Hygrothermal Properties of Raw Earth Materials: A Literature Review
Abstract
:1. Introduction
2. Earth-Based Materials Manufacturing Process
3. Hygrothermal Properties of Earth−Based Materials and Methodologies for Their Assessment
- a heat transmission mechanism for materials with a high thermal mass, which means high thermal inertia and heat storage,
- a phenomenon of evaporation and condensation inside the pores of the material as a result of temperature changes caused by the passage of the thermal wave: raw earth behaves as a low−tech phase change material where evaporation (which is an endothermic process) takes latent heat from the atmosphere during hot times and condensation (exothermic process) releases latent heat during cool times,
- a transfer of water vapour through the thickness of the wall due to the gradient of humidity between the inside and outside: the open network nanopores in earth materials facilitates absorption/release of moisture depending on the current ambient humidity,
- cooling of the wall caused by rising damp,
- surface overheating caused by solar radiation.
4. Main Results from Contemporary Literature
4.1. Sorption-Desorption Isotherms for the Equilibrium Moisture Content (EMC)
4.2. Water Vapour Permeability/Water Vapour Resistance Factor
4.3. Moisture Buffering Value (Mbv)
4.4. Specific Heat Capacity
4.5. Thermal Conductivity
4.6. Thermal Effusivity and Diffusivity
5. Conclusions and Final Remarks
Author Contributions
Funding
Conflicts of Interest
Nomenclature
wi | Mixing water content | % | ρ | Mass Density | kg m−3 |
Wm | Moist Weight | kg | λ | Thermal Conductivity | W m−1-K−1 |
Wd | Dry Weight | kg | a | Thermal Diffusivity | m2 s−1 |
EMC | Equilibrium Moisture Content | % | mcalo | Mass of the calorimeter | kg |
μ | Water Vapour Resistance Factor | kg m−1 s−1 Pa−1 | mw | Mass of water | kg |
π | Water Vapour Permeability | − | mmat | Mass of the material | kg |
T | Temperature | °C | e | Thermal Effusivity | J m−2 K−1 s−1/2 |
RH | Relative Humidity | % | φ | thermal phase lag | s |
C | volumetric heat capacity | J m−3 K−1 | d | Thickness | m |
c | Specific Heat Capacity | J K−1 kg−1 | MBV | Moisture buffering value | g m−2 %RH |
References
- International Energy Agency (IEA). 2018 Global Status Report towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector, Global Alliance for Buildings and Construction (GlobalABC); IEA: Paris, France, 2018. [Google Scholar]
- Houben, H.; Guillaud, H. CRATerre: Traité de Construction en Terre; Éditions Parenthèses: Marseille, France, 2006. [Google Scholar]
- Minke, G. Building with Earth: Design and Technology of a Sustainable Architecture; Birkhäuser: Berlin, Germany, 2006. [Google Scholar]
- Maniatidis, V.; Walker, P. A Review of Rammed Earth Construction; Natural Building Technology Group Department of Architecture Civil Engineering University of Bath: Bath, UK, 2003. [Google Scholar]
- Rauch, M. Refined Earth Construction Design with Rammed Earth; Kapfinger, O., Sauer, M., Eds.; Detail: Munich, Germany, 2015. [Google Scholar]
- Norma E.080. Diseño y Construccion con Tierra Reforzada 2017; Ministerio de Vivienda, Construcción y Saneamiento: Lima, Peru, 2017.
