Travelers’ Acceptance of Electric Carsharing Systems in Developing Countries: The Case of China
Abstract
:1. Introduction
2. Theoretical Background and Research Hypotheses
2.1. Acceptability and UTAUT Model
2.2. Research Model and Hypotheses
2.2.1. Performance Expectancy of EC
2.2.2. Effort Expectancy of EC
2.2.3. Social Influence on EC
2.2.4. Familiarity with the Carsharing Concept
2.2.5. Hedonic Motivation toward EC
2.2.6. Moderating Effect of Age and Gender
3. Methods
3.1. Survey Design and Measurements
3.2. Participants
3.3. Analysis Procedure
4. Results
4.1. Measurement Model
4.2. Structural Model
4.3. Moderating Effect in Age and Gender Groups
5. Discussion
5.1. Implications
5.2. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Indicators | Skewness | Kurtosis | ||
---|---|---|---|---|
Coeff. | Std. | Coeff. | Std. | |
PE1 | −0.478 | 0.117 | 0.158 | 0.233 |
PE2 | −0.071 | 0.117 | −0.406 | 0.233 |
PE3 | 0.007 | 0.117 | −0.105 | 0.233 |
PE4 | −0.241 | 0.117 | −0.030 | 0.233 |
EE1 | −0.233 | 0.117 | 0.010 | 0.233 |
EE2 | −0.593 | 0.117 | 0.472 | 0.233 |
EE3 | −0.745 | 0.117 | 10.355 | 0.233 |
EE4 | −0.585 | 0.117 | 0.634 | 0.233 |
SI1 | −0.314 | 0.117 | −0.190 | 0.233 |
SI2 | −0.776 | 0.117 | 10.107 | 0.233 |
SI3 | −0.580 | 0.117 | 0.416 | 0.233 |
FC1 | −0.145 | 0.117 | 0.056 | 0.233 |
FC2 | −0.024 | 0.117 | −0.266 | 0.233 |
FC3 | −0.273 | 0.117 | 0.292 | 0.233 |
FC4 | −0.270 | 0.117 | −0.256 | 0.233 |
HM1 | −0.240 | 0.117 | 0.146 | 0.233 |
HM2 | −0.139 | 0.117 | 0.619 | 0.233 |
HM3 | −0.040 | 0.117 | 0.417 | 0.233 |
BI1 | −0.146 | 0.117 | −0.571 | 0.233 |
BI2 | −0.162 | 0.117 | −0.664 | 0.233 |
BI3 | −0.275 | 0.117 | −0.378 | 0.233 |
BI4 | −0.109 | 0.117 | −0.504 | 0.233 |
F1 | −0.339 | 0.117 | −0.410 | 0.233 |
F2 | −0.373 | 0.117 | −0.241 | 0.233 |
F3 | −0.504 | 0.117 | −0.143 | 0.233 |
F4 | −0.265 | 0.117 | −0.372 | 0.233 |
References
- Shaheen, S.; Cohen, A.; Jaffee, M. Innovative Mobility: Carsharing Outlook. Available online: https://escholarship.org/uc/item/1mw8n13h (accessed on 27 September 2019).
