sustainable development. HortScience 2006, 41, 1276–1285. [Google Scholar] [CrossRef]
- Liang, M.X. Preliminary Studies on Plants Selection for Green Roofs in North of China. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2012. (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.; Hu, Y.H.; Li, H.Y.; Liu, Q.-H. Compounded technique of lightweight roof greening. J. Northwest For. Univ. 2007, 22, 194, (In Chinese with English Abstract). [Google Scholar]
- Panayiotis, N.; Panayiota, T.; Ioannis, C. Soil amendments reduce roof garden weight and influence the growth rate of Lantana. HortScience 2003, 38, 618–622. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y. Factors influencing the spatial pattern of sky gardens in the compact city of Hong Kong. Landsc. Urban Plan. 2011, 101, 299–309. [Google Scholar] [CrossRef]
- Zhou, W.W.; Wang, Y.; Han, L.J. Investigation on the selection of green roof plants in Beijing city. J. Anhui Agric. Sci. 2008, 36, 200–201, (In Chinese with English Abstract). [Google Scholar]
- Zhao, M.Z. Study on Management System & Countermeasure of the Roof Greening in Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2010. (In Chinese with English Abstract). [Google Scholar]
- Li, R.L. Current Status of Beijing Roof Greening; Beijing University of Technology: Beijing, China, 2012. [Google Scholar]
- Beijing Municipal Bureau of Statistics. Beijing Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Xu, Z.X.; Zhang, L.; Ruan, B.Q. Analysis on the spatio-temperol distribution of precipitation in Beijing. Arid Land Geogr. 2006, 29, 186–192, (In Chinese with English Abstract). [Google Scholar]
- Lang, J.D.; Liu, Y.H.; Chang, W. Study on the origin of urban plants in built-up areas of Beijing. Chin. Bull. Bot. 2008, 25, 192–202, (In Chinese with English Abstract). [Google Scholar]
- China Industry Research. Survey on the Current Situation of China’s Roof Greening Market and Trend Analysis of Its Development Prospect 2019. 2019. Available online: http://www.cir.cn/2014-03/WuDingLvHuaShiChangYuCeBaoGao.html (accessed on 6 June 2019). (In Chinese).
- Qin, Q.C.; Hu, D.; Li, Y.Z.; Guo, Z. Numerical simulation of microclimate in Beijing typical residential area based on ENVI-met model. J. Meteorol. Environ. 2015, 31, 56–62. [Google Scholar]
- Liu, B.J.; Wang, S.H.; Lu, F.; Wang, X.Y.; Jensen, M.B.; Zheng, S.W.; Liu, L.; Shan, M.Y.; Zhao, K.X. Roof greening in urban area of Bejing during 2005–2015: Development trends, distribution patterns and policy promotion. Chin. J. Ecol. 2018, 37, 1509–1517, (In Chinese with English Abstract). [Google Scholar]
- He, S.Y.; Xing, Q.H.; Yi, X.T. Flora of Beijing (I); Revised in 1992; Beijing Press: Beijing, China, 1993. (In Chinese) [Google Scholar]
- He, S.Y.; Xing, Q.H.; Yi, X.T. Flora of Beijing (II); Revised in 1992; Beijing Press: Beijing. China, 1993. (In Chinese) [Google Scholar]
- Lundholm, J.; Heim, A.; Tran, S.; Smith, T. Leaf and life history traits predict plant growth in a green roof ecosystem. PLoS ONE 2014, 9, e101395. [Google Scholar] [CrossRef] [PubMed]
