The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Nuwara Eliya, Sri Lanka
2.2. Overall Workflow
2.3. Calculating Annual Median At-Satellite Brightness Temperature Using the Google Earth Engine (GEE)
2.4. LST Calculations
2.5. Land Use/Land Cover (LULC) Mapping
2.6. LST Intensity (LSTI) Measurement
2.7. AL/FL and BL/FL Fraction Ratios and Their Intensities
2.8. Grid-Based Analysis
3. Results
3.1. Landscape Changes and LST Distribution of Nuwara Eliya
3.2. Magnitude and Trend of LSTI
3.2.1. LSTIU–R along the Urban–Rural Gradient
3.2.2. The Magnitude of LSTIU–R along the Urban–Rural Gradient
3.3. AL/FL and BL/FL Ratios
3.4. The Density of BL, FL, and AL Compared to Mean LST
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sensor | Scene ID | Acquisition Date | Time (GMT) | Cloud Cover (%) in Landsat Title |
---|---|---|---|---|
Landsat 5 TM | LT05_L1TP_141055_19960221_20170106_01_T1 | 1996-02-21 | 03:59:45 | 19 |
LT05_L1TP_141055_19960308_20170106_01_T1 | 1996-03-08 | 04:00:49 | 6 | |
LT05_L1TP_141055_19960324_20170105_01_T1 | 1996-03-24 | 04:01:51 | 11 | |
LT05_L1TP_141055_19960409_20170105_01_T1 | 1996-04-09 | 04:02:51 | 46 | |
LT05_L1TP_141055_19960425_20170104_01_T1 | 1996-04-25 | 04:03:49 | 9 | |
LT05_L1TP_141055_19960511_20170104_01_T1 | 1996-05-11 | 04:04:46 | 9 | |
LT05_L1TP_141055_19960527_20170104_01_T1 | 1996-05-27 | 04:05:41 | 29 | |
LT05_L1TP_141055_19960730_20170103_01_T1 | 1996-07-30 | 04:09:06 | 78 | |
LT05_L1TP_141055_19960815_20170103_01_T1 | 1996-08-15 | 04:09:56 | 66 | |
LT05_L1TP_141055_19960831_20170103_01_T1 | 1996-08-31 | 04:10:48 | 41 | |
LT05_L1TP_141055_19960916_20170102_01_T1 | 1996-09-16 | 04:11:41 | 70 | |
LT05_L1TP_141055_19961002_20170102_01_T1 | 1996-10-02 | 04:12:33 | 48 | |
LT05_L1TP_141055_19961103_20170102_01_T1 | 1996-11-03 | 04:14:09 | 38 | |
LT05_L1TP_141055_19961119_20170101_01_T1 | 1996-11-19 | 04:14:53 | 19 | |
LT05_L1TP_141055_19961205_20170101_01_T1 | 1996-12-05 | 04:15:40 | 84 | |
Landsat 5 TM | LT05_L1TP_141055_20060131_20161123_01_T1 | 2006-01-31 | 04:44:06 | 46 |
LT05_L1TP_141055_20060216_20161123_01_T1 | 2006-02-16 | 04:44:28 | 28 | |
LT05_L1TP_141055_20060304_20161122_01_T1 | 2006-03-04 | 04:44:49 | 41 | |
LT05_L1TP_141055_20060405_20161123_01_T1 | 2006-04-05 | 04:45:26 | 10 | |
LT05_L1TP_141055_20060421_20161122_01_T1 | 2006-04-21 | 04:45:41 | 68 | |
LT05_L1TP_141055_20060507_20161122_01_T1 | 2006-05-07 | 04:45:55 | 33 | |
LT05_L1TP_141055_20060523_20161121_01_T1 | 2006-05-23 | 04:46:07 | 31 | |
LT05_L1TP_141055_20060608_20161121_01_T1 | 2006-06-08 | 04:46:23 | 27 | |
LT05_L1TP_141055_20060624_20161121_01_T1 | 2006-06-24 | 04:46:39 | 72 | |
LT05_L1TP_141055_20060710_20161120_01_T1 | 2006-07-10 | 04:46:53 | 30 | |
LT05_L1TP_141055_20060811_20161119_01_T1 | 2006-08-11 | 04:47:17 | 79 | |
LT05_L1TP_141055_20060827_20161119_01_T1 | 2006-08-27 | 04:47:29 | 45 | |
LT05_L1TP_141055_20060912_20161119_01_T1 | 2006-09-12 | 04:47:41 | 57 | |
LT05_L1TP_141055_20060928_20161119_01_T1 | 2006-09-28 | 04:47:52 | 55 | |
LT05_L1TP_141055_20061014_20161118_01_T1 | 2006-10-14 | 04:48:03 | 22 | |
LT05_L1TP_141055_20061030_20161118_01_T1 | 2006-10-30 | 04:48:13 | 30 | |
LT05_L1TP_141055_20061115_20161118_01_T1 | 2006-11-15 | 04:48:21 | 60 | |
Landsat 8 OLI/TIRS | LC08_L1TP_141055_20170113_20170311_01_T1 | 2017-01-13 | 04:54:05 | 3 |
LC08_L1TP_141055_20170129_20170214_01_T1 | 2017-01-29 | 04:53:59 | 40 | |
LC08_L1TP_141055_20170214_20170228_01_T1 | 2017-02-14 | 04:53:52 | 68 | |
LC08_L1TP_141055_20170302_20170316_01_T1 | 2017-03-02 | 04:53:46 | 64 | |
