Assessing the Effects of Restoration Measures on Water Quality in a Large Shallow Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
2.3. Water Exchange Rate
3. Model Setup
3.1. Grid Generation
3.2. Initial Conditions
3.3. Boundary Conditions
3.4. Model Calibration and Validation
3.4.1. Model Calibration
3.4.2. Model Validation
4. Model Simulation Scenarios
5. Results and Discussion
5.1. Scenario 1: Spatiotemporal Patterns of Hydrodynamics and Water Quality before Implementing Expansion and Sediment Dredging Project
5.2. Scenario 2: Effects of Expansion and Sediment Dredging Project on the Hydrodynamic and Water Quality of the Reservoir
5.3. Scenario 3: Effects of External Load Reduction on Water Quality after Implementing Expansion and Sediment Dredging Project
5.4. Scenario 4–7: Effects of Inflow Regulation on Hydrodynamics and Water Quality in the Reservoir
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tang, C.H.; Yi, Y.J.; Yang, Z.F.; Zhang, S.D.; Liu, H.F. Effects of ecological flow release patterns on water quality and ecological restoration of a large shallow lake. J. Clean. Prod. 2018, 174, 577–590. [Google Scholar] [CrossRef]
- Xie, J.M.; Wu, B.S.; Mao, J.X.; Liu, X.Y. Study on evaluation model for impacts of sedimentation on reservoir function. J. Hydraul. Eng. 2012, 31, 137–142. [Google Scholar]
- Lathrop, R.C.; Carpenter, S.R.; Stow, C.A.; Soranno, P.A.; Panuska, J.C. Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Can. J. Fish. Aquat. Sci. 1998, 55, 1169–1178. [Google Scholar] [CrossRef]
- Estrada, V.; Di Maggio, J.; Diaz, M.S. Water sustainability: A systems engineering approach to restoration of eutrophic Lakes. Comput. Chem. Eng. 2011, 35, 1598–1613. [Google Scholar] [CrossRef]
- Li, S.M.; Cao, C.; Bai, S.Y. Evaluation of Water Environmental Quality in a Shallow Urban Lake. Environ. Sci. Technol. 2014, 37, 163–167. [Google Scholar]
- Malecki, L.M.; White, J.R.; Reddy, K.R. Nitrogen and Phosphorus Flux Rates from Sediment in the Lower St. Johns River Estuary. J. Environ. Qual. 2004, 33, 1545–1555. [Google Scholar] [CrossRef]
- Song, W.W.; Xu, Q.; Fu, X.Q.; Zhang, P.; Pang, Y.; Song, D.H. Research on the Relationship between Water Diversion and Water Quality of Xuanwu Lake, China. Int. J. Environ. Res. Public Health 2018, 15, 1262. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.J.; Yu, L.; Zhao, Y.W.; Li, M. The Simulation of Shallow Reservoir Eutrophication Based on MIKE21: A Case Study of Douhe Reservoir in North China. Procedia Environ. Sci. 2012, 13, 1975–1988. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Zhou, Q.H.; Xu, D.; Lin, J.D.; Cheng, S.P.; Wu, Z.B. Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. J. Environ. Sci. 2010, 2, 218–224. [Google Scholar] [CrossRef]
- Fu, Z.F.; Yu, G.Q. Method of water quality improvement for urban lake based on concentrated and distributed water diverting. J. Tianjin Univ. 2011, 44, 51–56. [Google Scholar]
- Lin, D.H.; Qiu, Y.L.; Huang, H.Y.; Hong, J.; Wei, S.H.; Zhang, H.E.; Zhu, Z.L. Hyper-spectrum models for monitoring water quality in Dianshan Lake, China. Chin. J. Oceanol. Limnol. 2009, 27, 142–146. [Google Scholar] [CrossRef]
- Arzate-Cárdenas, M.A.; Olvera-Ramirez, R.; Martinez-Jeronimo, F. Microcystis toxigenic strains in urban lakes: A case of study in Mexico City. Ecotoxicology 2010, 19, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Chen, J.A.; Sun, Q.Q.; Yu, P.P.; Yang, H.Q. Effect of dredging on the sediment pollution in Aha Reservoir. Environ. Eng. 2018, 36, 69–73. [Google Scholar]
- Björk, S.; Pokorný, J.; Hauser, V. Restoration of Lakes Through Sediment Removal, with Case Studies from Lakes Trummen, Sweden and Vajgar, Czech Republic; Springer: Dordrecht, The Netherlands, 2010; pp. 101–122. [Google Scholar]
- Liu, C.; Zhong, J.C.; Wang, J.J.; Zhang, L.; Fan, C.X. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake. Environ. Pollut. 2016, 219, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.X.; Zhang, L.; Wang, J.J.; Zheng, C.H.; Gao, G.; Wang, S.M. Processes and mechanism of effects of sludge dredging on internal source release in lakes. Chin. Sci. Bull. 2004, 17, 1853–1859. [Google Scholar] [CrossRef]
- United States National Research Council (USNRC). Sediment Dredging at Superfund Megasites: Assessing the Effectiveness; USNRC: Washington, DC, USA, 2007.