- Diaz, S.; Hodgson, J.G.; Thompson, K.; Cabido, M.; Cornelissen, J.H.C.; Jalili, A.; Montserrat-Marti, G.; Grime, J.P.; Zarrinkamar, F.; Asri, Y. The plant traits that drive ecosystems: Evidence from three continents. J. Veg. Sci. 2004, 15, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Kühn, I.; Brandenburg, M.; Klotz, S. Why do alien plant species that reproduce in natural habitats occur more frequently? Divers. Distrib. 2004, 10, 417–425. [Google Scholar] [CrossRef]
- Moles, A.T.; Falster, D.S.; Leishman, M.R.; Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 2004, 92, 384–396. [Google Scholar] [CrossRef]
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Poschlod, P.; Van Groenendael, J.M.; Klimeš, L.; Klimešová, J. The LEDA Traitbase: A database of life-history traits of the Northwest European flora. J. Ecol. 2008, 96, 1266–1274. [Google Scholar] [CrossRef]
- Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Chang. Biol. 2009, 15, 976–991. [Google Scholar] [CrossRef]
- Paula, S.; Arianoutsou, M.; Kazanis, D.; Tavsanoglu, Ç.; Lloret, F.; Buhk, C.; Ojeda, F.; Luna, B.; Moreno, J.M.; Rodrigo, A. Fire-related traits for plant species of the Mediterranean Basin: Ecological Archives E090-094. Ecology 2009, 90, 1420. [Google Scholar] [CrossRef]
- Bai, C.Y.; Li, K.; Wei, F.C. The current state of roof greening in Pu’er city of Yunnan province. Trop. Agric. Sci. Technol. 2017, 40, 39–42, (In Chinese with English Abstract). [Google Scholar]
- Huang, R.; Wu, Y.H.; Zhao, F. Present situation investigation and existing problem analysis of roof greening in Lanzhou city. J. Gansu For. Sci. Technol. 2016, 41, 41–45, (In Chinese with English Abstract). [Google Scholar]
- Ai, L.J.; Feng, Y.L.; Tan, X.Y. Investigation and analysis of green roof in Chongqing. Chin. Landsc. Archit. 2015, 31, 27–30, (In Chinese with English Abstract). [Google Scholar]
- Huang, W.C. Study on the Application of Sedums on Roof Garden in Shanghai. J. Anhui Agric. Sci. 2005, 33, 1041–1043, (In Chinese with English Abstract). [Google Scholar]
Functional Traits | Classification (Number of Species) | Note |
---|---|---|
Growth form [59] | 1. Herb (119); 2. Liana (11); 3. Semi-shrub (3); 4. Shrub (40); 5. Arbor (34) | |
Life form [22,59] | 1. Phanerophyte (76); 2. Chamaephyte (14); 3. Hemicryptophyte (39); 4. Geophyte (17); 5. Therophyte (61) | |
Growth habit [40] | 1. Strong adaptability (187); 2. Light preferring (99); 3. Warm preferring (69); 4. Humid preference (68); 5. Cold preference (6); 6. Wind resistance (77); 7. Drought tolerance (70); 8. Cold tolerance (100); 9. Heat tolerance; 10. Shade tolerance; 11. Salt tolerance; 12. Barren tolerance; 13. Waterlogging tolerance | The ecological amplitude of plants. |
Life cycle [60,61,62] | 1. One year (61); 2. Two years (2); 3. More than two years (144) | Life span of plants |
Plant architecture [63] | 1. Basal leaves (33); Cauline leaves (191); 3. Multiple stems (25); 4. Branching (144) | Relationship between stem and leaf |
Growth rate [40] | 1. Fast (1–6 months) (95); 2. Medium (7–12 months) (106); 3. Slow (13 months or more) (6) | The duration from germinating, flowering to ripe stages of fruit. |
The supplying value [63] | 1. Medicinal (158); 2. Edible (47); 3 Fodder (30); 4. Gardening (108); 5. Economic (54); 6. Nutrition (17); 7. None (4) | Values that can be used directly by humans |