LC08_L1TP_141055_20170318_20170328_01_T1 | 2017-03-18 | 04:53:36 | 13 | |
LC08_L1TP_141055_20170403_20170414_01_T1 | 2017-04-03 | 04:53:29 | 16 | |
LC08_L1TP_141055_20170419_20170501_01_T1 | 2017-04-19 | 04:53:20 | 15 | |
LC08_L1TP_141055_20170505_20170515_01_T1 | 2017-05-05 | 04:53:13 | 32 | |
LC08_L1TP_141055_20170606_20170616_01_T1 | 2017-06-06 | 04:53:34 | 54 | |
LC08_L1TP_141055_20170622_20170630_01_T1 | 2017-06-22 | 04:53:40 | 28 | |
LC08_L1TP_141055_20170708_20170716_01_T1 | 2017-07-08 | 04:53:43 | 44 | |
LC08_L1TP_141055_20170724_20170809_01_T1 | 2017-07-24 | 04:53:49 | 38 | |
LC08_L1TP_141055_20170809_20170824_01_T1 | 2017-08-09 | 04:53:56 | 47 | |
LC08_L1TP_141055_20170825_20170913_01_T1 | 2017-08-25 | 04:54:00 | 38 | |
LC08_L1TP_141055_20170910_20170927_01_T1 | 2017-09-10 | 04:54:02 | 61 | |
LC08_L1TP_141055_20170926_20171013_01_T1 | 2017-09-26 | 04:54:07 | 82 | |
LC08_L1TP_141055_20171012_20171024_01_T1 | 2017-10-12 | 04:54:12 | 76 | |
LC08_L1TP_141055_20171028_20171108_01_T1 | 2017-10-28 | 04:54:13 | 19 | |
LC08_L1TP_141055_20171113_20171121_01_T1 | 2017-11-13 | 04:54:10 | 38 | |
LC08_L1TP_141055_20171215_20171223_01_T1 | 2017-12-15 | 04:54:05 | 32 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Built-up | Forest | Agricultural Land | Other | Water | Total | User’s Accuracy (%) | |
Built-up | 72 | 8 | 6 | 3 | 0 | 89 | 80.9 |
Forest | 2 | 165 | 10 | 3 | 3 | 183 | 90.2 |
Agricultural Land | 5 | 17 | 140 | 2 | 2 | 166 | 84.3 |
Other Land | 2 | 2 | 3 | 34 | 1 | 42 | 81.0 |
Water | 0 | 2 | 2 | 0 | 16 | 20 | 80.0 |
Total | 81 | 194 | 161 | 42 | 22 | 500 | |
Producer’s Accuracy (%) | 88.9 | 85.1 | 87.0 | 81.0 | 72.7 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Built-up | Forest | Agricultural Land | Other | Water | Total | User’s Accuracy (%) | |
Built-up | 98 | 2 | 5 | 0 | 0 | 105 | 93.3 |
Forest | 3 | 182 | 8 | 0 | 0 | 193 | 94.3 |
Agricultural Land | 4 | 5 | 155 | 1 | 1 | 166 | 93.4 |
Other Land | 0 | 0 | 1 | 5 | 1 | 7 | 71.4 |
Water | 0 | 1 | 1 | 1 | 26 | 29 | 89.7 |
Total | 105 | 190 | 170 | 7 | 28 | 500 | |
Producer’s Accuracy (%) | 93.3 | 95.8 | 91.2 | 71.4 | 92.9 |
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Built-up | Forest | Agricultural Land | Other | Water | Total | User’s Accuracy (%) | |
Built-up | 110 | 3 | 3 | 1 | 0 | 117 | 94.0 |
Forest | 5 | 160 | 7 | 1 | 0 | 173 | 92.5 |
Agricultural Land | 3 | 2 | 135 | 2 | 1 | 143 | 94.4 |
Other Land | 2 | 3 | 2 | 33 | 1 | 41 | 80.5 |
Water | 0 | 1 | 1 | 0 | 24 | 26 | 92.3 |
Total | 120 | 169 | 148 | 37 | 26 | 500 | |
Producer’s Accuracy (%) | 91.7 | 94.7 | 91.2 | 89.2 | 92.3 |
References
- Chen, X.; Zhang, Y. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain. Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Thi Van, T.; Bao, H.D.X. Study of the impact of urban development on surface temperature using remote sensing in Ho Chi Minh City, Northern Vietnam. Geogr. Res. 2010, 48, 86–96. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo Metropolitan Area, Sri Lanka, based on Landsat data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Zhang, X.; Murayama, Y. Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: Implications for sustainability planning. Sustainability 2018, 10, 1367. [Google Scholar] [CrossRef]
- Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Thanh, B.-X.; Vuong, T.-H. Assessment of urbanization and urban heat islands in Ho Chi Minh City, Vietnam using Landsat data. Sustain. Cities Soc. 2017, 30, 150–161. [Google Scholar] [CrossRef]