- Martin, E.; Shaheen, S.A.; Lidicker, J. Carsharing’s impact on household vehicle holdings: Results from a north American shared-use vehicle survey. Transp. Res. Board 2010. [Google Scholar] [CrossRef]
- Nijland, H.; van Meerkerk, J. Mobility and environmental impacts of car sharing in the Netherlands. Environ. Innov. Soc. Transit. 2017. [Google Scholar] [CrossRef]
- Rabbitt, N.; Ghosh, B. Economic and environmental impacts of organised Car Sharing Services: A case study of Ireland. Res. Transp. Econ. 2016. [Google Scholar] [CrossRef]
- Stasko, T.H.; Buck, A.B.; Gao, H.O. Carsharing in a University setting: Impacts on vehicle ownership, parking demand, and mobility in Ithaca, NY. Transp. Policy 2013. [Google Scholar] [CrossRef]
- Carrese, S.; Giacchetti, T.; Nigro, M.; Patella, S.M. An innovative car sharing electric vehicle system: An Italian experience. WIT Trans. Built Environ. 2018. [Google Scholar] [CrossRef]
- Burghard, U.; Dütschke, E. Who wants shared mobility? Lessons from early adopters and mainstream drivers on electric carsharing in Germany. Transp. Res. Part D Transp. Environ. 2019. [Google Scholar] [CrossRef]
- De Luca, S.; Di Pace, R. Modelling the propensity in adhering to a carsharing system: A behavioral approach. Transp. Res. Procedia 2014. [Google Scholar] [CrossRef]
- Firnkorn, J.; Müller, M. Free-floating electric carsharing-fleets in smart cities: The dawning of a post-private car era in urban environments? Environ. Sci. Policy 2015. [Google Scholar] [CrossRef]
- Khan, M.; Machemehl, R. The impact of land-use variables on free-floating carsharing vehicle rental choice and parking duration. In Seeing Cities Through Big Data; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, B.; Kockelman, K.M. Opportunities for and impacts of carsharing: A survey of the Austin, Texas market. Int. J. Sustain. Transp. 2011. [Google Scholar] [CrossRef]
- Cartenì, A.; Cascetta, E.; de Luca, S. A random utility model for park & carsharing services and the pure preference for electric vehicles. Transp. Policy 2016. [Google Scholar] [CrossRef]
- Clewlow, R.R. Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area. Transp. Policy 2016. [Google Scholar] [CrossRef]
- Prieto, M.; Baltas, G.; Stan, V. Car sharing adoption intention in urban areas: What are the key sociodemographic drivers? Transp. Res. Part A Policy Pract. 2017. [Google Scholar] [CrossRef]
- Schaefers, T. Exploring carsharing usage motives: A hierarchical means-end chain analysis. Transp. Res. Part A Policy Pract. 2013. [Google Scholar] [CrossRef]
- Wang, M.; Martin, E.; Susan, S. Carsharing in Shanghai, China: Analysis of Behavioral Response to a Local Survey and Potential Competition. Transp. Res. Rec. 2012, 2319, 86–95. [Google Scholar] [CrossRef]
- Katzev, R. Car Sharing: A New Approach to Urban Transportation Problems. Anal. Soc. Issues Public Policy 2003. [Google Scholar] [CrossRef]
- Rabbitt, N.; Ghosh, B. A study of feasibility and potential benefits of organised car sharing in Ireland. Transp. Res. Part D Transp. Environ. 2013. [Google Scholar] [CrossRef]
- Shaheen, S.; Cano, L.; Camel, M. Exploring electric vehicle carsharing as a mobility option for older adults: A case study of a senior adult community in the San Francisco Bay Area. Int. J. Sustain. Transp. 2016. [Google Scholar] [CrossRef]
- Fleury, S.; Tom, A.; Jamet, E.; Colas-Maheux, E. What drives corporate carsharing acceptance? A French case study. Transp. Res. Part F Traffic Psychol. Behav. 2017. [Google Scholar] [CrossRef]