- Chen, M.S.; Cui, J.Z.; Lin, J.; Ding, S.M.; Gong, M.D.; Ren, M.Y.; Tsang, D.C. Successful control of internal phosphorus loading after sediment dredging for 6 years: A field assessment using high-resolution sampling techniques. Sci. Total Environ. 2018, 616–617, 927–936. [Google Scholar] [CrossRef]
- Yu, J.H.; Ding, S.M.; Zhong, J.C.; Fan, C.X.; Cen, Q.W.; Yin, H.B.; Zhang, L.; Zhang, Y.L. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface. Sci. Total Environ. 2017, 592, 662–673. [Google Scholar] [CrossRef]
- Zhong, J.C.; You, B.S.; Fan, C.X.; Li, B.; Zhang, L.; Ding, S.M. Influence of Sediment Dredging on Chemical Forms and Release of Phosphorus. Pedosphere 2008, 18, 34–44. [Google Scholar] [CrossRef]
- Liu, C.; Fan, X.H.; Dai, Z.Y. Engineering Practice of Environment-friendly Dredging Technology for Improvement of Reservoir Water Quality. China Water Wastewater 2011, 27, 65–68. [Google Scholar]
- Gustavason, K.E.; Allen Burton, G.; Francingues, N.R.; Reible, D.D., Jr.; Vorhees, D.J.; Wolfe, J.R. Evaluating the Effectiveness of Contaminated-Sediment Dredging. Environ. Sci. Technol. 2008, 42, 5042–5047. [Google Scholar]
- Pu, P.M.; Wang, G.X.; Hu, C.H.; Hu, W.P.; Fan, C.X. Can We Control Lake Eutrophication by Dredging? J. Lake Sci. 2000, 3, 269–279. [Google Scholar]
- Jing, L.D.; Wu, C.X.; Liu, J.T.; Wang, H.G.; Ao, H.Y. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecol. Eng. 2013, 52, 167–174. [Google Scholar] [CrossRef]
- Ruley, J.E.; Rusch, K.A. An assessment of long-term post-restoration water quality trends in a shallow, subtropical, urban hypereutrophic lake. Ecol. Eng. 2002, 19, 265–280. [Google Scholar]
- Zhao, L.; Li, Y.Z.; Zou, R.; He, B.; Zhu, X.; Liu, Y.; Wang, J.S.; Zhu, Y.G. A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China). Environ. Pollut. 2013, 177, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.X.; Zhang, Y.Y. Assessment of water quality improvements using the hydrodynamic simulation approach in regulated cascade reservoirs: A case study of drinking water sources of Shenzhen, China. Water 2017, 9, 825. [Google Scholar] [CrossRef]
- Xu, L.P.; Gao, X.P.; Zhang, C.; Wang, C. Numerical simulation-based study on exchange of water in urban artificial lake. Water Resour. Hydropower Eng. 2018, 49, 94–100. [Google Scholar]
- Li, Y.; Acharya, K.; Yu, Z. Modeling impacts of Yangtze River water transfer on water ages in Lake Taihu, China. Ecol. Eng. 2011, 37, 325–334. [Google Scholar] [CrossRef]
- Gao, X.P.; Xu, L.P.; Zhang, C. Modelling the effect of water diversion projects on renewal capacity in an urban artificial lake in China. J. Hydroinform. 2015, 17, 990–1002. [Google Scholar] [CrossRef]
- Shen, Y.M.; Wang, J.H.; Zheng, B.H.; Zhen, H.; Feng, Y.; Wang, Z.X.; Yang, X. Modeling study of residence time and water age in Dahuofang Reservoir in China. Sci. China Phys. Mech. 2011, 54, 127–142. [Google Scholar] [CrossRef]
- Arega, F.; Armstrong, S.; Badr, A.W. Modeling of residence time in the East Scott Creek Estuary, South Carolina, USA. J. Hydro-Environ. Res. 2008, 2, 99–108. [Google Scholar] [CrossRef]
