How Does Urban Rail Transit Influence Residential Property Values? Evidence from An Emerging Chinese Megacity
Abstract
:1. Introduction
2. Literature Review
3. Model Construction
3.1. Sample Description
3.2. Model and Variable Determination
4. Results
4.1. General Impacts
4.2. Spatial Differences
4.3. Spatial-Temporal Impacts
5. Conclusion and Policy Implementation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, G.; Luan, X.; Yang, J. Value capture beyond municipalities: Transit-oriented development and inter-city passenger rail investment in China’s Pearl River Delta. J. Transp. Geogr. 2013, 33, 268–277. [Google Scholar] [CrossRef]
- Hewitt, C.M.; Hewitt, W.E. The effect of proximity to urban rail on housing prices in Ottawa. J. Public Transp. 2012, 15, 43–65. [Google Scholar] [CrossRef]
- Kim, K.; Lahr, M.L. The impact of Hudson-Bergen light rail on residential property appreciation. Papers Reg. Sci. 2013, 93, S79–S97. [Google Scholar] [CrossRef]
- Chatman, D.G.; Tulach, N.K.; Kim, K. Evaluating the economic impacts of light rail by measuring home appreciation: A first look at New Jersey’s River Line. Urban Stud. 2012, 49, 467–487. [Google Scholar] [CrossRef]
- Sheng, L.F. The implementation mode of urban rail based Transit Joint Development—Experiences from United States, Japan and Hong Kong. Appl. Mech. Mater. 2011, 97–98, 1149–1153. [Google Scholar] [CrossRef]
- Su, Y.Y.; Zhu, D.L.; Zheng, Y.Z.; Wang, X.; Chen, G. The effects of subways on housing price gradients between urban area and suburb in southwest Beijing. Resour. Sci. 2015, 37, 125–132. [Google Scholar]
- Wang, Y.N.; Yun, Y.X.; Guo, L.J. Spatial and temporal effect of urban rapid rail transit on real estate value increment: A case study of Tianjin. Urban Transp. 2015, 39, 71–75. [Google Scholar]
- Lin, J.J.; Hwang, C.H. Analysis of property prices before and after the opening of the Taipei subway system. Ann. Reg. Sci. 2004, 38, 687–704. [Google Scholar] [CrossRef]
- Bae, C.H.C.; Jun, M.J.; Park, H. The impact of Seoul’s subway line 5 on residential property values. Transp. Policy 2008, 10, 85–94. [Google Scholar] [CrossRef]
- Yuan, M.D. Research on the Influence of Rail Transit on the Housing Price in Changchun; Jilin University: Changchun, China, 2017. [Google Scholar]
- Jiang, Y.; Ye, X.F.; Wang, Z. Impact area of Shanghai rail transit line 1 on development benefits. Urban Mass Transit 2007, 10, 28–31. [Google Scholar]
- Ryan, S. Property values and transportation facilities: Finding the transportation-land use connection. J. Plan. Lit. 1999, 13, 412–427. [Google Scholar] [CrossRef]
- Webber, M.M. The BART experience-what have we learned? Inst. Urban Reg. Dev. 1976, 12, 76–108. [Google Scholar]
- Efthymiou, D.; Antoniou, C. How do transport infrastructure and policies affect house prices and rents? Evidence from Athens, Greece. Transp. Res. 2013, 52, 1–22. [Google Scholar] [CrossRef]
- Dewees, D.N. The effect of a subway on residential property values in Toronto. J. Urban Econ. 1976, 4, 357–369. [Google Scholar] [CrossRef]