- Efthymiou, D.; Antoniou, C.; Waddell, P. Factors affecting the adoption of vehicle sharing systems by young drivers. Transp. Policy 2013. [Google Scholar] [CrossRef]
- Efthymiou, D.; Antoniou, C. Modeling the propensity to join carsharing using hybrid choice models and mixed survey data. Transp. Policy 2016. [Google Scholar] [CrossRef]
- Paundra, J.; Rook, L.; van Dalen, J.; Ketter, W. Preferences for car sharing services: Effects of instrumental attributes and psychological ownership. J. Environ. Psychol. 2017. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Zhou, Y.; Xue, Q.; Sun, L. Individuals’ acceptance to free-floating electric carsharing mode: A web-based survey in China. Int. J. Environ. Res. Public Health 2017. [Google Scholar] [CrossRef] [PubMed]
- Daejin, K.; Joonho, K.; Yujin, P. Factors affecting electric vehicle sharing program participants’ attitudes about car ownership and program participation. Transp. Res. Part D Transp. Environ. 2015. [Google Scholar] [CrossRef]
- Shaheen, S.A.; Martin, E. Demand for carsharing systems in Beijing, China: An exploratory study. Int. J. Sustain. Transp. 2010. [Google Scholar] [CrossRef]
- Qu, M.; Yu, S.; Yu, M. An improved approach to evaluate car sharing options. Ecol. Indic. 2017. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Fan, J.; Deng, H. Siting of carsharing stations based on spatial multi-criteria evaluation: A case study of Shanghai EVCARD. Sustainability 2017. [Google Scholar] [CrossRef]
- Chinese Statistical Bureau. China Statistical Yearbook; Chinese Statistical Bureau: Beijing, China, 2017. [Google Scholar]
- Venkatesh, V.; Morris, M.; Davis, G.; Davis, F. User Acceptance of Informatiom Technolgy: Toward A Unified View. MIS Q. 2003. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975; ISBN 0-201-02089-0. [Google Scholar]
- Davis, F.D. A technology acceptance model for empirically testing new end-user information systems: Theory and results. Management 1985. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991. [Google Scholar] [CrossRef]
- Chian-son, Y. Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. J. Electron. Commer. Res. 2012, 13, 104. [Google Scholar]
- Oliveira, T.; Faria, M.; Thomas, M.A.; Popovič, A. Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. Int. J. Inf. Manag. 2014. [Google Scholar] [CrossRef]
- Bawack, R.E.; Kala Kamdjoug, J.R. Adequacy of UTAUT in clinician adoption of health information systems in developing countries: The case of Cameroon. Int. J. Med Inform. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hoque, R.; Sorwar, G. Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. Int. J. Med Inform. 2017. [Google Scholar] [CrossRef] [PubMed]
- Jewer, J. Patients’ intention to use online postings of ED wait times: A modified UTAUT model. Int. J. Med Inform. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kijsanayotin, B.; Pannarunothai, S.; Speedie, S.M. Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. Int. J. Med Inform. 2009. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Lesch, M.F.; Horrey, W.J.; Strawderman, L. Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accid. Anal. Prev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Seebauer, S. Technology adoption of electric bicycles: A survey among early adopters. Transp. Res. Part A Policy Pract. 2014. [Google Scholar] [CrossRef]
