Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Participants
2.2. Experiment Design
2.3. Microclimate
2.4. Questionnaire
2.5. Physiological Measurements
2.5.1. Skin Temperature
2.5.2. Skin Conductance
2.5.3. Heart Rate Variability
2.6. Statistical Analysis
3. Results
3.1. Microclimate
3.2. Thermal Comfort
3.3. Physiological Wellbeing
3.3.1. Skin Temperature
3.3.2. Skin Conductance
3.3.3. Heart Rate Variability
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN. 2018 Revision of World Urbanization Prospects; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Elsadek, M.; Liu, B.; Lian, Z.; Xie, J. The influence of urban roadside trees and their physical environment on stress relief measures: A field experiment in Shanghai. Urban For. Urban Green. 2019, 42, 51–60. [Google Scholar] [CrossRef]
- Olsen, H.; Kennedy, E.; Vanos, J. Shade provision in public playgrounds for thermal safety and sun protection: A case study across 100 play spaces in the United States. Landsc. Urban Plan. 2019, 189, 200–211. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Zacharias, J.; Stathopoulos, T.; Wu, H. Microclimate and downtown open space activity. Environ. Behav. 2001, 33, 296–315. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef] [Green Version]
- Lenzholzer, S. Research and design for thermal comfort in Dutch urban squares. Resour. Conserv. Recycl. 2012, 64, 39–48. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Brown, R.; Gillespie, T. Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int. J. Biometeorol. 1986, 30, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Kenny, N.A.; Warland, J.S.; Brown, R.D.; Gillespie, T.G. Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int. J. Biometeorol. 2009, 53, 415. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Fanger, P.O. Thermal Comfort, Analysis and Application in Environmental Engineering; McGrew-Hill: New York, NY, USA, 1972. [Google Scholar]
- Algeciras, J.A.R.; Consuegra, L.G.; Matzarakis, A. Spatial-temporal study on the effects of urban street configurations on human thermal comfort in the world heritage city of Camagüey-Cuba. Build. Environ. 2016, 101, 85–101. [Google Scholar] [CrossRef]
- Kariminia, S.; Ahmad, S.S.; Saberi, A. Microclimatic Conditions of an Urban Square: Role of built environment and geometry. Procedia-Soc. Behav. Sci. 2015, 170, 718–727. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S.; Eltrapolsi, A. Dual stage Simulations to Study the Microclimatic Effects of Trees on Thermal Comfort in a Residential Building, Cairo, Egypt. In Proceedings of the 11th International IBPSA Conference, Glasgow, UK, 27–30 July 2009. [Google Scholar]
- Gladwell, V.; Brown, D.; Barton, J.L.; Tarvainen, M.; Kuoppa, P.; Pretty, J.; Suddaby, J.; Sandercock, G. The effects of views of nature on autonomic control. Eur. J. Appl. Physiol. 2012, 112, 3379–3386. [Google Scholar] [CrossRef]
- Lee, J. Experimental study on the health benefits of garden landscape. Int. J. Environ. Res. Public Health 2017, 14, 829. [Google Scholar] [CrossRef]
- Yao, Y.; Lian, Z.; Liu, W.; Shen, Q. Experimental study on physiological responses and thermal comfort under various ambient temperatures. Physiol. Behav. 2008, 93, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Lian, Z.; Zhang, H. Physiological response to typical temperature step-changes in winter of China. Energy Build. 2017, 138, 687–694. [Google Scholar] [CrossRef]
- Liu, W.; Lian, Z.; Liu, Y. Heart rate variability at different thermal comfort levels. Eur. J. Appl. Physiol. 2008, 103, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int. J. Biometeorol. 2010, 54, 319–334. [Google Scholar] [CrossRef] [PubMed]
- McKnight, T.L.; Hess, D. Climate Zones and Types: The Koppen System, Physical Geography: A Landscape Appreciation; Pearson: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- ANSI/ASHARE Standard 55, Thermal Environmental Conditions for Human Occupancy; ASHRAE Inc.: Atlanta, GA, USA, 2004.
