Transport Accessibility of Warsaw: A Case Study
Abstract
:1. Introduction
- the distance measure is interpreted as the amount of time or cost required to overcome the distance, not just the physical distance;
- it is possible to analyze the differences in accessibility resulting from the individual characteristics of the user of the transport network; and
- accessibility can also be measured by the infrastructure of a given area.
- Which means of transportation is the most efficient for each location in the city?
- Which districts have the best transportation to the most attractive locations in the city?
- Are there such areas in the city where many people live and using a car is better than using public transport from a travel time perspective?
2. Methodology
2.1. Data Acquisition
2.2. Attractiveness Analysis
2.3. Travel Time Analysis
2.4. Travel Speed Analysis
2.5. Potential Accessibility Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ceder, A. Public Transit Planning and Operation: Modeling, Practice and Behavior, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-0-429-10024-6. [Google Scholar]
- Koslowsky, M.; Kluger, A.; Reich, M. Commuting Stress: Causes, Effects, and Methods of Coping; Springer: Berlin, Germany, 2013; ISBN 978-1-4757-9767-1. [Google Scholar]
- Csáji, B.C.; Browet, A.; Traag, V.A.; Delvenne, J.-C.; Huens, E.; Van Dooren, P.; Smoreda, Z.; Blondel, V.D. Exploring the mobility of mobile phone users. Phys. A Stat. Mech. Appl. 2013, 392, 1459–1473. [Google Scholar] [CrossRef]
- Berlingerio, M.; Calabrese, F.; Di Lorenzo, G.; Nair, R.; Pinelli, F.; Sbodio, M.L. A System for Exploring Urban Mobility and Optimizing Public Transport Using Cellphone Data. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, Prague, Czech Republic, 23–27 September 2013; Blockeel, H., Kersting, K., Nijssen, S., Železný, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 663–666. [Google Scholar]
- Mendes-Moreira, J. Travel Time Prediction for the Planning of Mass Transit Companies: A Machine Learning Approach; University of Porto: Porto, Portugal, 2008. [Google Scholar]
- Moreira-Matias, L.; Mendes-Moreira, J.; de Sousa, J.F.; Gama, J. Improving Mass Transit Operations by Using AVL-Based Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1636–1653. [Google Scholar] [CrossRef]
- McQueen, B.; McQueen, J. Intelligent Transportation Systems Architectures; Artech House: Boston, MA, USA, 1999; ISBN 978-0-89006-525-9. [Google Scholar]
- Grant-Muller, S.; Usher, M. Intelligent Transport Systems: The propensity for environmental and economic benefits. Technol. Forecast. Soc. Chang. 2014, 82, 149–166. [Google Scholar] [CrossRef]
- Glymour, C.; Madigan, D.; Pregibon, D.; Smyth, P. Statistical Themes and Lessons for Data Mining. Data Min. Knowl. Discov. 1997, 1, 11–28. [Google Scholar] [CrossRef]
- Engelbrecht, A.P. Computational Intelligence: An Introduction; John Wiley & Sons Ltd.: Chichester, England, 2007; ISBN 978-0-470-51250-0. [Google Scholar]
- Karlaftis, M.G.; Vlahogianni, E.I. Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transp. Res. Part C Emerg. Technol. 2011, 19, 387–399. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org (accessed on 4 September 2019).
- Baloian, N.; Frez, J.; Pino, J.A.; Zurita, G. Efficient Planning of Urban Public Transportation Networks. In Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information. UCAmI 2015. Lecture Notes in Computer Science; García-Chamizo, J., Fortino, G., Ochoa, S., Eds.; Springer: Cham, Switzerland, 2013; p. 9454. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Zielstr, D.; Neis, P. Assessing the Completeness of Bicycle Trail and Designated Lane Features in OpenStreetMap for the United States and Europe. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Nurminen, A.; Järvi, J.; Lehtonen, M.A. Mixed Reality Interface for Real Time Tracked Public Transportation. In Proceedings of the 10th ITS European Congress, Helsinki, Finland, 16–19 June 2014; pp. 1–6. [Google Scholar]
- Mobasheri, A.; Sun, Y.; Loos, L.; Ali, A.L. Are Crowdsourced Datasets Suitable for Specialized Routing Services? Case Study of OpenStreetMap for Routing of People with Limited Mobility. Sustainability 2017, 9, 997. [Google Scholar] [CrossRef]
- Mobasheri, A.; Deister, J.; Dieterich, H. Wheelmap: The wheelchair accessibility crowdsourcing platform. Open Geospat. DataSoftw. Stand. 2017, 2, 27. [Google Scholar] [CrossRef]
- Mobasheri, A.; Zipf, A.; Francis, L. OpenStreetMap data quality enrichment through awareness raising and collective action tools—Experiences from a European project. Geo-Spat. Inf. Sci. 2018, 21, 234–246. [Google Scholar] [CrossRef]
- Google Maps. Available online: https://www.google.pl/maps (accessed on 19 July 2019).