- Madigan, R.; Louw, T.; Wilbrink, M.; Schieben, A.; Merat, N. What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems. Transp. Res. Part F Traffic Psychol. Behav. 2017. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Madigan, R.; Louw, T.; Dziennus, M.; Graindorge, T.; Ortega, E.; Graindorge, M.; Merat, N. Acceptance of Automated Road Transport Systems (ARTS): An Adaptation of the UTAUT Model. Transp. Res. Procedia 2016. [Google Scholar] [CrossRef]
- Adnan, N.; Md Nordin, S.; bin Bahruddin, M.A.; Ali, M. How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle. Transp. Res. Part A Policy Pract. 2018. [Google Scholar] [CrossRef]
- Casey, T.; Wilson-Evered, E. Predicting uptake of technology innovations in online family dispute resolution services: An application and extension of the UTAUT. Comput. Hum. Behav. 2012. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989. [Google Scholar] [CrossRef]
- Cervero, R.; Tsai, Y. San Francisco City CarShare: Second-Year Travel Demand and Car Ownership Impacts. In Proceedings of the Transportation Research Board 2004 Annual Meeting, Key Biscayne, FL, USA, 19–22 November 2003. [Google Scholar]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part C Emerg. Technol. 2019. [Google Scholar] [CrossRef]
- Wu, J.; Liao, H.; Wang, J.W.; Chen, T. The role of environmental concern in the public acceptance of autonomous electric vehicles: A survey from China. Transp. Res. Part F Traffic Psychol. Behav. 2019. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, K.; Min, H.; Wang, Z.; Zhao, X.; Liu, P. What drives people to accept automated vehicles? Findings from a field experiment. Transp. Res. Part C Emerg. Technol. 2018. [Google Scholar] [CrossRef]
- Diop, E.B.; Zhao, S.; Duy, T.V. An extension of the technology acceptance model for understanding travelers’ adoption of variable message signs. PLoS ONE 2019. [Google Scholar] [CrossRef]
- Magsamen-Conrad, K.; Upadhyaya, S.; Joa, C.Y.; Dowd, J. Bridging the divide: Using UTAUT to predict multigenerational tablet adoption practices. Comput. Hum. Behav. 2015. [Google Scholar] [CrossRef]
- Chauhan, S.; Jaiswal, M. Determinants of acceptance of ERP software training in business schools: Empirical investigation using UTAUT model. Int. J. Manag. Educ. 2016. [Google Scholar] [CrossRef]
- Kormos, C.; Gifford, R.; Brown, E. The Influence of Descriptive Social Norm Information on Sustainable Transportation Behavior: A Field Experiment. Environ. Behav. 2015. [Google Scholar] [CrossRef]
- Simsekoglu, Ö.; Klöckner, C. Factors related to the intention to buy an e-bike: A survey study from Norway. Transp. Res. Part F Traffic Psychol. Behav. 2019. [Google Scholar] [CrossRef]
- Schade, J.; Schlag, B. Acceptability of urban transport pricing strategies. Transp. Res. Part F Traffic Psychol. Behav. 2003, 6, 45–61. [Google Scholar] [CrossRef]
- Algesheimer, R.; Dholakia, U.M.; Herrmann, A. The Social Influence of Brand Community: Evidence from European Car Clubs. J. Mark. 2005. [Google Scholar] [CrossRef]
- Gefen, D. E-commerce: The role of familiarity and trust. Omega 2000. [Google Scholar] [CrossRef]
- Kim, D.J.; Ferrin, D.L.; Rao, H.R. A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decis. Support Syst. 2008. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. J. Appl. Soc. Psychol. 1992. [Google Scholar] [CrossRef]
- Van der Heijden, H. User Acceptance of Hedonic Information Systems. MIS Q. 2004. [Google Scholar] [CrossRef]