- Livingston, E.H.; Kohlstadt, I. Simplified resting metabolic rate—Predicting formulas for normal-sized and obese individuals. Obes. Res. 2005, 13, 1255–1262. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, J.; Jin, H. An Experimental Study on the Restorative Experience of Typical Urban Soundscape Based on EDA; The International Institute of Acoustics and Vibration: Auburn, AL, USA, 2015. [Google Scholar]
- Zou, H.; Li, N.; Cao, L. Emotional response–based approach for assessing the sense of presence of subjects in virtual building evacuation studies. J. Comput. Civ. Eng. 2017, 31, 04017028. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, W.; Xiao, L.; Chen, Y.; Zhao, C.; Hu, H. Study on the Influences of Vehicle Braking Failure on Human’s Physiological and Psychological Behavior. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Switzerland, 2018; pp. 795–801. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Arens, E.; Huizenga, C. Observations of upper-extremity skin temperature and corresponding overall-body thermal sensations and comfort. Build. Environ. 2007, 42, 3933–3943. [Google Scholar] [CrossRef] [Green Version]
- Jacquot, C.M.; Schellen, L.; Kingma, B.R.; van Baak, M.A.; van Marken Lichtenbelt, W.D. Influence of thermophysiology on thermal behavior: The essentials of categorization. Physiol. Behav. 2014, 128, 180–187. [Google Scholar] [CrossRef]
- Hasanbasic, A.; Spahic, M.; Bosnjic, D.; Mesic, V.; Jahic, O. Recognition of Stress Levels among Students with Wearable Sensors. In Proceedings of the 2019 18th International Symposium Infoteh-Jahorina (Infoteh), Jahorina mountain, Republic of Srpska, 20–22 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- McCraty, R.; Shaffer, F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef]
- Markov, A.; Solonin, I.; Bojko, E. Heart rate variability in workers of various professions in contrasting seasons of the year. Int. J. Occup. Med. Environ. Health 2016, 29, 793. [Google Scholar] [CrossRef]
- Okada, M.; Kakehashi, M. Effects of outdoor temperature on changes in physiological variables before and after lunch in healthy women. Int. J. Biometeorol. 2014, 58, 1973–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, H.; Liu, Z.; Li, D.; Kou, G.; Li, C. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. Sci. Total Environ. 2018, 616, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Baek, H.J.; Cho, C.-H.; Cho, J.; Woo, J.-M. Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemed. E Health 2015, 21, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, L.; Cho, J.; Jeong, M.G.; Kim, D. Ultra Short Term Analysis of Heart rate Variability for Monitoring Mental Stress in Mobile Settings. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; pp. 4656–4659. [Google Scholar] [CrossRef]
- Mazhar, N.; Brown, R.D.; Kenny, N.; Lenzholzer, S. Thermal comfort of outdoor spaces in Lahore, Pakistan: Lessons for bioclimatic urban design in the context of global climate change. Landsc. Urban Plan. 2015, 138, 110–117. [Google Scholar] [CrossRef]
- Brown, R.D.; Gillespie, T.J. Microclimatic Landscape Design: Creating Thermal Comfort and Energy Efficiency; John Wiley & Sons, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.-M. Thermal comfort and outdoor activity in Japanese urban public places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Jusuf, S.K. Thermal comfort in outdoor urban spaces in Singapore. Build. Environ. 2013, 59, 426–435. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Yang, L. The Analysis of Outdoor Thermal Comfort in Guangzhou during Summer. Procedia Eng. 2017, 205, 1996–2002. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Campbell, I. Body temperature and its regulation. Anaesth. Intensive Care Med. 2008, 9, 259–263. [Google Scholar] [CrossRef]
