A Multifactorial Approach to Value Supporting Ecosystem Services in Spanish Forests and Its Implications in a Warming World
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inventory Platform and Study Area
2.2. Drivers of Carbon Storage and Sequestration
2.3. A Multifactorial Approach to Value Carbon Storage and Sequestration
2.3.1. Quantification of Carbon Sequestration and Stored (f(x))
2.3.2. Extrapolation of the Carbon Sequestration Value to Area (S(x))
2.3.3. Economic Conversion (α(x))
2.3.4. Weighting Relevant Factors Depending on Risk, Conservation and Management (λ(x)) and Weighting Values
2.4. Quantifying the Drivers of Carbon Storage and Sequestration and Potential Changes along Environmental and Biotic Gradients
2.4.1. Quantification of Carbon Produced and Stored Using Maximum Likelihood
2.4.2. Quantification of Carbon Storage and Sequestration Using Random Forests
3. Results
3.1. Carbon Storage and Sequestration of Spanish Forests
3.2. The Multifactorial Approach to Value Supporting Ecosystem Services
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Supporting Methods
Weighting Factor | Variables Used | Level | Description | Weight |
---|---|---|---|---|
Erosion risk | Mean weight (Fragility, erosion, potential risk) | 1 | No risk | 1 |
2,3 | Low | 1.2 | ||
4,5 | Medium | 1.4 | ||
6,7 | High | 1.6 | ||
Fire risk | Fire frequency | 1 | No risk | 1 |
2 | Low | 1.2 | ||
3 | Medium | 1.4 | ||
4 | High | 1.6 | ||
Conservation | Protected area | 0 | No | 1 |
1 | Natura 2000 network or Nationally designated areas | 1.1 | ||
2 | Natura 2000 network & Nationally designated areas | 1.2 | ||
Global richness | 1–25% | Low | 1 | |
26–75% | Medium | 1.1 | ||
>75% | Very high | 1.2 | ||
Recent management | 0 | No management | 1 | |
1 | Management | 1.2 |
Forest Type | Carbon Storage (Mg C ha−1) | Carbon Sequestration (Mg C ha−1 year−1) |
---|---|---|
P. halepensis | 14.890 | 0.728 |
P. pinea | 40.318 | 2.040 |
P. pinaster | 36.827 | 1.708 |
P. canariensis | 17.409 | 0.010 |
P. nigra | 31.807 | 1.302 |
P. sylvestris | 45.002 | 1.818 |
P. uncinata | 91.096 | 1.881 |
Q. ilex | 29.681 | 0.798 |
Q. suber | 31.383 | 0.647 |
Q. pirenaica | 31.653 | 1.065 |
Q. faginea | 20.736 | 0.715 |
Q. petraea | 98.790 | 2.048 |
Q. robur | 77.203 | 1.363 |
F. sylvatica | 175.223 | 2.614 |
C. sativa | 156.906 | 2.729 |
E. globulus | 39.679 | 2.906 |
P. radiata | 66.229 | 4.947 |
References
- MEA Millennium Ecosystem Assessment. Ecosystem and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005; p. 86. [Google Scholar]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, 6309. [Google Scholar] [CrossRef] [PubMed]
- Ojea, E.; Ruiz-Benito, P.; Markanda, A.; Zavala, M.A. Wood provisioning in Mediterranean forests: A bottom up spatial valuation approach. For. Policy Econ. 2012, 20, 78–88. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- van der Plas, F.; Ratcliffe, S.; Ruiz-Benito, P.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Ampoorter, E.; Baeten, L.; Barbaro, L.; et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 2018, 21, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Le Quere, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Messier, C.; Puettmann, K.J.; Coates, D.K. Managing Forests as Complex Adaptative Systems. Building Resilience to the Challenges of Global Change; Routledge: London, UK; New York, NY, USA, 2013. [Google Scholar]
- Fares, S.; Scarascia Mugnozza, G.; Corona, P.; Palahí, M. Sustainability: Five steps for managing Europe’s forests. Nature 2015, 519, 407–409. [Google Scholar] [CrossRef]