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Alphan, H. Land-use change and urbanization of Adana, Turkey. Land Degrad. Dev. 2003, 14, 575–586. [Google Scholar] [CrossRef]
- Shalaby, A.; Ghar, M.A.; Tateishi, R. Desertification impact assessment in Egypt using low resolution satellite data and GIS. Int. J. Environ. Stud. 2004, 61, 375–383. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- El Araby, M. Urban growth and environmental degradation. Cities 2002, 19, 389–400. [Google Scholar] [CrossRef]
- Debela, T.H.; Beyene, A.; Tesfahun, E.; Getaneh, A.; Gize, A.; Mekonnen, Z. Fecal contamination of soil and water in sub-Saharan Africa cities: The case of Addis Ababa, Ethiopia. Ecohydrol. Hydrobiol. 2018, 18, 225–230. [Google Scholar] [CrossRef]
- Knudsen, A.B.; Slooff, R. Vector-borne disease problems in rapid urbanization: New approaches to vector control. Bull. World Health Organ. 1992, 70, 1–6. [Google Scholar] [PubMed]
- Ranagalage, M.; Dissanayake, D.; Murayama, Y.; Zhang, X.; Estoque, R.C.; Perera, E.; Morimoto, T. Quantifying surface urban heat island formation in the World Heritage Tropical Mountain City of Sri Lanka. ISPRS Int. J. Geo-Inf. 2018, 7, 341. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q. A remote sensing—GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2014, 22, 1999–2014. [Google Scholar]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef]
- Teferi, E.; Abraha, H. Urban heat island effect of Addis Ababa City: Implications of urban green spaces for climate change adaptation. In Climate Change Adaptation in Africa; Springer: Berlin, Germany, 2017. [Google Scholar]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Van Nguyen, O.; Kawamura, K.; Trong, D.P.; Gong, Z.; Suwandana, E. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery. Environ. Monit. Assess. 2015, 187, 464. [Google Scholar] [CrossRef] [PubMed]
- Ayanlade, A. Seasonality in the daytime and night-time intensity of land surface temperature in a tropical city area. Sci. Total Environ. 2016, 557–558, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhang, L.; Hao, L.; Sun, G.; Liu, Y.; Zhu, C. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci. Total Environ. 2016, 544, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Marconcini, M.; Metz, A.; Esch, T.; Zeidler, J. Global urban growth monitoring by means of SAR data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 1477–1480. [Google Scholar]
- Paranunzio, R.; Ceola, S.; Laio, F.; Montanari, A. Evaluating the effects of urbanization evolution on air temperature trends using nightlight satellite data. Atmosphere 2019, 10, 117. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 2000–2010. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Bhaduri, B.; Bright, E.; Coleman, P.; Urban, M.L. LandScan USA: A high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal 2007, 69, 103–117. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos City, Nigeria. Sustainability 2019, 11, 25. [Google Scholar] [CrossRef]
- Bhargava, A.; Lakmini, S.; Bhargava, S. Urban Heat Island Effect: It’s Relevance in Urban Planning. J. Biodivers. Endanger. Species 2017, 5, 5–187. [Google Scholar]
- Xu, S. An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale. Environ. Monit. Assess. 2009, 151, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Welivitiya, W.D.D.P.; Nadeeka, P.M. Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Clim. 2013, 5, 19–35. [Google Scholar] [CrossRef]