Height [63] | 1. Extremely tall (301 cm) (13); 2. Tall (151–300 cm) (37); 3. Medium tall (101–150 cm) (28); 4. Medium (51–100 cm) (42); 5. Medium shorter (31–50 cm) (32); 6 Short (0–30 cm) (55) | The average height of plants |
Woody tissue [63] | 1. Wood-free 115); 2. Semi-woody (11); 3. Woody (81) | |
Stem growth pattern [63] | 1. Erect stem (162) 2. Twining stem (6); 3. Climbing stem (13); 4. Creeping stem (20); 5. Prostrate stem (4); 6. No ground stems (2) | Orientation of the stems |
Leaf phenology [64] | 1. Evergreen (29); 2. Shedding in summer (4); 3. Shedding in Autumn (122); 4. Shedding in winter (51); 5. Leafless (1) | |
Leaf blade size [61,65] | 1. Big leaf (longer >20 cm long and >10 cm wide) (14); 2. Medium leaf (10–20 cm long and >5 cm wide) (55); 3. Small leaf (<10 cm long and <10 cm wide) (94); 4. Coniferous needle or scale (13); 5. Linear leaf (>10 cm long and <5 cm wide) (30); 6. Leafless (1) | |
Leaf color [61] | 1. Green (199); 2. Gray green (4); 3. Purple (4); 4. Yellow (2); 5. Multicolor (2); 6. Leafless (1) | |
Leaf texture [63] | 1. Papery (111); 2. Fleshy (9); 3. Leathery (51); 4. Herbaceous (32); 5. Membranous (3); 6. Leafless (1) | |
Fleshy leafs [63] | 1. No (197); 2. Yes (10) | The ability to store water in leaves |
Flower color [61] | 1. White (33); 2. Red (29); 3. Yellow (62); 4. Blue (7); 5. Green (14); 6. Purple (25); 7. Multicolor (20); 8. No flower | Some plants have spikes but no flower |
Flowing period [61,64] | 1. Spring (February–April) (19); 2. Spring–Summer (March–June) (34); 3. Summer (May–July) (64); 4. Summer–Autumn (June–September) (62); 5. Autumn (August– October) (14); 6 Winter (November–January) (2); 7. 5 months and above (12) | For plants with spikes but no flower, it refers to the spike period |
Fruiting period [61] | 1. Spring–Summer (March–June) (11); 2. Summer (May–July) (21); 3. Summer–Autumn (June–September) (55); 4. Autumn (August–October) (99); 5. Autumn–Winter (September–December) (7); 6. Winter (November–January) (2); 7. ≥5 months (7); 8. No fruit | |
Rooting depth [40] | 1. Shallow root (188); 2. Deep root (19) | |
Food Storage [61] | 1. Fleshy root (7); 2. Blocky root (4); 3. Rhizomes (36); 4. Tubers (2); 7. None (160) | Place of the organ for food storage |
Main pollination Mode [61] | 1. Wind media (49); 2. Insect media (141); 3. Wind/insect media (16); 4. Self-pollination (1) | |
Pollination feedback [61] | 1. Nectar (3); 2. Pollen (73); 3. Nectar and pollen (131) | |
Propagation mode [61] | 1. Seed (170); 2. Rhizome (15); 3. Cutting (83); 4. Plant division (56); 5. Layering (37); 6. Grafting (35) |
Plant Functional Trait | Ordinal Coding | Association with Ecological Functions |
---|---|---|
Growth form [59] | 1. Herbaceous plant; 2. Lianas/Sub shrubs/Shrubs; 3. Arbor | Arbor or/and shrubs usually used in intensive or semi-extensive green roofs, which have higher ecological functions than extensive ones. |
Growth adaptability [40] | 1. Single adaptability (1); 2. Multiple adaptability (2–3); 3. Comprehensive adaptability (4 and more) | Plants with more growth adaptations tend to have higher environmental regulating abilities such as decreasing temperature and air pollution, and increasing humility. They can be widely used in most roof greening and provide more supporting functions such as for wildlife habitats. |