- Madrigal-González, J.; Ballesteros-Cánovas, J.A.; Herrero, A.; Ruiz-Benito, P.; Stoffel, M.; Lucas-Borja, M.E.; Andivia, E.; Sancho-García, C.; Zavala, M.A. Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic Multidecadal Oscillations. Nat. Commun. 2017, 8, 2222. [Google Scholar] [CrossRef] [Green Version]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Lines, E.R.; Gómez-Aparicio, L.; Zavala, M.A.; Coomes, D.A. Patterns and drivers of tree mortality in Iberian forests: Climatic effects are modified by competition. PLoS ONE 2013, 8, e56843. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, art129. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Benito, P.; Ratcliffe, S.; Zavala, M.A.; Martínez-Vilalta, J.; Vilà-Cabrera, A.; Lloret, F.; Madrigal-González, J.; Wirth, C.; Greenwood, S.; Kändler, G.; et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Glob. Chang. Biol. 2017, 23, 4162–4176. [Google Scholar] [CrossRef] [PubMed]
- Vayreda, J.; Martinez-Vilalta, J.; Gracia, M.; Canadell, J.G.; Retana, J. Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. Glob. Chang. Biol. 2016, 22, 3984–3995. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2015, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolstrom, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araujo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, S.; Wirth, C.; Jucker, T.; van der Plas, F.; Scherer-Lorenzen, M.; Verheyen, K.; Allan, E.; Benavides, R.; Bruelheide, H.; Ohse, B.; et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 2017, 20, 1414–1426. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Vayreda, J.; Banqué-Casanovas, M.; Cusó, M.; Anton, M.; Bonet, J.A.; Brotons, L.; De Cáceres, M.; Herrando, S.; Martínez de Aragón, J.; et al. Assessing the distribution of forest ecosystem services in a highly populated Mediterranean region. Ecol. Indic. 2018, 93, 986–997. [Google Scholar] [CrossRef]
- Cruz-Alonso, V.; Ruiz-Benito, P.; Villar-Salvador, P.; Rey-Benayas, J.M. Long-term recovery of multifunctionality in Mediterranean forests depends on restoration strategy and forest type. J. Appl. Ecol. 2019, in press. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Lis, A. Negotiating the European Union Emission Trading Scheme: Re-constructing a Calculative Space for Carbon. Pol. Sociol. Rev. 2011, 2, 77–94. [Google Scholar]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Prokofieva, I. Payments for ecosystem services—The case of forests. Curr. For. Rep. 2016, 2, 130–142. [Google Scholar] [CrossRef]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Galik, C.S.; Jackson, R.B. Risks to forest carbon offset projects in a changing climate. For. Ecol. Manag. 2009, 257, 2209–2216. [Google Scholar] [CrossRef]
- Poorter, L.; van der Sande, M.T.; Thompson, J.; Arets, E.J.; Alarcón, A.; Álvarez-Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Benito, P.; Gómez-Aparicio, L.; Paquette, A.; Messier, C.; Kattge, J.; Zavala, M.A. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 2014, 23, 311–322. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Soares-Filho, B.; da Fonseca, G.A.B.; Nepstad, D.; Pfaff, A.; Petsonk, A.; Anderson, A.; Boucher, D.; Cattaneo, A.; Conte, M.; et al. Indigenous Lands, Protected Areas, and Slowing Climate Change. PLoS Biol. 2010, 8, e1000331. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Ruiz-Benito, P.; Zavala, M.A. Recent land cover changes in Spain across biogeographical regions and protection levels: Implications for conservation policies. Land Use Policy 2015, 44, 62–75. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Cuevas, J.A.; Bravo de la Parra, R.; Prieto, F.; Zavala, M.A. Land use change in a Mediterranean metropolitan region and its periphery: Assessment of conservation policies through CORINE Land Cover and Markov models. For. Syst. 2010, 19, 315–328. [Google Scholar] [CrossRef]
- Pausas, J.C.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin? A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar] [CrossRef]