- SNZ. New Zealand Standard 4298:1998. In Materials and Workmanship for Earth Buildings 1998; Standards New Zealand: Wellington, New Zealand, 1998. [Google Scholar]
- Burroughs, S. Recommendations for the selection, stabilization and compaction of soil for rammed earth wall construction. J. Green Build. 2010, 5, 101–114. [Google Scholar] [CrossRef]
- Hall, M.; Djerbib, Y. Rammed earth sample production: Context, recommendations and consistency. Constr. Build. Mater. 2004, 18, 281–286. [Google Scholar] [CrossRef]
- Ciancio, D.; Jaquin, P.; Walker, P. Advances on the assessment of soil suitability for rammed earth. Constr. Build. Mater. 2013, 42, 40–47. [Google Scholar] [CrossRef]
- Volhard, F. Light Earth Building, A Handbook for Building with Wood and Earth; Birkhauser: Basel, Switzerland, 2016. [Google Scholar]
- Bollini, G. Terra Battuta: Tecnica Costruttiva e Recupero. Linee Guida per le Procedure di Intervento; EdicomEdizioni: Milano, Italy, 2013. [Google Scholar]
- Fabbri, A.; Morel, J.C. Earthen materials and constructions. In Nonconventional and Vernacular Construction Materials; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2013; pp. 273–300. [Google Scholar]
- Moevus, M.; Anger, R.; Fontaine, L. Hygro-thermo-mechanical properties of earthen materials for construction: A literature review. In Proceedings of the TERRA 2012, 12th SIACOT PROCEEDINGS, 11th International Conference on the Study and Conservation of Earthen Architectural Heritage, 12th Iberian-American Seminar on Earthen Architecture and Construction, Lima, Peru, 22–27 April 2012. [Google Scholar]
- Ashour, T.; Korjenic, A.; Korjenic, S.; Wu, W. Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy Build. 2015, 104, 139–146. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Petter Jelle, B.; Wang, Y.; Gustavsen, A. Hygrothermal properties of compressed earthen bricks. Constr. Build. Mater. 2018, 162, 576–583. [Google Scholar] [CrossRef]
- Cagnon, H.; Aubert, J.E.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Ashour, T.; Korjenic, A.; Korjenic, S. Equilibrium moisture content of earth bricks biocomposites stabilized with cement and gypsum. Cem. Concr. Compos. 2015, 59, 18–25. [Google Scholar] [CrossRef]
- Medjelekh, D.; Ulmet, L.; Dubois, F. Characterization of hygrothermal transfers in the unfired earth. Energy Procedia 2017, 139, 487–492. [Google Scholar] [CrossRef]
- Labat, M.; Magniont, C.; Oudhof, N.; Aubert, J.E. From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Build. Environ. 2016, 97, 69–81. [Google Scholar] [CrossRef]
- Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A. Hygrothermal behavior for a clay brick wall. Heat Mass Transf. 2018, 54, 1579–1591. [Google Scholar] [CrossRef]
- Niang, I.; Maalouf, C.; Moussa, T.; Bliard, C.; Samin, E.; Thomachot-Schneider, C.; Lachi, M.; Pron, H.; Mai, T.H.; Gaye, S. Hygrothermal performance of various Typha–clay composite. J. Build. Phys. 2018, 42, 316–335. [Google Scholar] [CrossRef]
- Hall, M.; Allinson, D. Analysis of the hygrothermal functional properties of stabilised rammed earth materials. Build. Environ. 2009, 44, 1935–1942. [Google Scholar] [CrossRef] [Green Version]
- DIN EN ISO 12271. Hygroskopische Sorptionskurven; DIN EN ISO: Berlin, Germany, 1996. [Google Scholar]
- Liuzzi, S.; Hall, M.R.; Stefanizzi, P.; Casey, S.P. Hygrothermal behaviour and relative humidity buffering of unfired and hydrated lime-stabilised clay composites in a Mediterranean climate. Build. Environ. 2013, 61, 82–92. [Google Scholar] [CrossRef]
- EN 1015-19:1999. Methods of Test for Mortar for Masonry. Determination of Water Vapour Permeability of Hardened Rendering and Plastering Mortars; EN: Belgium, 1999. [Google Scholar]
- Fabbri, A.; Morel, J.C.; Gallipoli, D. Assessing the performance of earth building materials: A review of recent developments. RILEM Tech. Lett. 2018, 3, 46–58. [Google Scholar] [CrossRef]
- NF X 30-442. Waste-Laboratory Determination of the Permeability Coefficient of a Saturated Material-Permeability Tests Using an Oedometer at Constant/Variable Hydraulic Load; AFNOR: Sydney, Australia, 2008. [Google Scholar]
- BS 3921. British Standard Specification for Clay Bricks, British Standards Institution; BS: London, UK, 1985. [Google Scholar]
- EN 1015-18:2003. Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient due to Capillary Action of Hardened Mortar; Bulgarian Institute for Standardization: Sofia, Bulgaria, 2003. [Google Scholar]
- Norden Nordisk Innovation Centre. Nordtest Report Moisture Buffering of Building Materials; Norden Nordisk Innovation Centre BYG DTU: Lyngby, Denmark, 2005. [Google Scholar]
- El Fgaier, F.; Lafhaj, Z.; Antczak, E.; Chapiseau, C. Dynamic thermal performance of three types of unfired earth bricks. Appl. Therm. Eng. 2016, 93, 377–383. [Google Scholar] [CrossRef]
- Hall, M.; Allinson, D. Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Appl. Therm. Eng. 2009, 29, 740–747. [Google Scholar] [CrossRef]
- ASTM D5334-14. Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure; ASTM International: West Conshohocken, PA, USA, 2014; Available online: www.astm.org (accessed on 26 September 2019).