- Thong, J.Y.L.; Hong, S.J.; Tam, K.Y. The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. Int. J. Hum. Comput. Stud. 2006. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G. Age Differences in Technology Adoption Decisions: Implications for a Changing Work Force. Pers. Psychol. 2000. [Google Scholar] [CrossRef]
- Šumak, B.; Šorgo, A. The acceptance and use of interactive whiteboards among teachers: Differences in UTAUT determinants between pre- and post-adopters. Comput. Hum. Behav. 2016. [Google Scholar] [CrossRef]
- Warsame, M.H.; Ireri, E.M. Moderation effect on mobile microfinance services in Kenya:An extended UTAUT model. J. Behav. Exp. Financ. 2018. [Google Scholar] [CrossRef]
- Lian, J.W.; Yen, D.C. Online shopping drivers and barriers for older adults: Age and gender differences. Comput. Hum. Behav. 2014. [Google Scholar] [CrossRef]
- Palau-Saumell, R.; Forgas-Coll, S.; Sánchez-García, J.; Robres, E. User Acceptance of Mobile Apps for Restaurants: An Expanded and Extended UTAUT-2. Sustainability 2019. [Google Scholar] [CrossRef]
- Yoon, T.; Cherry, C.R.; Jones, L.R. One-way and round-trip carsharing: A stated preference experiment in Beijing. Transp. Res. Part D Transp. Environ. 2017. [Google Scholar] [CrossRef]
- Rhodes, S.R. Age-related differences in work attitudes and behavior: A review and conceptual analysis. Psychol. Bull. 1983. [Google Scholar] [CrossRef]
- Paulssen, M.; Temme, D.; Vij, A.; Walker, J.L. Values, attitudes and travel behavior: A hierarchical latent variable mixed logit model of travel mode choice. Transportation 2014. [Google Scholar] [CrossRef]
- Schwartz, S.H.; Rubel, T. Sex differences in value priorities: Cross-cultural and multimethod studies. J. Personal. Soc. Psychol. 2005. [Google Scholar] [CrossRef] [PubMed]
- Capraro, V. The emergence of hyper-altruistic behaviour in conflictual situations. Sci. Rep. 2015, 5, 9916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnyk, V.; Van Osselaer, S.M.J.; Bijmolt, T.H.A. Are women more loyal customers than men? Gender differences in loyalty to firms and individual service providers. J. Mark. 2009, 73, 82–96. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.W. Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Q. 1997, 21, 389–400. [Google Scholar] [CrossRef]
- Kawgan-Kagan, I.; Popp, M. Sustainability and Gender: A mixed-method analysis of urban women’s mode choice with particular consideration of e-carsharing. Transp. Res. Procedia 2018. [Google Scholar] [CrossRef]
- Mundorf, N.; Dholakia, R.R.; Dholakia, N.; Westin, S. German and American Consumer Orientations to Information Technologies: Implications for Marketing and Public Policy. J. Int. Consum. Mark. 1996. [Google Scholar] [CrossRef]
- Ryans, A.B. Estimating Consumer Preferences for a New Durable Brand in an Established Product Class. J. Mark. Res. 2006. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-813263-7. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford publications: New York, NY, USA, 2011; ISBN 978-1-60623-876-9. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R package for structural equation modeling and more Version 0.4-9 (BETA). J. Stat. Softw. 2011, 48, 10-18637. [Google Scholar]
- Han, H.; Hsu, L.T.J.; Lee, J.S. Empirical investigation of the roles of attitudes toward green behaviors, overall image, gender, and age in hotel customers’ eco-friendly decision-making process. Int. J. Hosp. Manag. 2009. [Google Scholar] [CrossRef]
- Ro, H. Moderator and mediator effects in hospitality research. Int. J. Hosp. Manag. 2012. [Google Scholar] [CrossRef]