- Sakakibara, Y.; Owa, K. Urban–rural temperature differences in coastal cities: Influence of rural sites. Int. J. Climatol. 2005, 25, 811–820. [Google Scholar] [CrossRef]
- Myint, S.W.; Brazel, A.; Okin, G.; Buyantuyev, A. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city. GIScience Remote Sens. 2010, 47, 301–320. [Google Scholar] [CrossRef]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef]
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. Online global land surface temperature estimation from landsat. Remote Sens. 2017, 9, 1208. [Google Scholar] [CrossRef]
- Stewart, I.; Oke, T. Classifying urban climate field sites by “local climate zones”: The case of nagano, japan. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29–30 June 2009. [Google Scholar]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef]
- Priyankara, P.; Ranagalage, M.; Dissanayake, D.; Morimoto, T.; Murayama, Y. Spatial process of surface urban heat island in rapidly growing Seoul metropolitan area for sustainable urban planning using Landsat Data. Climate 2019, 7, 110. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. City Profile: Baguio. Cities 2013, 30, 240–251. [Google Scholar] [CrossRef]
- Crossette, B. The Great Hill Stations of Asia; Basic Books: New York, NY, USA, 1999; Volume 73. [Google Scholar]
- Jayasinghe, M.K.D.; Gnanapala, W.K.A.; Sandaruwani, J.A.R. Factors affecting tourists’ perception and satisfaction in Nuwara Eliya, Sri Lanka. Ilorin J. Econ. Policy 2015, 2, 1–15. [Google Scholar]
- Weerasinghe, W.W.K. Transformation of the landscape of Nuwara-Eliya. Ph.D. Thesis, University of Moratuwa, Colombo, Sri Lanka, 2003. [Google Scholar]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy City, Sri Lanka. Climate 2019, 7, 99. [Google Scholar] [CrossRef]
- Google Erath Engine, Landsat Collection Structure. Available online: https://developers.google.com/earth-engine/landsat (accessed on 25 May 2019).
- Google Erath Engine, Image Collection Reductions. Available online: https://developers.google.com/earth-engine/reducers_image_collection (accessed on 25 May 2019).
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.A.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Yang, X. Parameterizing Support Vector Machines for land cover classification. Photogramm. Eng. Remote Sens. 2011, 77, 27–37. [Google Scholar] [CrossRef]
- Shi, D.; Yang, X. Support vector machines for land cover mapping from remote sensor imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Springer: Dordrecht, The Netherlands, 2015; pp. 265–279. [Google Scholar]
- Ranagalage, M.; Wang, R.; Gunarathna, M.H.J.P.; Dissanayake, D.; Murayama, Y.; Simwanda, M. Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study of Nuwara Eliya, Sri Lanka (1996–2037). Remote Sens. 2019, 11, 1743. [Google Scholar] [CrossRef]
- Gunaalan, K.; Ranagalage, M.; Gunarathna, M.H.J.P.; Kumari, M.K.N.; Vithanage, M.; Srivaratharasan, T.; Saravanan, S.; Warnasuriya, T.W.S. Application of geospatial techniques for groundwater quality and availability assessment: A case study in Jaffna Peninsula, Sri Lanka. ISPRS Int. J. Geo-Inf. 2018, 7, 20. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African Cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of landscape structure on the variation of land surface temperature in Sub-Saharan Region: A case study of Addis Ababa using Landsat data (1986–2016). Sustainability 2019, 11, 2257. [Google Scholar] [CrossRef]
- Department of Forest. Forest Ordinance; Department of Forest: Sri Jayawardenepura Kotte, Sri Lanka, 1908.