- Villanueva, J.A. Tercer Inventario Forestal Nacional (1997–2007); Comunidad de Madrid, Ministerio de Medio Ambiente: Madrid, Spain, 2004; p. 420. [Google Scholar]
- Villaescusa, R.; Díaz, R. Segundo Inventario Forestal Nacional (1986–1996); Ministerio de Medio Ambiente, ICONA: Madrid, Spain, 1998; p. 337. [Google Scholar]
- AEMET. Atlas Climático Ibérico: Temperatura del Aire y Precipitación 1971–2000; AEMET: Madrid, Spain, 2011. [Google Scholar]
- Vicente-Serrano, S.M.; Tomas-Burguera, M.; Beguería, S.; Reig, F.; Latorre, B.; Peña-Gallardo, M.; Luna, M.Y.; Morata, A.; González-Hidalgo, J.C. A High Resolution Dataset of Drought Indices for Spain. Data 2017, 2, 22. [Google Scholar] [CrossRef]
- MAPAMA. Inventario Nacional de Erosión de Suelos (INES); Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2016. [Google Scholar]
- MAPAMA. Mapa de Estados Erosivos; Area de Hidrología y Zonas Desfavorecidas; Dirección General de Medio Natural y Política Forestal, Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2017. [Google Scholar]
- MAPAMA. Mapa de Frecuencia de Incendios Forestales por Término Municipal; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (MAPAMA), Subdirección General Silvicultura y Montes: Madrid, Spain, 2016. [Google Scholar]
- EEA. Natura 2000 Data—The European Network of Protected Sites; European Environmental Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- EEA. Nationally Designated Areas (CDDA); European Environmental Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- MAPAMA. Inventario Español de Especies Terrestres; Servicio de Vida Silvestre, Área de Acciones de Conservación, Subdirección General de Medio Natural, Dirección General de Calidad y Evaluación Ambiental y Medio Natural, MAPAMA: Madrid, Spain, 2013. [Google Scholar]
- Ruiz-Benito, P.; Benito-Garzón, M.; Gómez-Aparicio, L.; García-Valdés, R.; Zavala, M.A. El Clima, la Estructura Forestal y la Diversidad Como Determinates de los Bosques Españoles Peninsulares; UPNA: Navarra, Spain, 2016; pp. 31–43. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Teller, A.; Erhard, M.; Grizzetti, B.; Barredo, J.I.; Paracchini, M.L.; Condé, S.; Somma, F.; Orgiazzi, A.; Jones, A.; et al. Mapping and Assessment of Ecosystems and Their Services: An Analytical Framework for Ecosystem Condition; Publications office of the European Union: Luxembourg, 2018. [Google Scholar]
- van der Plas, F.; Manning, P.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Hector, A.; Ampoorter, E.; Baeten, L.; et al. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat. Commun. 2016, 7, 11109. [Google Scholar] [CrossRef]
- Montero, G.; Ruiz-Peinado, R.; Muñoz, M. Producción de Biomasa Y Fijación de CO2 por Los Bosques Españoles; Serie Forestal No 3; INIA-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria: Madrid, Spain, 2005. [Google Scholar]
- MAGRAMA. Mapa Forestal de España 1:50000; Ministerio de Agricultura, Alimentación y Medio Ambiente, Dirección General de Calidad y Evaluación Ambiental y Medio Natural, Subdirección General de Medio Natural, Area de Banco de Datos de la Naturaleza: Madrid, Spain, 2013. [Google Scholar]
- Vallejo, R. El Mapa Forestal de España escala 1:50000 (MFE50) como base del tercér Inventario Forestal Nacional. Cuad. Soc. Española Cienc. For. 2005, 19, 205–210. [Google Scholar]
- Ruiz-Benito, P.; Ratcliffe, S.; Jump, A.; Gómez-Aparicio, L.; Madrigal-González, J.; Wirth, C.; Kändler, G.; Lehtonen, A.; Dahlgren, J.; Kattge, J.; et al. Functional diversity underlies demographic responses to environmental variation in European forests. Glob. Ecol. Biogeogr. 2017, 26, 128–141. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002; p. 488. [Google Scholar]
- Goffe, W.L.; Ferrier, G.D.; Rogers, J. Global optimization of statistical functions with simulated annealing. J. Econom. 1994, 60, 65–99. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 1 September 2018).