Growth rate [40] | 1. Slow (13 months or more); 2. Medium (7–12 months); 3. Fast (1–6 months) | Faster growing plants have the advantages of providing regulating functions in a shorter time. |
Supplying value [63] | 0. None; 1. Single value; 2. Multi-value | Used for valuing utilitarian supplying functions |
Leaf phenology [64] | 0. Leafless; 1. Deciduous; 2. Evergreen needles/broad leaves | Plants with evergreen leaves usually have higher regulating and cultural values throughout the year. |
Leaf color [61] | 0. Leafless; 1. Single color; 2. Multiple colors | Plants with multiple color leaves provide higher spiritual services (cultural values). |
Flower color [61] | 0. No flower; 1. Single color; 2. Multiple colors | Plants with multiple color flowers usually have higher spiritual services with higher cultural and supporting functions. |
Florescence [61,64] | 0. No flower; 1. Short florescence (0–2 months); 2. Medium florescence (2–4 months); 3. Long florescence (5 months and longer) | Plants with longer flowering period can fulfill cultural and supporting values in an extended duration. |
Fruit period [61] | 0. No fruit; 1. Short fruit period (0–2 months); 2. Medium fruit period (2–4 months); 3. Long fruit period (5 months and longer) | Fruits can serve ornamental function and food for wildlife. Plants with longer fruiting period can offer more cultural and supporting values. |
Depth of the root [40] | 1. Shallow roots; 2. Deep roots | Plants with deep roots can survive better in dry weather and soil with limited moisture-holding capacity. |
Plant Functional Trait | Regulating | Cultural | Supporting | Supplying | Weight |
---|---|---|---|---|---|
Growth form | √ | √ | √ | 3 | |
Growth adaptability | √ | √ | 2 | ||
Growth rate | √ | 1 | |||
The supplying value | √ | 1 | |||
Leaf phenology | √ | √ | √ | 3 | |
Leaf color | √ | 1 | |||
Flower color | √ | √ | 2 | ||
Flowering period | √ | √ | 2 | ||
Fruiting period | √ | √ | 2 | ||
Rooting depth | √ | 1 |
District * | Haidian | Chaoyang | Dongcheng | Xicheng | Fengtai | Shijingshan | Total | |
---|---|---|---|---|---|---|---|---|
Site (number) | 39 | 50 | 39 | 54 | 15 | 4 | 201 | |
Site (per cent) | 19.40 | 24.88 | 19.40 | 26.87 | 7.46 | 2.00 | 100 | |
Site area (m2) | Maximum | 6716 | 9693 | 60,183 | 6331 | 2414 | 3717 | 60,183 |
Minimum | 111 | 156 | 62 | 26 | 59 | 439 | 26 | |
Mean | 1698.44 | 2280.88 | 3380.46 | 1636.76 | 730.73 | 1994 | 2086.78 | |
Total | 66,239 | 114,044 | 131,838 | 88,385 | 10,961 | 7976 | 419,443 | |
Plot (number) | 16 | 9 | 7 | 11 | 7 | 1 | 51 | |
Plot (per cent) | 31.37 | 17.65 | 13.73 | 21.57 | 13.73 | 1.96 | 100 | |
Plot area (m2) | Maximum | 6716 | 9652 | 7741 | 5713 | 1020 | 1221 | 9652 |
Minimum | 111 | 273 | 62 | 26 | 59 | 1221 | 26 | |
Mean | 1708.13 | 2592.67 | 2717.71 | 1134.73 | 514 | 1221 | 1705.67 | |
Total | 27,330 | 23,334 | 19,024 | 12,482 | 3598 | 1221 | 86,989 |
Greening Type | Extensive Roof Greening | Extensive Platform Greening | Intensive Roof Greening | Intensive Platform Greening | Total |
---|---|---|---|---|---|
Plot number | 26 | 6 | 15 | 4 | 51 |
Ratio | 50.98% | 11.76% | 29.41% | 7.84% | 100% |
Greening type | Extensive greening | Intensive greening | |||
Plot number | 32 | 19 | 51 | ||
Ratio | 62.75% | 37.25% | 100% | ||