- Komornicki, T.; Śleszyński, P.; Rosik, P.; Pomianowski, W.; Stępniak, M.; Siłka, P. Dostępność przestrzenna jako przesłanka kształtowania polskiej polityki transportowej, Spatial Accessibility as a Background for Polish Transport Policy. Biul. Kom. Przestrz. Zagospod. Kraj. Pan 2009, 241, 163. [Google Scholar]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Handy, S.L.; Niemeier, D.A. Measuring Accessibility: An Exploration of Issues and Alternatives. Environ. Plan A 1997, 29, 1175–1194. [Google Scholar] [CrossRef]
- Ingram, D.R. The concept of accessibility: A search for an operational form. Reg. Stud. 1971, 5, 101–107. [Google Scholar] [CrossRef]
- Dalvi, M.Q.; Martin, K.M. The measurement of accessibility: Some preliminary results. Transportation 1976, 5, 17–42. [Google Scholar] [CrossRef]
- Bruinsma, F.; Rietveld, P. The Accessibility of European Cities: Theoretical Framework and Comparison of Approaches. Environ. Plan A 1998, 30, 499–521. [Google Scholar] [CrossRef]
- Wegener, M.; Eskelinnen, H.; Fürst, F.; Schürmann, C.; Spiekermann, K. Criteria for the spatial differentiation of the EU territory: Geographical position. Study Programme on European Spatial Planning; Federal Ministry of Transport, Building and Housing: Bonn, Germany, 2001; p. 79.
- Potrykowski, M.; Taylor, Z. Geografia Transportu: Zarys Problemów, Modeli i Metod Badawczych; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1982; ISBN 978-83-01-02615-8. [Google Scholar]
- Taylor, Z. Przestrzenna Dostępność Miejsc Zatrudnienia, Kształcenia i Usług a Codzienna Ruchliwość Ludności Wiejskiej; IGiPZ PAN: Warszawa, Poland, 1999; ISBN 978-83-86682-37-9. [Google Scholar]
- Geurs, K.T.; van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Geurs, K.T.; Ritsema van Eck, J.R. Accessibility Measures: Review and Applications; RIVM Report 408505 006; National Institute of Public Health and the Environment: Bilthoven, The Netherlands, 2001. [Google Scholar]
- 4 Stages of Data Analytics Maturity: Challenging Gartner’s Model. Available online: https://www.linkedin.com/pulse/4-stages-data-analytics-maturity-challenging-gartners-taras-kaduk (accessed on 19 July 2019).
- Official Portal of Warsaw. Available online: https://www.um.warszawa.pl/o-warszawie/warszawa-w-liczbach/2018 (accessed on 19 July 2019).
- Holnicki, P.; Kałuszko, A.; Nahorski, Z.; Stankiewicz, K.; Trapp, W. Air quality modeling for Warsaw agglomeration. Arch. Environ. Prot. 2017, 43, 48–64. [Google Scholar] [CrossRef] [Green Version]
- ZTM Warszawa. Available online: https://www.ztm.waw.pl/index.php?l=2 (accessed on 19 July 2019).
- Główny Urząd Statystyczny. Available online: https://stat.gov.pl/ (accessed on 19 July 2019).
- Moscicka, A.; Pokonieczny, K.; Tomala, J. Selection of Optimal Measurement Point Density in Travel Time Mapping: Warsaw Airport Case Study. In Proceedings of the 2016 Baltic Geodetic Congress (BGC Geomatics), Gdańsk, Poland, 2–4 June 2016; pp. 211–216. [Google Scholar] [CrossRef]
- Deloitte, Targeo.pl. Report on Traffic Jams in the 7 Largest Polish Cities (In Polish: Raport o korkach w 7 Największych Miastach Polski). 2016, pp. 7–10. Available online: https://www2.deloitte.com/pl/pl/pages/public-sector/articles/korki-w-polskich-miastach.html (accessed on 2 September 2019).
- Pokonieczny, K.; Tomala, J.; Mościcka, A. Comparison of the travel time availability determined with the use of various web services [In Polish: Porównanie dostępności czasowej z wykorzystaniem różnych serwisów internetowych]. Rocz. Geomatyki [Ann. Geomat.] 2017, 1, 97–106. [Google Scholar]
- Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z Dnia 17 Listopada 2011 r. w Sprawie Bazy Danych Obiektów Topograficznych Oraz Bazy Danych Obiektów Ogólnogeograficznych, a Także Standardowych Opracowań Kartograficznych. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20112791642 (accessed on 19 July 2019).