- Nobis, C. Carsharing as Key Contribution to Multimodal and Sustainable Mobility Behavior: Carsharing in Germany. Transp. Res. Rec. J. Transp. Res. Board 2007. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach for structural equation modeling. In Modern Methods for Business Research; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; ISBN 0-8058-2677-7. [Google Scholar]
- Bollen, K.A. Overall Fit in Covariance Structure Models: Two Types of Sample Size Effects. Psychol. Bull. 1990. [Google Scholar] [CrossRef]
- Satorra, A.; Bentler, P.M. Corrections to test statistics and standard errors in covariance structure analysis. In Latent Variables Analysis: Applications for Developmental Research; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1994; ISBN 0-8039-5330-5. [Google Scholar]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980. [Google Scholar] [CrossRef]
- Wheaton, B.; Muthen, B.; Alwin, D.F.; Summers, G.F. Assessing Reliability and Stability in Panel Models. Sociol. Methodol. 1977. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Pearson: London, UK, 2007; ISBN 0-205-45938-2. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999. [Google Scholar] [CrossRef]
- Ben-Akiva, M.; Mcfadden, D.; Train, K.; Walker, J.; Bhat, C.; Bierlaire, M.; Bolduc, D.; Boersch-Supan, A.; Brownstone, D.; Bunch, D.S.; et al. Hybrid Choice Models: Progress and Challenges. Mark. Lett. 2002. [Google Scholar] [CrossRef]
- Nordfjærn, T.; Şimşekoğlu, Ö.; Rundmo, T. The role of deliberate planning, car habit and resistance to change in public transportation mode use. Transp. Res. Part F Traffic Psychol. Behav. 2014. [Google Scholar] [CrossRef]
- Finney, S.J.; DiStefano, C. Non-normal and categorical data in structural equation modeling. Struct. Equ. Model. A Second Course 2013. [Google Scholar] [CrossRef]
Constructs | Items | Description | Source |
---|---|---|---|
Performance Expectancy (PE) | PE1 | I would find the EC service useful for my travel. | [20,30] |
PE2 | I think using a shared electric vehicle in my day-to-day commuting would be better and more convenient than my existing form of travel. | ||
PE3 | I think using EC will enhance my productivity in my job. | ||
PE4 | I think using EC will help me save travel time. | ||
Effort Expectancy (EE) | EE1 | I would find EC easy to use. | [20,30] |
EE2 | It would not take me long to learn how to use an electric sharing vehicle. | ||
EE3 | My interaction with EC would be clear and understandable. | ||
EE4 | It would be easy for me to become skillful at using the EC system. | ||
Social Influence (SI) | SI1 | People who influence my behavior think that I should use EC for my daily travel. | [20,30] |
SI2 | I think I am more likely to use the EC system if my friends and my family use it. | ||
SI3 | I use EC because of my colleagues who use the system. | ||
Hedonic Motivation (HM) | HM1 | I think using EC is fun. | [43] |
HM2 | I think using EC is entertaining. | ||
HM3 | I think using EC is enjoyable. | ||
Familiarity with Carsharing (FM) | FM1 | I am familiar with carsharing services from reading the newspaper/social media. | [60,61] |
FM2 | I am familiar with searching for carsharing on a smartphone application. | ||
FM3 | I am familiar with the process of reservation and payment for the carsharing system. | ||
FM4 | I am familiar with driving an electric sharing vehicle. | ||
Behavioral Intention (BI) | BI1 | I intend to use the EC system in the next six months for some of my daily travel. | [20,30] |