- ISO-8302. Thermal Insulation. Determination of Steady-State Thermal Resistance and Related Properties. Guarded hot Plate Apparatus; ISO: Geneva, Switzerland, 1991. [Google Scholar]
- Wieser, M.; Onnis, S.; Meli, G. Conductividad Térmica de la tierra alivianada con fibras naturales en paneles de quincha. In Proceedings of the SIACOT 2018 Tierra, Cultura, Hábitat Resiliente y Desarollo Sostenible, 18 Seminário Iberoamericano de Arquitectura y Construcción con Tierra, La Antigua, Guatemala, 22–25 October 2018. [Google Scholar]
- Indekeu, M.; Woloszyn, M.; Grillet, A.C.; Soudani, L.; Fabbri, A. Towards Hygrothermal characterization of rammed earth with small-scale dynamic methods. Energy Procedia 2017, 132, 297–302. [Google Scholar] [CrossRef]
- Allinson, D.; Hall, M. Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy Build. 2010, 42, 845–852. [Google Scholar] [CrossRef]
- Porter, H.; Blake, J.; Dhami, N.K.; Mukherjee, A. Rammed Earth blocks with improved multifunctional performance. Cem. Concr. Compos. 2018, 92, 36–46. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.E.; Magniont, C.; Bertron, A. Influence of Straw Content on the Mechanical and Thermal Properties of Bio Based Earth Composites. In Proceedings of the First International Conference on Bio-based Building Materials, Clermont-Ferrand, France, 22–24 June 2015. [Google Scholar]
- Gomaa, M.; Carfrae, J.; Goodhew, S.; Jabi, W.; Veliz Reyes, A. Thermal performance exploration of 3D printed cob. Archit. Sci. Rev. 2019, 62, 230–237. [Google Scholar] [CrossRef]
- Millogo, Y.; Morel, J.C.; Aubert, J.E.; Ghavami, K. Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. 2014, 52, 71–78. [Google Scholar] [CrossRef]
- Ouedraogo, M.; Dao, K.; Millogo, Y.; Aubert, J.; Messan, A.; Seynou, M.; Zerbo, L.; Gomina, M. Thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw. J. Build. Eng. 2019, 23, 250–258. [Google Scholar] [CrossRef]
- Giroudon, M.; Laborel-Préneron, A.; Aubert, J.E.; Magniont, C. Comparison of barley and lavender straws as bioaggregates in earth bricks. Constr. Build. Mater. 2019, 202, 254–265. [Google Scholar] [CrossRef]
- Suárez-Domínguez, E.J.; Aranda-Jiménez, Y.G.; Zúñiga-Leal, C. Resistencia Mecánica Y Conductividad Térmica De Suelo Cemento Plástico Con Adición De Fibra Vegetal. In Proceedings of the SIACOT 2018 Tierra, Cultura, Hábitat Resiliente y Desarollo Sostenible, 18 Seminário Iberoamericano de Arquitecture y Construcción con Tierra, La Antigua, Guatemala, 22–25 October 2018. [Google Scholar]
- Barbeta Solà, G.; Massó Ros, F.X. Improved thermal capacity of rammed earth by the inclusion of natural fibres. In Rammed Earth Construction; Beckett, C., Ed.; Taylor Francis Group: London, UK, 2015. [Google Scholar]
- Barbeta Solà, G.; Massó Ros, F.X. Thermal improvement of rammed earth buildings by the inclusion of natural cork. In Earthen Architecture: Past, Present and Future; Mileto, C., Vegas, F., Cristini, G.S., Eds.; Taylor Francis Group: London, UK, 2015. [Google Scholar]
- Soudani, L.; Woloszyn, M.; Fabbri, A.; Morel, J.C.; Grillet, A.C. Energy evaluation of rammed earth walls using long term in-situ measurements. Sol. Energy 2017, 141, 70–80. [Google Scholar] [CrossRef]