- Tansey, E.; Roe, S.; Johnson, C. The sympathetic release test: A test used to assess thermoregulation and autonomic control of blood flow. Adv. Physiol. Educ. 2014, 38, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, S. Experimental study on thermal sensation of people in moderate activities. Build. Environ. 2016, 100, 127–134. [Google Scholar] [CrossRef]
- Chaudhuri, T. Predictive Modelling of Thermal Comfort Using Physiological Sensing. Ph.D. Dissertation, Interdisciplinary Graduate School, Singapore, 31 December 2018. [Google Scholar]
- Malik, M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use: Task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T.; Mang, M.; Evans, G.W. Restorative effects of natural environment experiences. Environ. Behav. 1991, 23, 3–26. [Google Scholar] [CrossRef]
- Ottosson, J.; Grahn, P. Measures of restoration in geriatric care residences: The influence of nature on elderly people’s power of concentration, blood pressure and pulse rate. J. Hous. Elder. 2006, 19, 227–256. [Google Scholar] [CrossRef]
- Tang, J.W.; Brown, R.D. The effect of viewing a landscape on physiological health of elderly women. J. Hous. Elder. 2006, 19, 187–202. [Google Scholar] [CrossRef]
Gender | Subjects (n) | Age (Years) | Height (cm) | Weight (kg) | Clothing (clo) | Metabolic Rate (kJ) |
---|---|---|---|---|---|---|
Male | 13 | 26.1 ± 5.4 | 173.8 ± 0.1 | 66.8 ± 5.8 | 0.42 ± 0.1 | 103.3 ± 2.7 |
Female | 9 | 22.6 ± 4.2 | 163.2 ± 0.1 | 52.6 ± 2.9 | 0.49 ± 0.1 | 93.1 ± 2.2 |
Total | 22 | 24.6 ± 5.2 | 169.1 ± 0.7 | 60.9 ± 8.5 | 0.45 ± 0.1 | 99.1 ± 5.6 |
Site | Solar Radiation (W/m2) | Air Temperature (°C) | Relative Humidity (%) | Wind Speed (km/h) | Ground Temperature (°C) |
---|---|---|---|---|---|
Control | 497.6 ± 334.11 | 34.74 ± 1.94 | 56.89 ± 6.54 | 2.41 ± 2.41 | 45.44 ± 5.58 |
Landscape space | 59.42 ± 54.84 *** | 32.49 ± 1.25 *** | 62.62 ± 4.60 *** | 0.31 ± 0.83 *** | 32.68 ± 1.34 *** |
TSV | CSV | ASV | RSV | WSV | HSV | |
---|---|---|---|---|---|---|
TSV | 1 | −0.61 ** | 0.69 ** | 0.79 ** | 0.03 | −0.16 |
CSV | 1 | −0.56 ** | −0.44 ** | 0.02 | 0.19 | |
ASV | 1 | 0.56 ** | −0.14 | −0.13 | ||
RSV | 1 | 0.23 | −0.11 | |||
WSV | 1 | 0.08 | ||||
HSV | 1 |
Mean SKT (°C) | ΔSKT (°C) | Mean SCT (μs) | ΔSCT (μs) | |
---|---|---|---|---|
Control | 36.3 ± 0.2 | 0.5 ± 0.9 | 3.1 ± 0.1 | 0.2 ± 0.7 |
Landscape space | 35.2 ± 0.1 ** | −0.3 ± 0.8 * | 3.2 ± 0.2 | −0.6 ± 1.0 *** |
AVHR (bpm) | AVNN (ms) | SDNN (ms) | RMSSD (ms) | LF Power (ms2) | HF Power (ms2) | |
---|---|---|---|---|---|---|
Control | 96.6 (2.6) | 622.3 (15.7) | 40.9 (4.1) | 47.8 (7.9) | 595.2 (132.1) | 196.1 (51.1) |
Landscape space | 96 (2.5) | 621.9 (14.7) | 51.4 (4.6) * | 57.6 (5.6) * | 298.5 (52.0) * | 396.2 (87.3) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Lian, Z.; Brown, R.D. Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability 2019, 11, 5387. https://doi.org/10.3390/su11195387
Liu B, Lian Z, Brown RD. Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability. 2019; 11(19):5387. https://doi.org/10.3390/su11195387
Chicago/Turabian StyleLiu, Binyi, Zefeng Lian, and Robert D. Brown. 2019. "Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing" Sustainability 11, no. 19: 5387. https://doi.org/10.3390/su11195387
APA StyleLiu, B., Lian, Z., & Brown, R. D. (2019). Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability, 11(19), 5387. https://doi.org/10.3390/su11195387