Greening type | Roof greening | Platform greening | |||
Plot number | 41 | 10 | 51 | ||
Ratio | 80.39% | 19.61% | 100% |
Mean Regulating Function Value | Mean Cultural Function Value | Mean Supporting Function Value | Mean Supplying Function Value | Overall Mean Value | |
---|---|---|---|---|---|
Ulmaceae | 12 | 9 | 11 | 2 | 37 |
Sapindaceae | 11 | 8 | 9 | 2 | 35 |
Ginkgoaceae | 11 | 8 | 9 | 2 | 35 |
Aceraceae | 11 | 8 | 9 | 2 | 34 |
Berberidaceae | 10 | 9 | 11 | 2 | 34 |
Verbenaceae | 10 | 9 | 11 | 2 | 33 |
Cannaceae | 8 | 8 | 9 | 2 | 33 |
Rubiaceae | 8 | 9 | 9 | 2 | 32 |
Betulaceae | 10 | 8 | 9 | 2 | 32 |
Buxaceae | 11 | 9 | 10 | 2 | 31 |
Celastraceae | 11 | 9 | 10 | 2 | 31 |
Scrophulariaceae | 8 | 9 | 10 | 2 | 31 |
Araliaceae | 8 | 13 | 13 | 2 | 31 |
Bignoniaceae | 10 | 9 | 11 | 2 | 31 |
Asclepiadaceae | 9 | 9 | 10 | 2 | 30 |
Pinaceae | 10 | 10 | 10 | 2 | 30 |
Simaroubaceae | 10 | 8 | 8 | 2 | 30 |
Meliaceae | 10 | 8 | 9 | 2 | 30 |
Lythraceae | 9 | 9 | 11 | 2 | 30 |
Magnoliaceae | 10 | 9 | 10 | 2 | 30 |
Rhamnaceae | 11 | 8 | 10 | 1 | 30 |
Convolvulaceae | 8 | 8 | 9 | 1 | 29 |
Oleaceae | 9 | 8 | 9 | 2 | 29 |
Cornaceae | 9 | 8 | 9 | 2 | 29 |
Caryophyllaceae | 8 | 9 | 10 | 1 | 29 |
Rosaceae | 9 | 8 | 9 | 2 | 28 |
Geraniaceae | 8 | 8 | 9 | 1 | 28 |
Loganiaceae | 9 | 10 | 12 | 2 | 28 |
Chenopodiaceae | 8 | 8 | 9 | 2 | 28 |
Moraceae | 11 | 8 | 10 | 2 | 28 |
Cupressaceae | 10 | 9 | 10 | 2 | 28 |
Violaceae | 8 | 9 | 10 | 2 | 28 |
Vitaceae | 10 | 8 | 9 | 2 | 28 |
Crassulaceae | 9 | 7 | 8 | 2 | 27 |
Iridaceae | 8 | 7 | 9 | 2 | 27 |
Phytolaccaceae | 8 | 7 | 8 | 2 | 27 |
Malvaceae | 9 | 8 | 9 | 2 | 27 |
Calycanthaceae | 7 | 8 | 9 | 2 | 27 |
Caprifoliaceae | 9 | 8 | 10 | 2 | 27 |
Compositae | 8 | 8 | 9 | 2 | 26 |
Solanaceae | 7 | 9 | 10 | 2 | 26 |
Euphorbiaceae | 8 | 7 | 8 | 2 | 26 |
Nyctaginaceae | 10 | 11 | 15 | 2 | 26 |
Polygonaceae | 8 | 8 | 9 | 1 | 26 |
Ranunculaceae | 8 | 7 | 8 | 2 | 26 |
Punicaceae | 9 | 7 | 9 | 2 | 26 |
Plantaginaceae | 8 | 8 | 9 | 2 | 25 |
Oxalidaceae | 7 | 8 | 9 | 1 | 25 |
Cucurbitaceae | 8 | 7 | 8 | 2 | 25 |
Cruciferae | 8 | 8 | 8 | 2 | 25 |
Portulacaceae | 8 | 8 | 9 | 2 | 25 |
Commelinaceae | 8 | 8 | 9 | 1 | 25 |
Gramineae | 8 | 5 | 6 | 2 | 24 |
Cyperaceae | 8 | 8 | 9 | 1 | 24 |
Leguminosae | 8 | 7 | 8 | 2 | 24 |
Liliaceae | 7 | 8 | 8 | 2 | 24 |
Umbelliferae | 7 | 6 | 6 | 2 | 24 |
Ericaceae | 8 | 7 | 7 | 2 | 22 |
Amaranthaceae | 7 | 5 | 5 | 2 | 21 |
Saxifragaceae | 9 | 6 | 7 | 1 | 21 |
Lamiaceae | 7 | 7 | 8 | 1 | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Zhao, F.; Wang, T.; Jim, C.Y.; Xu, T.; Jin, J. Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits. Sustainability 2019, 11, 5310. https://doi.org/10.3390/su11195310
Tian Y, Zhao F, Wang T, Jim CY, Xu T, Jin J. Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits. Sustainability. 2019; 11(19):5310. https://doi.org/10.3390/su11195310
Chicago/Turabian StyleTian, Yuhong, Fangshu Zhao, Tiantian Wang, C.Y. Jim, Taoran Xu, and Jianjun Jin. 2019. "Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits" Sustainability 11, no. 19: 5310. https://doi.org/10.3390/su11195310
APA StyleTian, Y., Zhao, F., Wang, T., Jim, C. Y., Xu, T., & Jin, J. (2019). Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits. Sustainability, 11(19), 5310. https://doi.org/10.3390/su11195310