- Sultana, S.; Satyanarayana, A.N.V. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: Impact of urbanization. Int. J. Remote Sens. 2018, 39, 6692–6730. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [Green Version]
- Diaz, H.F.; Bradley, R.S.; Ning, L. Climatic changes in mountain regions of the American Cordillera and the tropics: Historical changes and future outlook. Arct. Antarct Alp. Res. 2014, 46, 735–743. [Google Scholar] [CrossRef]
- Bradley, R.S.; Keimig, F.T.; Diaz, H.F.; Hardy, D.R. Recent changes in freezing level heights in the Tropics with implications for the deglacierization of high mountain regions. Geophys. Res. Lett. 2009, 36, 2–5. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: A case study of the Kotmale watershed, Sri Lanka. Model. Earth Syst. Environ. 2018, 4, 291–306. [Google Scholar] [CrossRef]
- Ranagalage, M. Landslide hazards assessment in Nuwara Eliya District in Sri Lanka. In Proceedings of the Japanese Geographical Meeting, Tsukuba, Japan, 28–30 March 2017; p. 100336. [Google Scholar]
- Perera, E.N.C.; Jayawardana, D.T.; Jayasinghe, P.; Ranagalage, M. Landslide vulnerability assessment based on entropy method: A case study from Kegalle district, Sri Lanka. Model. Earth Syst. Environ. 2019, 1–15. [Google Scholar] [CrossRef]
- Perera, E.N.C.; Jayawardana, D.T.; Ranagalage, M.; Jayasinghe, P. Spatial multi criteria evaluation (SMCE) model for landslide hazard zonation in tropical hilly environment: A case study from Kegalle. Geoinform. Geostat. Overv. 2018, S3. [Google Scholar] [CrossRef]
- Thanh Hoan, N.; Liou, Y.-A.; Nguyen, K.-A.; Sharma, R.; Tran, D.-P.; Liou, C.-L.; Cham, D. Assessing the effects of land-use types in surface urban heat islands for developing comfortable living in Hanoi City. Remote Sens. 2018, 10, 1965. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Galagoda, R.U.; Jayasinghe, G.Y.; Halwatura, R.U.; Rupasinghe, H.T. The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban For. Urban Green. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Manawadu, L.; Ranagalage, M. Urban heat islands and vegetation cover as a controlling factor. In Proceedings of the International Forestry and Environment Symposium 2013 of the Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Thulhiriya, Sri Lanka, 10–11 January 2014; p. 125. [Google Scholar]
- Estoque, R.C.; Murayama, Y.; Ranagalage, M.; Hou, H.; Subasinghe, S. Validating ALOS PRISM DSM-derived surface feature height: Implications for urban volume estimation. Tsukuba Geoenviron. Sci. 2017, 13, 13–22. [Google Scholar]
- Ranagalage, M.; Murayama, Y. Measurement of urban built-up volume using remote sensing data and geospatial techniques. Tsukuba Geoenviron. Sci. 2018, 14, 19–29. [Google Scholar]
- Handayani, H.H.; Murayama, Y.; Ranagalage, M.; Liu, F.; Dissanayake, D. Geospatial analysis of horizontal and vertical urban expansion using multi-spatial resolution data: A case study of Surabaya, Indonesia. Remote Sens. 2018, 10, 1599. [Google Scholar] [CrossRef]
Land Use/Cover | 1996 | 2006 | 2017 | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Built-up | 289.9 | 1.3 | 785.5 | 3.5 | 2080.4 | 9.3 |
Forest | 13,076.7 | 58.2 | 13,502.1 | 60.1 | 13,234.3 | 58.9 |
Agricultural Land | 8503.2 | 37.9 | 8085.5 | 36 | 6583.9 | 29.3 |
Other Land | 511.8 | 2.3 | 6 | 0 | 481.8 | 2.1 |
Water | 73.4 | 0.3 | 75.9 | 0.3 | 74.6 | 0.3 |
Total | 22,455 | 100 | 22,455 | 100 | 22,455 | 100 |
Land Use/Cover | 1996–2006 | 2006–2017 | 1996–2017 | |||
---|---|---|---|---|---|---|
Land Use/Cover Changes (ha) | Annual Growth Rate (ha per year) | Land Use/Cover Changes (ha) | Annual Growth Rate (ha per year) | Land Use/Cover Changes (ha) | Annual Growth Rate (ha per year) | |
Built-up | 495.6 | 49.6 | 1294.9 | 117.7 | 1790.6 | 85.3 |
Forest | 425.3 | 42.5 | −267.8 | −24.3 | 157.6 | 7.5 |
Agricultural Land | −417.7 | −41.8 | −1501.7 | −136.5 | −1919.3 | −91.4 |
Other Land | −505.8 | −50.6 | 475.7 | 43.2 | −30.1 | −1.4 |
Water | 2.5 | 0.3 | −1.3 | −0.1 | 1.3 | 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranagalage, M.; Murayama, Y.; Dissanayake, D.; Simwanda, M. The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017). Sustainability 2019, 11, 5517. https://doi.org/10.3390/su11195517
Ranagalage M, Murayama Y, Dissanayake D, Simwanda M. The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017). Sustainability. 2019; 11(19):5517. https://doi.org/10.3390/su11195517
Chicago/Turabian StyleRanagalage, Manjula, Yuji Murayama, DMSLB Dissanayake, and Matamyo Simwanda. 2019. "The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)" Sustainability 11, no. 19: 5517. https://doi.org/10.3390/su11195517
APA StyleRanagalage, M., Murayama, Y., Dissanayake, D., & Simwanda, M. (2019). The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017). Sustainability, 11(19), 5517. https://doi.org/10.3390/su11195517