- Murphy, L. Likelihood: Methods for Maximum Likelihood Estimation, R Package Version 1.6; 2012. Available online: https://cran.r-project.org/web/packages/likelihood/likelihood.pdf. (accessed on 1 September 2018).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2012, 2, 18–22. [Google Scholar]
- Chirici, G.; Winter, S.; McRoberts, R. National Forest Inventories: Contributions to Forest Biodiversity Assessments; Springer Science + Business Media: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Vidal, C.; Alberdi, I.; Hernández, L.; Redmond, J. National Forest Inventories: Assessment of Wood Availability and Use; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Kunstler, G.; Falster, D.; Coomes, D.A.; Hui, F.; Kooyman, R.M.; Laughlin, D.C.; Poorter, L.; Vanderwel, M.; Vieilledent, G.; Wright, S.J.; et al. Plant functional traits have globally consistent effects on competition. Nature 2016, 529, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Häyhä, T.; Paolo, P.; Paletto, A.; Fath, B.D. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosyst. Serv. 2015, 14, 12–23. [Google Scholar] [CrossRef]
- Watson, R.T.; Team, C.W. Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Karjalainen, T.; Pussinen, A.; Liski, J.; Nabuurs, G.-J.; Eggers, T.; Lapvetel Ãinen, T.; Kaipainen, T. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. For. Policy Econ. 2003, 5, 141–155. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef]
- Vayreda, J.; Martínez-Vilalta, J.; Gracia, M.; Retana, J. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob. Chang. Biol. 2012, 18, 1028–1041. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Nlom, J.H.; Neba, S.G. Valuation of forest carbon stocks to estimate the potential for result-based payment under REDD + in Cameroon. Int. For. Rev. 2016, 18, 119–129. [Google Scholar] [CrossRef]
- Kibria, A.S.M.G.; Behie, A.; Costanza, R.; Groves, C.; Farrell, T. The value of ecosystem services obtained from the protected forest of Cambodia: The case of Veun Sai-Siem Pang National Park. Ecosyst. Serv. 2017, 26, 27–36. [Google Scholar] [CrossRef]
- Ninan, K.N.; Inoue, M. Valuing forest ecosystem services: What we know and what we don’t. Ecol. Appl. 2013, 93, 137–149. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Madrigal-González, J.; Ratcliffe, S.; Coomes, D.A.; Kändler, G.; Lehtonen, A.; Wirth, C.; Zavala, M.A. Stand structure and recent climate change constrain stand basal area change in European forests: A comparison across boreal, temperate and Mediterranean biomes. Ecosystems 2014, 17, 1439–1454. [Google Scholar] [CrossRef]
- Vilá-Cabrera, A.; Martínez-Vilalta, J.; Vayreda, J.; Retana, J. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol. Appl. 2011, 31, 1162–1172. [Google Scholar] [CrossRef]
- Fernández-Manjarrés, J.F.; Ruiz-Benito, P.; Zavala, M.A.; Camarer, J.J.; Pulido, F.; Proença, V.; Navarro, L.; Sansilvestri, R.; Granda, E.; Marqués, L.; et al. Forest adaptation to climate change along steep ecological gradients: the case of the Mediterranean-temperate transition in South-Western Europe. Sustainability 2018, 10, 3065. [Google Scholar]