- Pan, Q.; Pan, H.; Zhang, M.; Zhong, B. Effects of rail transit on residential property values Comparison study on the rail transit lines in Houston, Texas, and Shanghai, China. Transp. Res. Board Meet. 2014, 118–127. [Google Scholar] [CrossRef]
- Dai, X.; Bai, X.; Xu, M. The influence of Beijing rail transfer stations on surrounding housing prices. Habitat Int. 2016, 55, 79–88. [Google Scholar] [CrossRef]
- Nie, C.; Wen, H.Z.; Fan, X.F. The spatial and temporal effect on property value increment with the development of urban rapid rail transit: An empirical research. Geogr. Res. 2010, 29, 801–810. [Google Scholar]
- Zhang, W.Y.; Li, H.; Duan, X.J. The impacts of rail transit on property values: The case of No.1 Line in Beijing. Econ. Geogr. 2012, 32, 46–51. [Google Scholar]
- Alonso, W. Location and Land Use; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Muth, R. Cities and Housing; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic pricing and implicit markets: Product differentiation in pure competition. J. Polit. Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Dube, J.; Theriault, M.; Des Rosiers, F. Commuter rail accessibility and house values: The case of the Montreal South Shore, Canada, 1992–2009. Transp. Res. 2013, 54, 49–66. [Google Scholar] [CrossRef]
- Yang, Z.L. Analysis of the Impact of Xi’an Subway on Housing Price; Xi’an University of Architecture and Technology: Xi’an, China, 2013. [Google Scholar]
- Ji, W. Analysis and Prediction of Commodity Housing Prices around Urban Rail Transit; Chengdu University of Technology: Chengdu, China, 2013. [Google Scholar]
- Zhang, J.S. Mathematical Economics-Theory and Applications; Tsinghua University Press: Beijing, China, 1998; pp. 20–68. [Google Scholar]
- Diao, M.; Qin, Y.; Sing, T.F. Negative externalities of rail noise and housing values: Evidence from the cessation of railway operations in Singapore. Real Estate Econ. 2015, 44, 878–917. [Google Scholar] [CrossRef]
- Baldassare, M.; Knight, R.; Swan, S. Urban service and environmental stressor: The impact of the bay area rapid transit system (BART) on residential mobility. Environ. Behav. 1979, 11, 435–450. [Google Scholar] [CrossRef]
- Portnov, B.A.; Bella, G.; Barzilay, B. Investing a timing the effect of train proximity on apartment prices: Haifa, Israel as a case study. J. Real Estate Res. 2009, 31, 371–395. [Google Scholar]
- Ewing, R. Hedonic price effects of pedestrian- and transit-oriented development. J. Plan. Lit. 2011, 26, 18–34. [Google Scholar]
- Duncan, M. Comparing rail transit capitalization benefits for single-family and condominiums units in San Diego, California. Transp. Res. Rec. 2008, 2067, 120–130. [Google Scholar] [CrossRef]
- Kang, L.; Qun, W.U.; Pei, W. Econometric analysis of the impacts of rail transit on property values: The number 1 and 2 lines in Nanjing. Resour. Sci. 2015, 37, 133–141. [Google Scholar]
- Al-Mosaind, M.A.; Dueker, K.J.; Strathman, J.G. Light-rail transit stations and property values: A hedonic price approach. Transp. Res. Rec. 1993, 1400, 90–94. [Google Scholar]