- Cobreros, C.; Reyes-Araiza, J.L.; Manzano-Ramírez, A. Paneles Prefabricados Termo-Acústicos a Partir de Paja de Cereal Y Tierra Estabilizada. In Proceedings of the SIACOT 2018 Tierra, Cultura, Hábitat Resiliente y Desarollo Sostenible, 18 Seminário Iberoamericano de Arquitecture y Construcción con Tierra, La Antigua, Guatemala, 22–25 October 2018. [Google Scholar]
- Stone, C.; Katunsky, D. Dynamic Thermal Properties of Uninsulated Rammed Earth Envelopes. Int. J. Eng. Inf. Sci. 2015, 10, 103–112. [Google Scholar] [CrossRef]
- Goodhew, S.; Griffiths, R. Sustainable earth walls to meet the building regulations. Energy Build. 2005, 37, 451–459. [Google Scholar] [CrossRef]
- Saussaye, L.; Boutouil, M.; Baraud, F.; Leleyter, L. Influence of anions on the geotechnical properties of soils treated with hydraulic binders: Individual and coupling effects. Constr. Build. Mater. 2014, 65, 303–309. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Marletta, L.; Nocera, F. The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings. Build. Simul. 2018, 11, 1145–1161. [Google Scholar] [CrossRef]
- Beckett, C.T.S.; Cardell-Oliver, R.; Ciancio, D.; Huebner, C. Measured and simulated thermal behaviour in rammed earth houses in a hot-arid climate. Part A: Structural behavior. J. Build. Eng. 2018, 15, 243–251. [Google Scholar] [CrossRef]
Thermophysical Characteristic | Assessment Method | Equipment/Device | Image of the Device | Minimal Characteristics | Reference |
Equilibrium Moisture Content EMC | Method of Saturated Salt Solutions | Precision balance | Measurement Range: 0–15 kg Resolution: 0.5 g Accuracy: ±0.2 g | DIN EN ISO, 12271 [24] | |
Saturated salt solutions | Usual substances used in EMC determination are sodium sulfate, sodium chloride, magnesium nitrate and potassium carbonate | ||||
DVS Method | DVS | − | Fabbri et al. [27] | ||
Thermophysical Characteristic | Assessment Method | Equipment/Device | Image of the Device | Minimal Characteristics | Reference |
Water vapour permeability π | Cup Method for Vapour Diffusion | Vapometer Permeability Cup | Test samples up to 3 mm (1/8 in.) thick Diameter: 63.5 mm (2.5 in.) Depth: 50.8 mm (2.0 in.) Weight: 153.4 g | EN ISO 1015-19 [26] | |
Liquid water permeability k | Variable hydraulic load method | Oedometer | NF X 30-442 [28] | ||
specific heat capacity c | Adiabatic calorimeter | Calorimeter | Temperature range RT to 500 °C Temperature readability 0.01 K Heating rate: 0 to 5 K/min | Cagnon et al. [17] | |
Flash Method | Light Flash Apparatus | Measurement range: 0.01–2000 mm2/s Accuracy: ±5% Repeatability: ±3% | Cagnon et al. [17] | ||
Guarded Hot Plate Method | Guarded hot plate | ISO 8302 [35] | |||
thermal diffusivity a | Flash Method | Light Flash Apparatus | Measurement range: 0.01–2000 mm2/s Accuracy: ±3% Repeatability: ±2% | Cagnon et al. [17] | |
thermal conductivity λ | Transient Hot Wire Method | Hot wire Probe | Accuracy: ±0,5% Repeatability: 3% Ambient Conditions/Temperature: 5° to 35 °C Ambient Conditions/Humidity: 85%RH or below Measurement range: 0.03–12 W/mK | ASTM D5334-14 [34] | |
Thermophysical Characteristic | Assessment Method | Equipment/Device | Image of the Device | Minimal Characteristics | Reference |