- Ruiz-Benito, P.; Gómez-Aparicio, L.; Zavala, M.A. Large scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Divers. Distrib. 2012, 18, 1092–1106. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; López-Senespleda, E.; Onrubia, R.; Bravo-Oviedo, A.; Pasalodos-Tato, M.; Madrigal, G.; Calama, R.; del Río, M.; Montero, G. Cuantificación del Carbono Acumulado en la Capa Orgánica de los Suelos Forestales en la España Peninsular; Comunicación Congreso Forestal Español: Madrid, Spain, 2017. [Google Scholar]
- Ruiz-Peinado, R.; Moreno, G.; Juarez, E.; Montero, G.; Roig, S. The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J. Arid Environ. 2013, 91, 22–30. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Blanco Oyonarte, P. Estimation of above-ground biomass in shrubland ecosystems of southern Spain. Investig. Agrar. Sist. Recur. 2006, 15, 197–207. [Google Scholar] [CrossRef]
- Corona, P.; Pasta, S.; Giardina, G.; La Mantia, T. Assessing the biomass of shrubs typical of Mediterranean pre-forest communities. Plant Biosyst. 2011. [Google Scholar] [CrossRef]
- Moreno, A.; Neumann, M.; Hasenauer, H. Forest structures across Europe. Geoscience 2017, 4, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; House, J.I.; Pongratz, J.; van der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Kuemmerle, T.; Levers, C.; Erb, K.; Estel, S.; Jepsen, M.R.; Müller, D.; Plutzar, C.; Stürck, J.; Verkerk, P.J.; Verburg, P.H.; et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016, 11, 064020. [Google Scholar] [CrossRef] [Green Version]
- OSE. Biodiversidad en España: Base Para la Sostenibilidad Ante el Cambio Global; Mundiprensa: Madrid, Spain, 2011. [Google Scholar]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Condit, R. Research in large, long-term tropical forest plots. Tree 1987, 10, 18–21. [Google Scholar] [CrossRef]
- Barredo, J.I.; San Miguel, J.; Caudullo, G.; Busetto, L. A European Map of Living Biomass and Carbon Stock; Executive Report. European Commission, 2012. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC77439/lb-na-25730-en-n.pdf (accessed on 1 September 2018).
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. PNAS 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Group | Variable Description | Database Source | Temporal Period |
---|---|---|---|---|
Response | Carbon | Carbon sequestration (Mg C ha−1 year−1) | SFI2 and SFI3 [36,37] | SFI period (1986/1996–1997/2010) |
Carbon storage (Mg C ha−1) | SFI3 | SFI period (1997/2010) | ||
Explicative | Forest structure | Stand density (No. trees ha−1) | SFI2 | Current |
Mean tree size (mm) | SFI2 | Current | ||
Diversity | Tree richness (No. tree species) | SFI2 | Current | |
Climate | Annual precipitation (mm) | Iberian Climatic Atlas [38] | Mean 1971–2000 | |
Mean annual temperature (°C) | Iberian Climatic Atlas [38] | Mean 1971–2000 | ||
SPEI (adimensional) | SPEI database [39] | SFI period (1986–2010) | ||
Weight | Erosion risk | Soil fragility (adimensional) | Spanish Soil Inventory [40] | Current |
Potential erosion risk (adimensional) | Spanish Soil Inventory [40] | Current | ||
Erosion level (adimensional) | Erosion Map [41] | Current | ||
Fire risk | Fire frequency | [42] | SFI period | |
Conserv. | Natura Net 2000 | [43] | Current | |
Nationally designated areas | [44] | Current | ||
Species richness (No. species) | Spanish Inventory of Terrestrial Species [45] | Current | ||