- Duncan, M. The impact of transit-oriented development on housing prices in San Diego, CA. Urban Stud. 2010, 48, 101–127. [Google Scholar] [CrossRef]
- Dan, H.E.; Jin, F.J. An analysis of the spatio-temporal impacts of major infrastructure on real estate prices-take Beijing Metro Line 4 as an Example. J. Beijing Union Univ. 2013, 24, 1171–1180. [Google Scholar]
- Won, J.M.; Son, K.B. Land Price Impact of Subway; Seoul University Capital Region Development Institute Yeongu Non-Chong: Seoul, Korea, 1993; pp. 35–37. [Google Scholar]
- Henneberry, J. Transport investment and house prices. J. Prop. Valuat. Invest. 1998, 16, 144–158. [Google Scholar] [CrossRef]
- Gu, Y.Z.; Guo, R. Effect of rail transit on housing price and land development intensity: A case study of line 13 in Beijing. Econ. Geogr. 2010, 65, 213–223. [Google Scholar]
- Loomis, J.; Santiago, L.; De Jesus, Y.L. Effects of construction and operation phases on residential property prices of the Caribbean’s first modern rail transit system. Urban Public Econ. Rev. 2012, 17, 56–77. [Google Scholar]
- Yanyan, K.; Shuyi, L. Research on Time and Space Effect of Rail Transit on Housing Price—Taking Xiamen Metro Line 1 as an Example. Constr. Econ. 2017, 38, 90–95. [Google Scholar]
- Wen, H.; Tao, Y. Polycentric urban structure and housing price in the transitional China: Evidence from Hangzhou. Habitat Int. 2015, 46, 138–146. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Xie, Y. Special beneficiaries paying for rail transit: Theoretical hypothesis and empirical testing: Taking Wuhan Light Rail Line 1 and Metro Line 2 as examples. J. Cent. South Univ. Natl. 2018, 3803, 138–143. [Google Scholar]
- Li, X.; Wang, H.; Sun, H. Research on urban rail transit effect on land value—A case study of the first phase of Zhengzhou Rail Transit Line 1. Urban Dev. Res. 2014, 9, 21–24. [Google Scholar]
- Li, Y. Research on the influence of urban rail transit on house price along the line based on Characteristic Price Model—Taking Zhengzhou Metro Line 1 as an example. Soc. Sci. 2016, 8, 177–178. [Google Scholar]
- Huang, X. Research on the Spatial Effect of Urban Rail Transit on Residential Price along the Line—Taking Guangzhou Subway as an Example; South China Normal University: Guangdong, China, 2015. [Google Scholar]
- Yan, W. Research on the Impact of Urban Rail Transit on Land Value and Its Return Mode; Chongqing University: Chongqing, China, 2013. [Google Scholar]
- Can, A. Measurement of neighborhood dynamics in urban house prices. Econ. Geogr. 1990, 66, 254–272. [Google Scholar] [CrossRef]
- Sui, X.T. Research on the Impact of Rail Transit Projects on Residential Prices along the Line; Capital University of Economics and Business: Beijing, China, 2016. [Google Scholar]
Name of Gated Community | Total No. of Households | No. of Selected Households | Max. of Price | Min. of Price | Average (μ) of Price | Medium of Price | Standard Deviation (δ) | |
---|---|---|---|---|---|---|---|---|