thermal conductivity λ | Heat Flow Meter/Guarded Hot Plate Method | Heat Flow Meter/Guarded Hot Plate | Measurement range: up to 2.0 W/(m·K) Accuracy: ± 1% to 2% Repeatability: 0.5% Reproducibility: ± 0.5% Plate temperature range: −30 °C to 90 °C | ISO 8302 [35] | |
Flash Method | Light Flash Apparatus | Measurement range: 0.1–4000 W/mK | Cagnon et al. [17] |
Constructive Technique | Authors | Ref. | Earth Mix | ||||||
Mixing Water Content wi [%] | Clay [%] | Silt [%] | Sand [%] | Gravel [%] | Type and amount of Fiber | Type and amount of Chemical Stabilizer | |||
Adobe/Cob/Wattle and Daub | Medjelekh et al. (2017) | 23 | − | − | − | − | − | − | − |
Constructive Technique | Authors | Ref. | Earth Mix | ||||||
Mixing Water Content wi [%] | Clay [%] | Silt [%] | Sand [%] | Gravel [%] | Type and Amount of Fiber | Type and Amount of Chemical Stabilizer | |||
Adobe/Cob/Wattle and Daub | Cagnon et al. (2014) | 20 | − | 23–38 | 27–37 | 33–43 | 0–3 | − | − |
Laborel−Préneron et al. (2015) | 28 | 14–21 | 20 | 80 (60% limestone) | − | Straw, 0%, 3%, 6% | − | ||
El Fgaier et al. (2016) | 19 | − | 6 | 79–89 | 5–15 | − | − | − | |
Gomaa et al. (2019)–3d printed cob | 29 | 25–26 | 21.5 | 79.5 | − | Straw 2% | − | ||
CobBauge Project 2018 | 29 | 28–31 | − | − | − | − | Hemp shiv, Chopped Reed and Straw, 0%, 2%, 4%, 8% | − | |
Ashour, Korjenic et al. (2015) | 15–30 | 24 | 28.7 | 63.3 | 5 | 3 | Wheat straw, Barley straw, 0%, 1%, 3% | Cement, gypsum, 0%, 5%, 10% | |
Millogo et al. (2014) | 31 | 20 | 25 | 30 | 45 | − | Hibiscus cannibinus, 0%, 0.2%, 0.4%, 0.8% | − | |
Constructive Technique | Authors | Ref. | Earth Mix | ||||||
Mixing Water Content wi [%] | Clay [%] | Silt [%] | Sand [%] | Gravel [%] | Type and Amount of Fiber | Type and Amount of Chemical Stabilizer | |||
Adobe/Cob/Wattle and Daub | Ouedraogo et al. (2019) | 38 | 24 | 56 | 14 | 30 | − | Fonio straw, 0%, 0.2%, 0.4%, 0.6%, 0.8%, 1% | − |
Allam et al. (2018) | 40 | − | − | − | − | − | − | − | |
Giroudon, Laborel−Préneron, et al. (2019) | 42 | 14–21 | 50 | 38 | 12 | − | Barley and Lavender Straw, 0%, 3%, 6% | − | |
Rammed Earth/Compressed Earth Block | Indekeu et al. (2017) | 24 | 10.4 | 20 | 61 | 19 | − | − | − |
Hall & Allison (2009) | 16–21 | 8 | 30 | 0–30 | 40–70 | − | Cement, 6% | ||
Allison & Hall (2010) | 25 | − | Crushed ironstone quarry waste, grit sand | − | Cement, 7% | ||||
Zhang Lei et al. (2018) | 32 | − | 17 | 51 | 32 | − | − | − | |
Suárez−Domínguez et al. (2018) | 26 | − | 37 | 63 | Ixtle (Agave fiber) 100 mg/1 kg mix | Cement 16%, Nopal mucilage 1% | |||
Constructive Technique | Authors | Ref. | Earth Mix | ||||||
Mixing Water Content wi [%] | Clay [%] | Silt [%] | Sand [%] | Gravel [%] | Type and Amount of Fiber | Type and Amount of Chemical Stabilizer | |||
Rammed Earth/Compressed Earth Block | Barbeta Solà & Massó Ros (2015) | 33–34 | − | 23 | 26 | 51 | − | Black cork shavings, expanded clay, triturated almond shell, olive stone, 15–40% | Cement, 5%, 8% |
Soudani et al. (2017) | 35 | 18 | 16 | 84 | − | Lime, 2.5% | |||
Porter et al. (2018) | 27 | 6.2–7.6 | 15 | 65 | 20 | Crumbed rubber 0%, 5%, 10%, 20% | Cement, 0%, 6% | ||
Light earth | Cobreros et al. (2018) | 36 | − | 60 | 40 | − | Barley straw: 0%,1%, 2% 4%, 8% | Lime, Flying Ashes: 16%, 20% | |