- Baradaran, S.; Ramjerdi, F. Performance of accessibility measures in Europe. J. Transp. Stat. 2001, 4, 31–48. [Google Scholar]
- Spiekermann, K.; Neubauer, J. European Accessibility and Peripherality: Concepts, Models and Indicators; Nordregio: Stockholm, Sweden, 2002. [Google Scholar]
- Vickerman, R.W. Accessibility, attraction, and potential: A review of some concepts and their use in determining mobility. Environ. Plan. A 1974, 6, 675–691. [Google Scholar] [CrossRef]
- Pokonieczny, K.; Mościcka, A. The Influence of the Shape and Size of the Cell on Developing Military Passability Maps. ISPRS Int. J. Geo-Inf. 2018, 7, 261. [Google Scholar] [CrossRef]
- Larose, D.T. Data Mining Methods and Models; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 978-0-471-75648-4. [Google Scholar]
- Isard, W. Location Theory and Trade Theory: Short-Run Analysis. Q. J. Econ. 1954, 68, 305–320. [Google Scholar] [CrossRef]
- Keeble, D.; Owens, P.L.; Thompson, C. Regional accessibility and economic potential in the European community. Reg. Stud. 1982, 16, 419–432. [Google Scholar] [CrossRef]
- Rich, D.C. Potential Models in Human Geography, 1st ed.; Geo Abstracts: Norwich, Norfolk, 1980; ISBN 978-0-86094-044-9. [Google Scholar]
- Linneker, B.J.; Spence, N.A. Accessibility Measures Compared in an Analysis of the Impact of the M25 London Orbital Motorway on Britain. Environ. Plan. A 1992, 24, 1137–1154. [Google Scholar] [CrossRef]
- Veturilo—Warszawski Rower Publiczny. Available online: https://www.veturilo.waw.pl/ (accessed on 19 July 2019).
- World Health Organization. Global Status Report on Road Safety 2013: Supporting a Decade of Action; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Petch, R.O.; Henson, R.R. Child Road Safety in the Urban Environment. J. Transp. Geogr. 2000, 8, 197–211. [Google Scholar] [CrossRef]
- Stoker, P.; Garfinkel-Castro, A.; Khayesi, M.; Odero, W.; Mwangi, M.N.; Peden, M.; Ewing, R. Pedestrian Safety and the Built Environment: A Review of the Risk Factors. J. Plan. Lit. 2015, 30, 377–392. [Google Scholar] [CrossRef]
- Congiu, T.; Sotgiu, G.; Castiglia, P.; Azara, A.; Piana, A.; Saderi, L.; Dettori, M. Built Environment Features and Pedestrian Accidents: An Italian Retrospective Study. Sustainability 2019, 11, 1064. [Google Scholar] [CrossRef]
No. | Object Name | Weight | Type |
---|---|---|---|
1 | Stations and terminals | 20 | Point |
2 | Offices | 5 | Point |
2 | Commercial and service buildings | 5 | Area |
3 | Schools and research institutions | 5 | Point |
4 | Hospitals and medical care buildings | 5 | Area |
5 | Parking lots | 4 | Area |
6 | Museums, libraries, and other cultural places | 3 | Point |
7 | Physical culture buildings | 3 | Point |
8 | Hotels | 2 | Point |
9 | Industrial buildings | 2 | Area |
10 | Religious buildings | 2 | Point |
11 | Botanical gardens and zoos | 2 | Point |
12 | Residential buildings with three or more flats | 1 | Point |
13 | Garages | 1 | Area |
14 | Swimming pools, stadiums, and other sports places | 1 | Point |
15 | Cemeteries, parks, and garden plots | 1 | Area |
16 | Historic buildings | 0.5 | Point |
17 | Tennis courts | 0.5 | Point |
18 | Residential buildings with two flats | 0.2 | Point |
19 | Single-family residential buildings | 0.1 | Point |
20 | Play and sports grounds | 0.1 | Point |
21 | Other | 0 | Point |
Weighted Nominal Speed | Number of Residents |
---|---|
Pearson’s correlation coefficient | |
Walking | 0.092208 |
Bicycle | −0.185442 |
Driving | −0.332788 |
Transit | 0.143926 |
Spearman’s correlation coefficient | |
Walking | 0.101685 |
Bicycle | −0.266235 |
Driving | −0.213816 |
Transit | 0.310720 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mościcka, A.; Pokonieczny, K.; Wilbik, A.; Wabiński, J. Transport Accessibility of Warsaw: A Case Study. Sustainability 2019, 11, 5536. https://doi.org/10.3390/su11195536
Mościcka A, Pokonieczny K, Wilbik A, Wabiński J. Transport Accessibility of Warsaw: A Case Study. Sustainability. 2019; 11(19):5536. https://doi.org/10.3390/su11195536
Chicago/Turabian StyleMościcka, Albina, Krzysztof Pokonieczny, Anna Wilbik, and Jakub Wabiński. 2019. "Transport Accessibility of Warsaw: A Case Study" Sustainability 11, no. 19: 5536. https://doi.org/10.3390/su11195536
APA StyleMościcka, A., Pokonieczny, K., Wilbik, A., & Wabiński, J. (2019). Transport Accessibility of Warsaw: A Case Study. Sustainability, 11(19), 5536. https://doi.org/10.3390/su11195536