Hanfei | 3504 | 100 | 17,551 | 11,429 | 13,070.22 | 13,014.5 | 1003.878 | 0.71 |
Libao | 324 | 44 | 18,391 | 12,931 | 14,892.27 | 14,739.5 | 1184.727 | 0.53 |
Shanding | 696 | 100 | 21,277 | 14,000 | 17,500.93 | 17,612.0 | 1197.519 | 0.75 |
Yuhong | 524 | 39 | 13,580 | 12,500 | 13,141.46 | 13,103.0 | 250.765 | 0.67 |
Fuli | 668 | 100 | 12,444 | 9906 | 11,594.74 | 11,818.0 | 731.210 | 0.72 |
Jincheng | 260 | 69 | 18,987 | 13,636 | 15,646.33 | 15,227.0 | 1373.840 | 0.77 |
Zhongheng | 1076 | 100 | 19,040 | 12,174 | 16,003.68 | 16,315.5 | 1331.811 | 0.74 |
Julongcheng | 996 | 96 | 31,464 | 17,711 | 23,424.39 | 23,641.0 | 2609.190 | 0.81 |
Junyuecheng | 1999 | 100 | 17,493 | 13,659 | 16,024.41 | 16,294.5 | 939.019 | 0.67 |
Guangsha | 668 | 39 | 16,667 | 10,000 | 11,875.37 | 11,458.0 | 1504.610 | 0.81 |
Zijing | 1400 | 100 | 15,823 | 10,256 | 12,509.03 | 12,275.5 | 1063.859 | 0.76 |
Shengfei | 1289 | 100 | 23,333 | 14,545 | 18,325.06 | 18,142.5 | 1726.370 | 0.73 |
Weilaicheng | 1965 | 100 | 20,934 | 13,675 | 16,503.94 | 16,438.0 | 1346.223 | 0.70 |
Xinyuan | 2268 | 100 | 34,848 | 15,411 | 19,063.95 | 17,913.0 | 4043.968 | 0.85 |
Zijingyangguang | 936 | 100 | 20,253 | 10,480 | 14,314.95 | 14,387.5 | 1647.394 | 0.90 |
Variable Name | Unit | Meaning | Data Source | Mean | Median | Maximum | Minimum | Std. Dev. | Sign | |
---|---|---|---|---|---|---|---|---|---|---|
Prediction | ||||||||||
Dependent variable | - | - | - | - | - | - | - | - | - | |
P | (yuan/m2) | The average housing price of the gated community per year | Anjuke | 11,208.40 | 10,593.75 | 25,959.25 | 5507.08 | 2601.97 | - | |
Independent variable | - | - | - | - | - | - | - | - | - | |
Travel time to the URT station | td | minute | The walking time to the nearest URT station | Baidu Openmap | 10.50 | 10.85 | 22.91 | 0.06 | 5.03 | - |
Construction characteristic variable | fee | (yuan/m2) | property management fee | Anjuke | 0.78 | 0.50 | 3.00 | 0.20 | 0.48 | - |
number | a | The total numbers of households of a certain community | Anjuke, Fangtianxia | 714.48 | 410.50 | 6146.00 | 14.00 | 856.74 | - | |
age | year | The housing age: the selected in 2012–2016 minus the actually built years (year) | Anjuke | 12.80 | 13.00 | 27.00 | 3.00 | 5.15 | − | |
gre | - | Greening rate | Anjuke | 0.32 | 0.32 | 0.60 | 0.10 | 0.07 | + | |
rate | - | Plot Ratio | Anjuke | 2.45 | 2.10 | 9.24 | 0.80 | 0.98 | − | |
Location characteristic variable | bus | a | The number of bus stations within 500 m | Anjuke | 8.68 | 8.00 | 20.00 | 1.00 | 3.89 | + |
d_27 | minute | The car travel time to Erqi Square | Baidu Openmap | 15.71 | 15.04 | 39.57 | 0.28 | 6.80 | − | |
d_cbd | minute | The car travel time to CBD | Baidu Openmap | 17.80 | 17.24 | 39.20 | 2.00 | 6.84 | − | |
d_c | minute | The car travel time to the nearest district government | Baidu Openmap | 26.98 | 26.96 | 58.93 | 3.05 | 11.28 | − | |
Neighborhood characteristic variable | edu | - | Whether or not there are middle schools or primary schools within 1000 m (all 2, one of them 1, otherwise 0) | Anjuke | 0.72 | 1.00 | 2.00 | 0.00 | 0.50 | + |