BI2 | I predict I will use the EC in the next six months. | ||
BI3 | As soon as I am able, I will use the EC service. | ||
BI4 | I plan to use the EC service each time I need it for business travel. |
Items | Total (n = 437) | Sample 1 (n = 200) | Sample 2 (n = 237) | Kolmogorov-Smirnov Test | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Z | p | |
PE1 | 3.90 | 0.873 | 4.00 | 0.811 | 3.83 | 0.916 | 0.811 | 0.526 |
PE2 | 3.41 | 1.022 | 3.59 | 0.947 | 3.26 | 1.06 | 1.504 | 0.022 |
PE3 | 3.39 | 0.946 | 3.55 | 0.873 | 3.27 | 0.988 | 1.317 | 0.062 |
PE4 | 3.53 | 0.922 | 3.66 | 0.860 | 3.43 | 0.961 | 1.226 | 0.099 |
EE1 | 3.51 | 0.913 | 3.56 | 0.895 | 3.46 | 0.927 | 0.73 | 0.661 |
EE2 | 3.80 | 0.828 | 3.81 | 0.843 | 3.80 | 0.817 | 0.276 | 1.000 |
EE3 | 3.82 | 0.824 | 3.86 | 0.817 | 3.79 | 0.831 | 0.473 | 0.979 |
EE4 | 3.80 | 0.836 | 3.85 | 0.839 | 3.77 | 0.834 | 0.385 | 0.998 |
SI1 | 3.58 | 0.904 | 3.71 | 0.836 | 3.46 | 0.945 | 1.001 | 0.269 |
SI2 | 3.81 | 0.828 | 3.95 | 0.752 | 3.70 | 0.874 | 1.312 | 0.064 |
SI3 | 3.74 | 0.860 | 3.88 | 0.795 | 3.62 | 0.896 | 1.171 | 0.129 |
HM1 | 3.54 | 0.855 | 3.63 | 0.894 | 3.46 | 0.815 | 1.635 | 0.010 |
HM2 | 3.48 | 0.800 | 3.57 | 0.812 | 3.41 | 0.785 | 1.345 | 0.054 |
HM3 | 3.48 | 0.791 | 3.61 | 0.762 | 3.37 | 0.800 | 1.625 | 0.010 |
FM1 | 3.34 | 1.007 | 3.34 | 1.014 | 3.34 | 1.003 | 0.073 | 1.000 |
FM2 | 3.45 | 0.998 | 3.44 | 1.005 | 3.46 | 0.993 | 0.065 | 1.000 |
FM3 | 3.43 | 0.990 | 3.41 | 0.998 | 3.45 | 0.984 | 0.209 | 1.000 |
FM4 | 3.34 | 0.991 | 3.32 | 0.995 | 3.36 | 0.988 | 0.191 | 1.000 |
BI1 | 3.11 | 1.089 | 3.24 | 1.057 | 2.99 | 1.105 | 1.477 | 0.026 |
BI2 | 3.06 | 1.114 | 3.20 | 1.101 | 2.95 | 1.115 | 1.200 | 0.112 |
BI3 | 3.30 | 1.040 | 3.52 | 0.951 | 3.11 | 1.077 | 2.221 | 0.000 |
BI4 | 3.14 | 1.059 | 3.31 | 1.029 | 2.99 | 1.064 | 1.501 | 0.022 |
Demographic | Category | Frequency | Percent (%) | Cumulative Percent (%) |
---|---|---|---|---|
Gender | Male | 196 | 44.90 | 44.90 |
Female | 241 | 55.10 | 100 | |
Age | 18–25 | 146 | 33.40 | 33.40 |
26–35 | 204 | 46.70 | 80.10 | |
36–45 | 68 | 15.60 | 95.70 | |
46–55 | 14 | 3.20 | 98.90 | |
>55 | 5 | 1.10 | 100 | |
Education | High school | 32 | 7.30 | 7.30 |
Vocational school | 20 | 4.60 | 11.90 | |
Bachelor’s | 209 | 47.80 | 59.70 | |
Graduate | 176 | 40.30 | 100 | |
Family status | Single | 137 | 31.40 | 31.40 |
Married with children | 159 | 36.40 | 67.60 | |
Married without children | 43 | 9.80 | 77.60 | |
Living with parents | 88 | 20.10 | 97.70 | |
Other | 10 | 2.300 | 100 | |
Income | ≤5000 RMB | 244 | 55.80 | 55.80 |
5001–10,000 RMB | 99 | 22.70 | 78.50 | |
10,001–15,000 RMB | 42 | 9.60 | 88.10 | |
15,001–20,000 RMB | 21 | 4.80 | 92.90 | |
>20,000 RMB | 31 | 7.10 | 100 | |
Car ownership | None | 109 | 24.90 | 24.90 |
1 Car | 228 | 52.20 | 77.10 | |
≥2 Cars | 100 | 22.90 | 100 |
Constructs | Items | Factor Loadings | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
Performance Expectancy (PE) | PE1 | 0.731 | 0.889 | 0.887 | 0.667 |
PE2 | 0.774 | ||||
PE3 | 0.885 | ||||
PE4 | 0.864 | ||||
Effort Expectancy (EE) | EE1 | dropped | 0.883 | 0.886 | 0.725 |
EE2 | 0.752 | ||||
EE3 | 0.899 | ||||
EE4 | 0.895 | ||||
Social Influence (SI) | SI1 | 0.780 | 0.876 | 0.877 | 0.704 |
SI2 | 0.859 | ||||
SI3 | 0.883 | ||||
Hedonic Motivation (HM) | HM1 | 0.765 | 0.887 | 0.887 | 0.724 |
HM2 | 0.888 | ||||
HM3 | 0.905 | ||||
Familiarity with carsharing concept (FM) | FM1 | 0.780 | 0.904 | 0.907 | 0.712 |