Managem. | Recent forest management | SFI3 [36] | SFI survey (1986–2010) |
Forest Type | Aboveground Carbon Storage (mill. Mg C) | Belowground Carbon Storage (mill. Mg C) | Total Carbon Storage (mill. Mg C) |
---|---|---|---|
P. halepensis | 9.03 | 3.17 | 12.20 |
P. pinea | 11.32 | 2.13 | 13.45 |
P. pinaster | 21.87 | 4.76 | 26.63 |
P. canariensis | 3.42 | 0.86 | 4.28 |
P. nigra | 5.78 | 1.53 | 7.31 |
P. sylvestris | 14.11 | 4.14 | 18.25 |
P. uncinata | 2.95 | 1.03 | 3.98 |
Q. ilex | 41.98 | 21.10 | 63.08 |
Q. suber | 6.79 | 1.83 | 8.62 |
Q. pyrenaica | 5.54 | 1.54 | 7.08 |
Q. faginea | 1.35 | 0.51 | 1.86 |
Q. petraea | 3.62 | 0.96 | 4.57 |
Q. robur | 13.94 | 3.50 | 17.44 |
F. sylvatica | 22.18 | 11.94 | 34.12 |
C. sativa | 12.01 | 19.49 | 31.50 |
E. globulus | 15.78 | - | 15.78 |
P. radiata | 4.44 | 0.79 | 5.23 |
Full | No Structure | No Climate | No Richness | R2 | Slope | |
---|---|---|---|---|---|---|
P. halepensis | 10,803.60 | 12,621.57 | 10,931.76 | 10,830.37 | 0.34 | 1.00 |
P. pinea | 5587.39 | 5806.27 | 5592.47 | 5589.90 | 0.18 | 1.00 |
P. pinaster | 17,531.33 | 18,308.31 | 17,519.00 | 19,010.80 | 0.20 | 1.01 |
P. canariensis | 42.04 | 34.94 | 34.74 | 38.69 | 0.90 | 1.29 |
P. nigra | 10,759.92 | 11,385.90 | 10,760.25 | 10,757.27 | 0.26 | 0.99 |
P. sylvestris | 14,263.20 | 14,796.07 | 14,264.00 | 14,259.33 | 0.20 | 1.01 |
P. uncinata | 1851.28 | 1876.83 | 1852.94 | 1842.90 | 0.15 | 0.98 |
Q. ilex | 16,909.71 | 18,130.11 | 16,987.87 | 16,905.94 | 0.36 | 1.01 |
Q. suber | 3422.65 | 3506.47 | 3425.36 | 3423.42 | 0.11 | 1.08 |
Q. pyrenaica | 4928.74 | 5085.78 | 4914.68 | 4920.81 | 0.16 | 1.01 |
Q. faginea | 1941.55 | 2114.26 | 1931.25 | 1948.08 | 0.26 | 1.02 |
Q. petraea | 637.05 | 633.13 | 627.04 | 634.10 | 0.19 | 1.01 |
Q. robur | 2056.02 | 2091.73 | 2040.48 | 2049.00 | 0.17 | 1.00 |
F. sylvatica | 2770.49 | 2771.78 | 2757.89 | 2765.43 | 0.05 | 1.01 |
C. sativa | 1851.68 | 1852.12 | 1852.17 | 1853.14 | 0.14 | 1.08 |
E. globulus | 3102.80 | 3177.23 | 3091.98 | 3098.48 | 0.44 | 1.00 |
P. radiata | 3633.87 | 3628.05 | 3622.96 | 3627.22 | 0.21 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Díaz, P.; Ruiz-Benito, P.; Gosalbez Ruiz, J.; Chamorro, G.; Zavala, M.A. A Multifactorial Approach to Value Supporting Ecosystem Services in Spanish Forests and Its Implications in a Warming World. Sustainability 2019, 11, 358. https://doi.org/10.3390/su11020358
González-Díaz P, Ruiz-Benito P, Gosalbez Ruiz J, Chamorro G, Zavala MA. A Multifactorial Approach to Value Supporting Ecosystem Services in Spanish Forests and Its Implications in a Warming World. Sustainability. 2019; 11(2):358. https://doi.org/10.3390/su11020358
Chicago/Turabian StyleGonzález-Díaz, Patricia, Paloma Ruiz-Benito, Jorge Gosalbez Ruiz, Gregorio Chamorro, and Miguel A. Zavala. 2019. "A Multifactorial Approach to Value Supporting Ecosystem Services in Spanish Forests and Its Implications in a Warming World" Sustainability 11, no. 2: 358. https://doi.org/10.3390/su11020358
APA StyleGonzález-Díaz, P., Ruiz-Benito, P., Gosalbez Ruiz, J., Chamorro, G., & Zavala, M. A. (2019). A Multifactorial Approach to Value Supporting Ecosystem Services in Spanish Forests and Its Implications in a Warming World. Sustainability, 11(2), 358. https://doi.org/10.3390/su11020358