hos | - | Whether or not there is top3 hospital within 1000 m (yes 1, otherwise 0) | Anjuke | 0.54 | 1.00 | 1.00 | 0.00 | 0.50 | + | |
park | - | Whether or not there is park in within 1000 m (yes 1, otherwise 0) | Anjuke | 0.56 | 1.00 | 1.00 | 0.00 | 0.50 | + | |
bank | a | The number of banks within 1 km | Anjuke | 23.37 | 21.00 | 80.00 | 0.00 | 15.79 | + | |
spr | a | The number of supermarkets within 1 km | Anjuke | 4.67 | 4.00 | 10.00 | 1.00 | 2.24 | + |
Dummy | Characteristic Variable | Time Distance to the Nearest URT Station |
---|---|---|
Spatial dummy | 0–4 min (yes 1, otherwise 0) | |
4–8 min (yes 1, otherwise 0) | ||
8–12 min (yes 1, otherwise 0) | ||
12–16 min (yes 1, otherwise 0) | ||
Over 16min (yes 1, otherwise 0) | ||
Temporal dummy | Dummy2012 | year 2012 (yes 1, otherwise 0) |
Dummy 2013 | year 2013 (yes 1, otherwise 0) | |
Dummy 2014 | year 2014 (yes 1, otherwise 0) | |
Dummy 2015 | year 2015 (yes 1, otherwise 0) | |
Dummy 2016 | year 2016 (yes 1, otherwise 0) |
Variable | Name | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|
C | 9.108 *** | 9.057 *** | 9.044 *** | 9.047 *** | 9.087 *** | |
Construction characteristic variable | lntd | −0.035 ** | −0.025 *** | −0.020 ** | −0.033 *** | −0.007 ** |
fee | 0.052 *** | 0.040 *** | 0.038 *** | 0.001 | 0.000 | |
age | −0.011 ** | −0.002 | 0.000 | −0.001 | −0.002 *** | |
gre | −0.102 | 0.189 * | 0.126 | 0.280 | 0.268 *** | |
lnnumber | −0.004 | −0.013 ** | 0.000 | −0.005 | −0.002 | |
rate | −0.004 | −0.004 | −0.016 ** | −0.007 * | −0.001 | |
Neighborhood characteristic variable | bus | 0.021 ** | 0.020 *** | 0.017 *** | 0.015 *** | 0.013 *** |
bank | 0.0003 ** | 0.0005 ** | 0.0003 | 0.0003 | 0.0008 | |
edu | −0.027 | −0.001 | 0.036 *** | 0.009 | 0.018 ** | |
park | 0.003 | 0.020 * | 0.006 | 0.005 | 0.006 | |
spr | 0.021 * | 0.020 ** | 0.025 *** | 0.003 *** | 0.045 *** | |
hos | 0.024 | 0.022 * | 0.009 | 0.0015 * | 0.019 *** | |
Location characteristic variable | lnd_27 | −0.040 ** | −0.018 | −0.006 | 0.009 | 0.012 ** |
lnd_cbd | −0.072 *** | −0.066 *** | −0.005 *** | −0.045 *** | −0.044 *** | |
lnd_c | −0.001 | −0.003 | −0.018 * | −0.019 ** | −0.024 *** | |
Statistical indicators | R2 | 0.641 | 0.721 | 0.770 | 0.861 | 0.952 |
F | 55.148 | 80.019 | 103.58 | 191.778 | 619.720 | |
P(F) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
2.082 | 2.068 | 2.121 | 2.215 | 2.000 |
2012 | 2013 | 2014 | 2015 | 2016 | ||
---|---|---|---|---|---|---|
Model 2 | C | 8.99 | 8.985 | 8.818 | 9.003 | 9.064 |
d1 | 0.087 ** | 0.065 *** | 0.028 | 0.037 *** | 0.037 *** | |
d2 | 0.029 | 0.031 | 0.030 ** | 0.033 *** | 0.021 ** | |
d3 | 0.029 ** | 0.040 ** | 0.045 *** | 0.023 ** | 0.022 *** | |
d4 | 0.050 ** | 0.034 * | 0.062 *** | 0.044 *** | 0.034 *** | |
Construction characteristic variable | lnnumber | −0.006 | −0.015 ** | 0.000 | 0.000 | −0.003 |
fee | 0.054 *** | 0.044 *** | 0.012 | −0.002 | 0.001 | |
age | −0.010 *** | −0.002 | −0.001 | −0.003 *** | −0.002 *** | |
gre | −0.116 | 0.162 | 0.234 *** | 0.235 *** | 0.255 *** | |