Wieser et al. (2018) | 22 | − | − | − | − | − | Gramineae straw, Rice husk, Wood chip | − | |
Minke (2006) | 4 | − | − | − | − | − | Straw, Expanded Clay, Cork shavings, Wood chips | − | |
Volhard (2016) | 12 | − | − | − | − | − | Straw, Woodchip | − | |
Constructive Technique | Authors | Ref. | Earth Mix | ||||||
Mixing Water Content wi [%] | Clay [%] | Silt [%] | Sand [%] | Gravel [%] | Type and Amount of Fiber | Type and Amount of Chemical Stabilizer | |||
Light earth | Labat, Magniont et al. (2016) | 39 | − | − | − | − | − | Straw | − |
Niang, Maalouf, Moussa et al. (2018) | 41 | − | 70 | 30 | Typha Australis 20%, 33% | − |
Constructive Technique | Authors | Ref. | Measured Hygrothermal Properties | ||||||
Dry Density ρ [kg m−3] | EMC Range [%] | Water Vapour Resistance Factor μ [−] | Specific Heat Capacity c [J kg−1 K−1] | Thermal Conductivity λ [W m−1 K−1] | Thermal Effusivity e [J m−2 K−1 s−1/2] | Thermal Diffusivity a [m2 s−1] | |||
Adobe/Cob/Wattle and Daub | Medjelekh et al. (2017) | 23 | 1761.9–1797.6 | 2–5.3 Climate Chamber and Gravimetric method | − | 817.6 (40 °C)–877.6 (100 °C) Calorimeter | 0.77–0.95 Hot disk Apparatus | − | − |
Cagnon et al. (2014) | 20 | 1940–2070 oven−dried samples at 50 °C | 4–6 Saturated salt solutions and DVS methods | 3–7 (wet), 7–9 (dry) Cup Method | 900–960 Calorimeter 950–1030 Desprotherm | 0.47–0.59 GHP 0.40 to 0.69 Desprotherm | 900–1100 Desprotherm | − | |
Constructive Technique | Authors | Ref. | Measured Hygrothermal Properties | ||||||
Dry Density ρ [kg m−3] | EMC Range [%] | Water Vapour Resistance Factor μ [−] | Specific Heat Capacity c [J kg−1 K−1] | Thermal Conductivity λ [W m−1 K−1] | Thermal Effusivity e [J m−2 K−1 s−1/2] | Thermal Diffusivity a [m2 s−1] | |||
Adobe/Cob/Wattle and Daub | Laborel-Préneron et al. (2015) | 28 | 1075–1995 oven-dried samples at 40 °C for 24 h | − | − | − | 0.14–0.57 GHP | − | − |
El Fgaier et al. (2016) | 19 | 1788–2268 | − | − | 545–712 HFM | 0.89–0.91 HFM | 936.49–1176.95 Calculated | 5.72 10−7–9.23 10−7 Calculated | |
Gomaa et al. (2019)–3d printed cob | 29 | 1283.7–1780.3 | − | − | − | 0.32–0.48 HFM | − | − | |
CobBauge Project 2018 | 29 | 1038.7–1832.3 | − | − | − | 0.25–0.84 HFM | − | − | |
Ashour, Korjenic et al. (2015) | 15–30 | 1088.5–1575.6 oven-dried samples at 70 °C | 1.74–7.2 Saturated salt solutions | − | − | 0.31–0.96 Hot wire method | − | − | |
Millogo et al. (2014) | 31 | − | − | − | − | 1.30–1.67 Hot wire method | − | − | |
Ouedraogo et al. (2019) | 38 | − | − | − | − | 0.37–1.05 Hot wire method | − | − | |
Constructive Technique | Authors | Ref. | Measured Hygrothermal Properties | ||||||
Dry Density ρ [kg m−3] | EMC Range [%] | Water Vapour Resistance Factor μ [−] | Specific Heat Capacity c [J kg−1 K−1] | Thermal Conductivity λ [W m−1 K−1] | Thermal Effusivity e [J m−2 K−1 s−1/2] | Thermal Diffusivity a [m2 s−1] | |||
Allam et al. (2018) | 40 | 1980 | 3–7 | − | 750 (dry)–1200 (wet) | 0.38–0.43 (dry), 0.55–0.62 (wet) | − | − | |
Giroudon, Laborel-Préneron, et al. (2019) | 42 | 1195–1988 oven−dried samples at 40 °C for 24 h | − | − | − | 0.155–0.471 GHP | − | − | |
Rammed Earth/Compressed Earth Block | Indekeu et al. (2017) | 24 | 1940 oven−dried samples at 105 °C | 9 Climatic chamber | − | 939 Conductivity meter | 1.1 Conductivity meter | − | − |