- Hua, Z.L.; Gu, L.; Xue, H.; Liu, X.D. Assessing indicators for water diversion based on improving water quality of shallow lakes. J. Lake Sci. 2008, 20, 623–629. [Google Scholar] [Green Version]
- Ribbe, J.; Wolff, J.O.; Staneva, J.; Gräwe, U. Assessing water renewal time scales for marine environments from three-dimensional modelling: A case study for Hervey Bay, Australia. Environ. Modell. Softw. 2008, 23, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.X.; Yao, S.S.; Liu, Y.Q. Environmental assessment of the water exchange ability of Shuidong Bay, China based on numerical simulation. Adv. Mater. Res. 2013, 726–731, 1006–1011. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zou, R.; Wang, Y.L.; Liu, Y.; Zhao, L.; Zhu, X.; Guo, H.C. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes? J. Hydrol. 2015, 542, 281–291. [Google Scholar] [CrossRef]
- Jiang, H.Z.; Cui, L.; Yu, D.T.; Zhang, H.; Wang, T.; Zhang, C. Numerical study of water exchange in the Pulandian bay. Mar. Environ. Sci. 2017, 36, 43–47. [Google Scholar]
- Liu, Y.; Wang, Y.L.; Sheng, H.; Dong, F.F.; Zou, R.; Zhao, L.; Guo, H.C.; Zhu, X.; He, B. Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: A water quality modeling based statistical analysis approach. Sci. Total Environ. 2014, 468–469, 219–227. [Google Scholar] [CrossRef] [PubMed]
- George, B.A.; Monika, W.; Michael, T.B.; Daniel, E.S. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Res. 2004, 38, 4013–4027. [Google Scholar]
- Scavia, D.; Kelly, E.L.A.; Hagy, J.D. A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Estuar. Coast. 2006, 29, 674–684. [Google Scholar] [CrossRef]
- Mao, J.Q.; Chen, Q.W.; Chen, Y.C. Three-dimensional eutrophication model and application to Taihu Lake, China. J. Environ. Sci. 2008, 20, 278–284. [Google Scholar] [CrossRef]
- Gao, X.P.; Xu, L.P.; Zhang, C. Estimating renewal timescales with residence time and connectivity in an urban man-made lake in China. Environ. Sci. Pollut. Res. 2016, 23, 13973–13983. [Google Scholar] [CrossRef]
- Tao, Y.; Lei, K.; Xia, J.X. Main hydrodynamic factors identification for pollutant transport in sudden water pollution accident in Shenzhen Bay. Adv. Water Sci. 2017, 28, 888–897. [Google Scholar]
- Dong, C.X.; Huo, Z.X.; Li, Z.Y.; Ma, F.H. Investigation and impact evaluation of sedimentation in Suyahu Reservoir. Water Power 2017, 43, 1–5. [Google Scholar]
- Hamrick, J.M. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects; Virginia Institute of Marine Science, College of William and Mary: Gloucester Point, VA, USA, 1992. [Google Scholar]
- Tech, T. The Environmental Fluid Dynamics Code, Theory and Computation; Tetra Tech. Inc.: Fairfax, VA, USA, 2006. [Google Scholar]
- Xing, Z.X.; Zhang, L.H.; Ji, Y.; Li, H. Study on water quality simulation and eutrophication assessment in Wudalianchi based on EFDC model. J. Northeast Agric. Univ. 2018, 49, 88–98. [Google Scholar]