FM2 | 0.918 | ||||
FM3 | 0.886 | ||||
FM4 | 0.783 | ||||
Behavioral Intention (BI) | BI1 | 0.930 | 0.867 | 0.887 | 0.730 |
BI2 | 0.933 | ||||
BI3 | 0.649 | ||||
BI4 | dropped |
PE | EE | SI | HM | FM | BI | |
---|---|---|---|---|---|---|
PE | 0.817 | |||||
EE | 0.525 ** | 0.851 | ||||
SI | 0.649 ** | 0.639 ** | 0.839 | |||
HM | 0.757 ** | 0.624 ** | 0.677 ** | 0.850 | ||
FM | 0.196 ** | 0.221 * | 0.210 * | 0.321 ** | 0.844 | |
BI | 0.561 ** | 0.535 ** | 0.512 ** | 0.628 ** | 0.285 ** | 0.854 |
Hypotheses | Path | Coeff. | SE | p-Value | Results |
---|---|---|---|---|---|
H1 | PE → BI | 0.174 | 0.124 | 0.018 | Supported |
H2 | EE → BI | 0.204 | 0.098 | 0.001 | Supported |
H3 | SI → BI | 0.036 | 0.098 | 0.601 | Not supported |
H4 | HM → BI | 0.313 | 0.129 | 0.000 | Supported |
H5 | FM → BI | 0.097 | 0.055 | 0.023 | Supported |
Groups | Model | χ2 (df) | CFI | TLI | RMSEA | Δχ2 (Δdf) | Results |
---|---|---|---|---|---|---|---|
Age | Non-restricted | 860.983 (361) | 0.967 | 0.966 | 0.056 | 11.494. (14) p = 0.647 (insignificant) | Supported |
Full-metric invariance | 878.521 (375) | 0.968 | 0.968 | 0.055 | |||
Gender | Non-restricted | 762.232 (361) | 0.972 | 0.970 | 0.050 | 8.242 (14) p = 0.876 (insignificant) | Supported |
Full-metric invariance | 771.861 (375) | 0.973 | 0.973 | 0.049 |
(a) | ||||||
Hypotheses | Paths | Young | Old | Δχ2 (Δdf) | p-Value | Results |
H6a | PE → BI | 0.325 ** | 0.072 | 2.073 (1) | 0.15 | Not supported |
H6b | EE → BI | 0.275 * | 0.168 ** | 0.440 (1) | 0.51 | Not supported |
H6c | SI → BI | −0.091 | 0.067 | 0.715 (1) | 0.39 | Not supported |
H6d | HM → BI | −0.077 | 0.463 *** | 10.10 (1) | 0.001 | Not supported |
H6e | FM → BI | 0.369 *** | 0.041 | 9.369 (1) | 0.002 | Supported |
Note: fit indices of age group model: χ2 = 639.305, df = 306, p < 0.001; χ2/df = 2.09; CFI = 0.973; TLI = 0.967; RMSEA = 0.051; SRMR = 0.059; * p < 0.1, ** p < 0.05, *** p < 0.01. | ||||||
(b) | ||||||
Hypotheses | Paths | Male | Female | Δχ2 (Δdf) | p-Value | Results |
H7a | PE → BI | 0.312 ** | 0.145 | 0.912 (1) | 0.34 | Not supported |
H7b | EE → BI | 0.028 | 0.254 ** | 3.172 (1) | 0.07 | Supported |
H7c | SI → BI | 0.144 | 0.006 | 0.861 (1) | 0.35 | Not supported |
H7d | HM → BI | 0.192 | 0.341 ** | 1.854 (1) | 0.17 | Not supported |
H7e | FM → BI | 0.212 *** | 0.018 | 4.588 (1) | 0.03 | Supported |
Note: fit indices of age group model: χ2 = 644.850, df = 306, p < 0.001; χ2/df = 2.10; CFI = 0.972; TLI = 0.965; RMSEA = 0.052; SRMR = 0.058; * p < 0.1, ** p < 0.05, *** p < 0.01. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, V.; Zhao, S.; Diop, E.B.; Song, W. Travelers’ Acceptance of Electric Carsharing Systems in Developing Countries: The Case of China. Sustainability 2019, 11, 5348. https://doi.org/10.3390/su11195348
Tran V, Zhao S, Diop EB, Song W. Travelers’ Acceptance of Electric Carsharing Systems in Developing Countries: The Case of China. Sustainability. 2019; 11(19):5348. https://doi.org/10.3390/su11195348
Chicago/Turabian StyleTran, Vanduy, Shengchuan Zhao, El Bachir Diop, and Weiya Song. 2019. "Travelers’ Acceptance of Electric Carsharing Systems in Developing Countries: The Case of China" Sustainability 11, no. 19: 5348. https://doi.org/10.3390/su11195348
APA StyleTran, V., Zhao, S., Diop, E. B., & Song, W. (2019). Travelers’ Acceptance of Electric Carsharing Systems in Developing Countries: The Case of China. Sustainability, 11(19), 5348. https://doi.org/10.3390/su11195348