Hall & Allison (2009) | 16, 21 | 1980–2120 oven−dried samples at 105 °C | − | − | − | 0.833–1.010 (λ* at Sr = 0) 1.369–1.820 (λ* at Sr = 1) HFM | − | − | |
Allison & Hall (2010) | 25 | 1900 | − | 14.34 Wet cup method | 868 Calculated | 0.643 HFM | − | − | |
Zhang Lei et al. (2018) | 32 | 1500–2100 oven−dried samples at 105 °C | 1.3–4.6 Saturated salts solution method | − | − | 0.5228–0.9308 Hot disk Apparatus | − | − | |
Constructive Technique | Authors | Ref. | Measured Hygrothermal Properties | ||||||
Dry Density ρ [kg m−3] | EMC Range [%] | Water Vapour Resistance Factor μ [−] | Specific Heat Capacity c [J kg−1 K−1] | Thermal Conductivity λ [W m−1 K−1] | Thermal Effusivity e [J m−2 K−1 s−1/2] | Thermal Diffusivity a [m2 s−1] | |||
Rammed Earth/Compressed Earth Block | Suárez-Domínguez et al. (2018) | 26 | 1780–1910 | − | − | − | 0.786–0.846 Hot wire method | − | − |
Barbeta Solà & Massó Ros (2015) | 33, 34 | 1340–2080 | − | − | − | 0.19–1.35 HFM | − | − | |
Soudani et al. (2017) | 35 | 1730 | − | − | 648 | 0.6 (dry)–2.4 (wet) | 820 (dry)–1158 (10% wet) | 5.4 10−7–6.4 10−7 | |
Porter et al. (2018) | 27 | 2064–2138 | − | − | 1321–1832 Hot plate method | − | − | − | |
Stone & Katunsky (2015) | 37 | − | − | − | − | − | 529.2–833.9 Calculated | 4.6 10−7–7.3 10−7 Calculated | |
Light earth | Cobreros et al. (2018) | 36 | − | − | − | − | 0.09–0.35 GHP | − | − |
Wieser et al. (2018) | 22 | 616–1089 | − | − | − | 0.121–0.19 HFM | − | − | |
Minke (2006) | 4 | 300–700 | − | − | 1000 | 0.07–0.20 | − | − | |
Volhard (2016) | 12 | 300–1200 | − | 2–5 | 1000–1300 | 0.1–0.47 | 200–1083 | − | |
Constructive Technique | Authors | Ref. | Measured Hygrothermal Properties | ||||||
Dry Density ρ [kg m−3] | EMC Range [%] | Water Vapour Resistance Factor μ [−] | Specific Heat Capacity c [J kg−1 K−1] | Thermal Conductivity λ [W m−1 K−1] | Thermal Effusivity e [J m−2 K−1 s−1/2] | Thermal Diffusivity a [m2 s−1] | |||
Light earth | Labat, Magniont et al. (2016) | 39 | 241–531 | 1.8–12 Climate chamber and Saturated Salt Solutions method | 2.9 (wet)–4.8 (dry) Cup Method | − | 0.071–0.120 GHP | − | − |
Niang, Maalouf, Moussa et al. (2018) | 41 | 323–586 | 1.5–12.9 Climate Chamber and Saturated Salt Solutions method | 1.279–2.499 (wet), 3.748–7.057 (dry) Cup Method | − | 0.065–0.112 HFM 0.131–0.164 Hot wire | 140.6–247.3 HFM, 184–300.1 Hot wire | 2.1 10−7–2.3 10−7 HFM, 3.0 10−7–4.3 10−7 Hot wire |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giada, G.; Caponetto, R.; Nocera, F. Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability 2019, 11, 5342. https://doi.org/10.3390/su11195342
Giada G, Caponetto R, Nocera F. Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability. 2019; 11(19):5342. https://doi.org/10.3390/su11195342
Chicago/Turabian StyleGiada, Giuffrida, Rosa Caponetto, and Francesco Nocera. 2019. "Hygrothermal Properties of Raw Earth Materials: A Literature Review" Sustainability 11, no. 19: 5342. https://doi.org/10.3390/su11195342
APA StyleGiada, G., Caponetto, R., & Nocera, F. (2019). Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability, 11(19), 5342. https://doi.org/10.3390/su11195342