- Oldenborg, K.A.; Steinman, A.D. Impact of sediment dredging on sediment phosphorus flux in a restored riparian wetland. Sci. Total Environ. 2019, 650, 1969–1979. [Google Scholar] [CrossRef] [PubMed]
TN | TP | COD | |
---|---|---|---|
Class IV (mg/L) | ≤1.5 | ≤0.10 | ≤30.0 |
Parameter | Value | Unit |
---|---|---|
Bottom roughness height | 0.02 | m |
Minimum refractory particulate organic nitrogen hydrolysis rate | 0.005 | 1/day |
Minimum labile particulate organic nitrogen hydrolysis rate | 0.008 | 1/day |
Minimum dissolved organic nitrogen mineralization rate | 0.05 | 1/day |
Minimum refractory particulate organic phosphorus hydrolysis rate | 0.0001 | 1/day |
Minimum labile particulate organic phosphorus hydrolysis rate | 0.005 | 1/day |
Minimum dissolved organic phosphorus mineralization rate | 0.05 | 1/day |
Maximum nitrification rate | 0.5 | g N/m3/day |
Reference temperature for nitrification | 25.0 | °C |
Oxygen half-saturation constant for chemical oxygen demand | 1.5 | mg/L O2 |
Chemical oxygen demand decay rate | 0.005 | 1/day |
Benthic flux rate of nitrogen | 0.005 | g/m2/day |
Benthic flux rate of phosphate | 0.004 | g/m2/day |
Benthic flux rate of chemical oxygen demand | 0.006 | g/m2/day |
Water Level | TN | TP | COD | |||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | |
R2 | 0.67 | 0.63 | 0.12 | 0.51 | 0.77 | 0.83 | 0.82 | 0.57 |
RMSE | 0.39 | 0.88 | 0.39 | 0.48 | 0.05 | 0.08 | 3.22 | 1.86 |
Scenarios | Internal Load Reduction (Expansion and Sediment Dredging Project) | External Load Reduction | Inflow Regulation (Inflow Ratio Distribution of Ru River) | |
---|---|---|---|---|
Inlet 1 (%) | Inlet 2 (%) | |||
S1 | N | N | 100 | 0 |
S2 | Y | N | 100 | 0 |
S3 | Y | Y | 100 | 0 |
S4 | Y | Y | 75 | 25 |
S5 | Y | Y | 50 | 50 |
S6 | Y | Y | 25 | 75 |
S7 | Y | Y | 0 | 100 |
Tributary Inflow | TN Reduction Ratio | TP Reduction Ratio | COD Reduction Ratio |
---|---|---|---|
Ru River | 60% | 85% | 20% |
Lengshui River | 40% | 85% | 20% |
Huangyou River | -- | 85% | 20% |
Lianjiang River | -- | 85% | 20% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zhang, S.; Sun, B.; Li, N.; Liu, Y.; Wang, Y. Assessing the Effects of Restoration Measures on Water Quality in a Large Shallow Reservoir. Sustainability 2019, 11, 5347. https://doi.org/10.3390/su11195347
Gao X, Zhang S, Sun B, Li N, Liu Y, Wang Y. Assessing the Effects of Restoration Measures on Water Quality in a Large Shallow Reservoir. Sustainability. 2019; 11(19):5347. https://doi.org/10.3390/su11195347
Chicago/Turabian StyleGao, Xueping, Shiyao Zhang, Bowen Sun, Na Li, Yongpeng Liu, and Yan Wang. 2019. "Assessing the Effects of Restoration Measures on Water Quality in a Large Shallow Reservoir" Sustainability 11, no. 19: 5347. https://doi.org/10.3390/su11195347
APA StyleGao, X., Zhang, S., Sun, B., Li, N., Liu, Y., & Wang, Y. (2019). Assessing the Effects of Restoration Measures on Water Quality in a Large Shallow Reservoir. Sustainability, 11(19), 5347. https://doi.org/10.3390/su11195347