rate | −0.004 | −0.005 | −0.002 | −0.004 | −0.002 | |
Neighborhood characteristic variable | bus | 0.021 *** | 0.020 *** | 0.019 *** | 0.015 *** | 0.013 *** |
bank | 0.0003 ** | 0.0005 *** | 0.0005 ** | 0.0002 | 0.0008 | |
edu | −0.020 | 0.002 | 0.025 ** | 0.021 ** | 0.022 *** | |
park | 0.007 | 0.020 | 0.000 | 0.004 | 0.006 | |
spr | 0.022 ** | 0.002 *** | 0.046 *** | 0.043 *** | 0.040 *** | |
hos | 0.025 | 0.016 | 0.018 * | 0.022 *** | 0.018 ** | |
Location characteristic variable | lnd_27 | −0.044 ** | −0.020 | −0.018 ** | 0.017 ** | 0.011 ** |
lnd_cbd | −0.077 *** | −0.066 *** | −0.056 *** | −0.060 *** | −0.045 ** | |
lnd_c | −0.002 | −0.005 | −0.027 *** | −0.026*** | −0.025*** | |
Statistical indicators | R2 | 0.644 | 0.721 | 0.896 | 0.928 | 0.955 |
F | 46.427 | 66.214 | 219.905 | 327.991 | 539.442 | |
P(F) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
2.079 | 2.050 | 1.900 | 1.860 | 1.984 |
Variable | Name | Model 3-1 | Model 3-2 | Model 3-3 |
---|---|---|---|---|
C | 8.805 | 8.640 | 8.595 | |
Dummy variable | lntd | - | −0.016 *** | - |
d1 | - | - | 0.048 *** | |
d2 | - | - | 0.029 *** | |
d3 | - | - | 0.033 *** | |
d4 | - | - | 0.031 *** | |
2013 | 0.149 *** | 0.147 *** | 0.148 *** | |
2014 | 0.235 *** | 0.235 *** | 0.235 *** | |
2015 | 0.337 *** | 0.338 *** | 0.337 *** | |
2016 | 0.427 *** | 0.426 *** | 0.426 *** | |
Construction characteristic variable | fee | 0.030 *** | 0.029 ** | 0.031 ** |
age | −0.003 *** | −0.003 * | −0.003 ** | |
gre | 0.160 ** | 0.167 ** | 0.156 ** | |
lnnumber | −0.004 | −0.004 | −0.005 | |
rate | −0.009 *** | −0.009 *** | −0.009 *** | |
Neighborhood characteristic variable | bus | 0.019 *** | 0.019 *** | 0.019 *** |
edu | 0.007 * | 0.005 | 0.008 | |
bank | 0.0005 ** | 0.0002 * | 0.0003 | |
park | 0.013 * | 0.013 * | 0.014 * | |
spr | 0.039 *** | 0.036 *** | 0.036 *** | |
hos | 0.018 ** | 0.020 ** | 0.017 ** | |
Location characteristic variable | lnd_27 | −0.025 *** | −0.023 *** | 0.002 *** |
lnd_cbd | −0.063 | −0.003 | −0.005 | |
lnd_c | −0.006 | −0.005 | −0.007 | |
Statistical indicators | R2 | 0.815 | 0.816 | 0.817 |
P(F) | 0.000 | 0.000 | 0.000 | |
P(H) | 1.000 | 1.000 | 1.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Jiao, J. How Does Urban Rail Transit Influence Residential Property Values? Evidence from An Emerging Chinese Megacity. Sustainability 2019, 11, 534. https://doi.org/10.3390/su11020534
Zhang D, Jiao J. How Does Urban Rail Transit Influence Residential Property Values? Evidence from An Emerging Chinese Megacity. Sustainability. 2019; 11(2):534. https://doi.org/10.3390/su11020534
Chicago/Turabian StyleZhang, Dongfang, and Jingjuan Jiao. 2019. "How Does Urban Rail Transit Influence Residential Property Values? Evidence from An Emerging Chinese Megacity" Sustainability 11, no. 2: 534. https://doi.org/10.3390/su11020534
APA StyleZhang, D., & Jiao, J. (2019). How Does Urban Rail Transit Influence Residential Property Values? Evidence from An Emerging Chinese Megacity. Sustainability, 11(2), 534. https://doi.org/10.3390/su11020534